
43

Understanding the Purpose of Permission Use in Mobile Apps

HAOYU WANG, Beijing University of Posts and Telecommunications
YUANCHUN LI and YAO GUO, Peking University
YUVRAJ AGARWAL and JASON I. HONG, Carnegie Mellon University

Mobile apps frequently request access to sensitive data, such as location and contacts. Understanding the
purpose of why sensitive data is accessed could help improve privacy as well as enable new kinds of access
control. In this article, we propose a text mining based method to infer the purpose of sensitive data access
by Android apps. The key idea we propose is to extract multiple features from app code and then use those
features to train a machine learning classifier for purpose inference. We present the design, implementation,
and evaluation of two complementary approaches to infer the purpose of permission use, first using purely
static analysis, and then using primarily dynamic analysis. We also discuss the pros and cons of both
approaches and the trade-offs involved.

CCS Concepts: � Security and privacy → Mobile platform security; Privacy protections; Usability
in security and privacy; � Information systems → Retrieval on mobile devices; � Human-centered
computing → Mobile phones;

Additional Key Words and Phrases: Permission, purpose, mobile applications, Android, privacy, access control

ACM Reference Format:
Haoyu Wang, Yuanchun Li, Yao Guo, Yuvraj Agarwal, and Jason I. Hong. 2017. Understanding the purpose
of permission use in mobile apps. ACM Trans. Inf. Syst. 35, 4, Article 43 (July 2017), 40 pages.
DOI: http://dx.doi.org/10.1145/3086677

1. INTRODUCTION

Mobile apps have seen widespread adoption, with over 2 million apps in both Google
Play and the Apple App Store, and billions of downloads [AppStore 2016; GooglePlay
2016]. Mobile apps can make use of the numerous capabilities of a smartphone, which
include a myriad of sensors (e.g., GPS, camera, and microphone) and a wealth of
personal information (e.g., contact lists, emails, photos, and call logs).

This work was partly supported by the Funds for Creative Research Groups of China under Grant
No. 61421061, the Beijing Training Project for the Leading Talents in S&T under Grant No. ljrc 201502, the
National Natural Science Foundation of China under Grant No. 61421091, and the National High Technology
Research and Development Program of China (863 Program) under Grant No. 2015AA017202. Jason Hong’s
work was supported in part by the Air Force Research Laboratory under agreement number FA8750-15-2-
0281. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of Air Force Research Laboratory or the U.S. Government.
Authors’ addresses: H. Wang, Beijing Key Laboratory of Intelligent Telecommunication Software and
Multimedia, School of Computer Science, Beijing University of Posts and Telecommunications; email:
haoyuwang@bupt.edu.cn; Y. Li and Y. Guo (corresponding author), Key Laboratory on High-Confidence
Software Technologies (MOE), School of Electronics Engineering and Computer Science, Peking University;
emails: {liyuanchun, yaoguo}@pku.edu.cn; Y. Agarwal and J. I. Hong, School of Computer Science, Human
Computer Interaction Institute, Carnegie Mellon University; emails: {yuvraj.agarwal, jasonh}@cs.cmu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1046-8188/2017/07-ART43 $15.00
DOI: http://dx.doi.org/10.1145/3086677

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

http://dx.doi.org/10.1145/3086677
http://dx.doi.org/10.1145/3086677

43:2 H. Wang et al.

Mobile apps frequently request access to sensitive information, such as unique device
ID, location data, and contact lists. Android currently requires developers to declare
what permissions an app uses, but offers no formal mechanisms to specify the purpose of
how the sensitive data will be used. While the latest Android releases have introduced
permission strings to address this limitation, they are rarely used and only suggest a
single purpose if they are used. Complicating this further, an app could use a permission
for multiple purposes, such as using location permission for advertising, geotagging,
and nearby searching. Mobile users have no way to know how and why a certain
sensitive data item is used within an app, let alone controlling how the data should be
used.

Knowing the purpose of a permission request can help with respect to privacy, for
example, offering end-users more insights as to why an app is using a specific sensitive
data. Prior work [Lin et al. 2012] showed that purpose information is important to
assess people’s privacy concerns. Properly informing users of the purpose of a resource
access can ease users’ privacy concerns to some extent. Besides, knowing a clear purpose
of a request could also offer fine-grained access control, for example, disallowing the
use of location data for geotagging while still allowing map searches.

Our specific focus is on developing better methods to infer the purpose of permission
use. Prior work has investigated ways to bridge the semantic gap between users’ ex-
pectations and app functionality. For example, WHYPER [Pandita et al. 2013] and
AutoCog [Qu et al. 2014] apply natural language processing techniques to an app’s
description to infer permission use. CHABADA [Gorla et al. 2014] clusters apps by
their descriptions to identify outliers in each cluster with respect to the Application
Programming Interface (API) usage. RiskMon [Jing et al. 2014] builds a risk assess-
ment baseline for each user according to the user’s expectations and runtime behaviors
of trusted applications, which can be used to assess the risks of sensitive information
use and rank apps. Amini et al. introduced Gort [Amini et al. 2013], a tool that com-
bines crowdsourcing and dynamic analysis, which could help users understand and
flag unusual behaviors of apps.

Our research thrust is closest to Lin et al. [2012, 2014], which introduced the idea of
inferring the purpose of a permission by analyzing what third-party libraries an app
uses. For example, if location data is only used by an advertising library, then it can be
inferred that it is used for advertising. Lin et al. [2014] manually labeled the purposes
of several hundred third-party libraries (advertising, analytics, social network, etc.),
used crowdsourcing to ascertain people’s level of concern for data use (e.g., location for
advertising versus location for social networking), and clustered and analyzed apps
based on their similarity. Their approach, however, is unable to detect purposes for
sensitive data access within the app, particularly when there are multiple purposes
(e.g., advertising, geotagging, etc.) for a single permission.

In this article, we propose a text mining based method to infer the purpose of a
permission use for Android apps. A key insight underlying our work is that, unless an
app has been completely obfuscated,1 compiled Java class files still retain the text of
many identifiers, such as class names, method names, and field names. These strings
offer a hint as to what the code is doing. As a simple example, if we find custom code
that uses the location permission and possesses method or variable names such as
“photo,” “exif,” or “tag,” it is very likely that it uses location data for the purpose of
“geotagging.” We present two complementary approaches to determine the purpose of

1Note that if an app is fully obfuscated, we may not be able to infer the purpose of permission use. We
detailedly analyzed the obfuscation rate in Android apps, the impact to our approach, and feasible approaches
to deal with obfuscation in Section 6.1.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

Understanding the Purpose of Permission Use in Mobile Apps 43:3

permission use based on text analysis: one using purely static analysis, the other using
primarily dynamic analysis.

For static analysis we build upon our earlier work [Wang et al. 2015c], where we
first decompile apps and search the decompiled code to determine where sensitive
permissions are used. We have analyzed a large set of Android apps and from that data
created a taxonomy of 10 purposes for location data and 10 purposes for contact list.
The reason we chose contacts and location data is that past work has shown that users
are particularly concerned about these two data items. Then we extract multiple kinds
of features from the decompiled code, including both app-specific features (e.g., API
calls, the use of Intent and Content Provider) and text-based features (TF-IDF results
of meaningful words extracted from package names, class names, interface names,
method names, and field names). We use these features to train a classifier to infer the
purpose of permission uses.

However, relying on static analysis has some limitations. First, some apps
use sensitive data through a level of indirection rather than directly accessing
it. For example, the social networking app “Skout” has a helper package called
“com.skout.android.service,” containing services such as “LocationService.java”
and “ChatService.java.” In this design pattern, these helper services access sensi-
tive data, with other parts of the app accessing these services instead. In this case,
there is very little meaningful text information in the directory where these services
are located, and static approach would simply fail to find enough context for purpose
inference. Second, in many apps, third-party libraries request sensitive data by invok-
ing methods in the app logic that provides access to resources, rather than accessing
resources directly [Liu et al. 2015]. Furthermore, static analysis based approaches [Lin
et al. 2012; Wang et al. 2015c] typically need to split apps into different components
(e.g., libraries or packages) and label the purpose for each component. But specifying
purpose at a component granularity is too coarse-grained as there may be multiple
purposes of data use within each component.

To overcome the limitations of static analysis, we further introduce a dynamic ap-
proach to infer purpose at runtime. We use dynamic taint analysis at runtime to
monitor privacy sensitive information flows, and infer the purpose of sensitive behav-
ior based on dynamic call stack traces, which contain useful information on how (and
why) the sensitive data is accessed and used. We extract meaningful key words from
the methods and classes related to the call stack, and then use machine learning to
infer the purpose of permission use. To infer the purposes accurately and address the
multithreading programming patterns in Android, we propose a novel thread-pairing
method to find the full stack trace at runtime.

We present the design, implementation, and evaluation of our static and dynamic
approaches for inferring purposes in Android apps. We first evaluate the effectiveness of
text analysis techniques on decompiled code statically. Our static analysis is focused on
analyzing purposes for the custom code components of an app, excluding any included
third-party libraries. We created a taxonomy for purposes on how apps use two sen-
sitive permissions in custom code, namely, ACCESS_FINE_LOCATION (location for short)
and READ_CONTACTS (contacts for short). We chose these two permissions as a proof of
concept for our technique, in large part because past work has shown that users are
particularly concerned about these two data items. For the static approach, we used this
taxonomy to manually examine and label the behavior of 460 instances2 using location
(extracted from 305 apps), and 560 instances using contacts (extracted from 317 apps).
We used this data to train a machine-learning classifier. Using 10-fold cross-validation,

2Here, an instance is defined as a directory of source code, thus a single app may yield more than one
instance.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

43:4 H. Wang et al.

our experiments show that we can achieve about 85% accuracy in inferring the purpose
of location use, and 94% for contact list use. Then we introduce a dynamic analysis tech-
nique to overcome the limitations of static analysis. For the dynamic approach, we try
to infer the purpose of permission use in the entire app, including third-party libraries
and custom code. We have implemented a prototype system that combined dynamic
analysis and static analysis on Android, and we have evaluated the effectiveness of our
system by testing it on 830 popular Android apps. Our experimental results show that
we are able to successfully infer the purpose of over 90% of the sensitive data uses.

This article makes the following research contributions:

—We introduce the idea of using text analysis and machine-learning techniques on
decompiled code to infer the purpose of permission uses. To the best of our knowledge,
our work is the first attempt to infer the purposes for custom-written code (as opposed
to third-party libraries or app descriptions).

—We present the design, implementation, and evaluation of two complementary ap-
proaches to infer the purpose of permission use, one using purely static analysis, the
other using primarily dynamic analysis. We also created a taxonomy for purposes
regarding how apps use location and contacts permissions. We show that both ap-
proaches are able to identify the purposes for 90% of the sensitive data uses on
average.

—We discuss the pros and cons of both the static approach and the dynamic approach, as
well as the trade-offs involved. Since the static approach has good code coverage and
scalability, it is feasible to deploy it on the app market to identify sensitive behaviors
of mobile apps a priori, and help improve user awareness about which permissions
are used by an app and why. Our dynamic analysis is finer-grained and improves
accuracy for purpose inference. It is therefore more suitable to deploy the dynamic
approach on real users’ phones and help them enforce privacy.

2. BACKGROUND AND RELATED WORK

2.1. Background

2.1.1. The Android Permission Mechanism. Android uses a permission model to govern an
app’s access to resources. Prior to Android Marshmallow (version 6.0), all permissions
were declared by developers in a manifest file, and end-users were required to accept all
of them at install time. Android Marshmallow introduced runtime permission control
for several “dangerous” permissions such as location or contact list, allowing users to
allow (or deny) access on first use. Furthermore, these permissions can be modified later
if the user feels uncomfortable on granting the app access to a certain resource all the
time. However, despite this additional control over permissions granted to individual
apps, Android still lacks the capability to let users both understand and choose the
purpose for which each permission is granted to an app. Once a user grants the access
to an app, the requested data can be used for any purpose.

2.1.2. The Purpose of Permission Use. In this article, the purpose of a permission refers
to the reason for accessing a sensitive data item, that is, why an app needs access to
a specific sensitive data. For example, for an app that uses location data for turn-by-
turn navigation and for advertising, one might say that this app uses location data for
“navigation” and for “ads.”

Prior work has shown that static analysis of apps can help identify libraries that use
sensitive permissions and infer its purpose. Lin et al. [2012, 2014] manually categorized
around 400 popular third-party libraries based on their functionality, and then used
these categories to label the purposes of permissions used in each library. The libraries
are categorized into nine different purposes, as shown in Table I. Note that we added

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

Understanding the Purpose of Permission Use in Mobile Apps 43:5

Table I. A Taxonomy of the Purposes of Permission Uses. Third-Party Libraries are Categorized into 10 Different
Purposes [Lin et al. 2012]. We Manually Analyzed a Large Set of Android Apps and Created a Taxonomy of the

Purposes of Location Permission Uses and the Purposes of Contacts Permission Uses in Custom Code

Type Permission Purpose

The purpose of
permission use
in third-party libs
[Lin et al. 2012]

all
permissions

advertising, analytics, social networking,
utilities, development aid, social games,
secondary market, payment, game engine, maps

The purpose of
permission use
in custom code

location

search nearby places, location-based customization,
transportation information, recording, map and navigation,
geosocial networking, geotagging, location spoofing,
alert and remind, and location-based game

contacts
backup and synchronization, contact management,
blacklist, call and SMS, contact-based customization,
email, find friends, record, fake calls and SMS, remind

Table II. Our Set of Purposes for Location Permission in Custom Code, and the Number of Unique Packages
in Our Dataset that have that Purpose

Purpose Description #Instances

Search Nearby Places
Find nearby hotels, restaurants, bus stations,
bars, pharmacies, hospitals, etc.

50

Location-based Customization
Provide news, weather, time, activities
information based on current location

50

Transportation Information
Taxi ordering, real-time bus and metro
information, user-reported bus/metro location

50

Recording
Real-time walk/run tracking, location logging
and location history recording, children tracking

50

Map and Navigation Driving route planning and navigation 50

Geosocial Networking
Find nearby people/friends,
social networking check-in

50

Geotagging
Add geographical identification metadata to
various media such as photos and videos

30

Location Spoofing Sets up fake GPS location 30

Alert and Remind
Remind location-based tasks,
disaster alert such as earthquake

50

Location-based game
Games in which the gameplay evolves
and progresses based on a player’s location

50

a new category called “map library,”3 which includes Software Development Tookits
(SDKs) such as osmdroid.

For the purpose of permission use in custom code, we manually analyzed a large set
of Android apps and created a taxonomy of the purposes of location permission use and
the purposes of contacts permission use, as shown in Table I. The description of each
purpose is detailedly explained in Tables II and III.

2.2. Related Work

2.2.1. The Gap Between User Expectations and App Behaviors. Past studies [Felt et al. 2012;
Chin et al. 2012; Egelman et al. 2012] have shown that mobile users have a poor

3Note that purpose “maps” refers to the purpose of location data used in third-party map libraries, while the
purpose “map and navigation” refers to the purpose of location data used in custom code for driving route
planning and navigation.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

43:6 H. Wang et al.

Table III. Our Set of Purposes for Contacts Permission in Custom Code, and the Number of Unique Packages
in Our Dataset that has that Purpose

Purpose Description #Instances

Backup and
Synchronization

Backup contacts to the server, restore and sync contacts 61

Contact Management Remove invalid contacts, delete/merge duplicate contacts 30
Blacklist Block unwanted calls and SMS 52
Call and SMS Make VoIP/Wifi calls using Internet, send text message 54
Contact-based
Customization

Add contacts to a custom dictionary for input methods,
change ringtone and background based on contacts

51

Email Send email to contacts 78

Find friends
Add friends from contacts,
find friends who use the app in contact list

46

Record Call Recorder, call log and history 93

Fake Calls and SMS
Select a caller from contact list and give yourself a fake
call or SMS to get out of awkward situations

49

Remind Missed call notification, remind you to call someone 46

understanding of permissions. They cannot correctly understand the permissions they
grant, while current permission warnings are not effective in helping users make
security decisions. Meanwhile, users are usually unaware of the data collected by
mobile apps [Felt et al. 2012; Shklovski et al. 2014]. Several approaches [Almuhimedi
et al. 2015; Harbach et al. 2014; Kelley et al. 2013] have been proposed to focus on
raising users’ awareness of the data collected by apps, informing them of potential
risks and help them make decisions.

Furthermore, previous studies [Balebako et al. 2013; Jung et al. 2012] suggested
that there is a semantic gap between users’ expectations and app behaviors. Recent
research has looked at ways to incorporate users’ expectations to assess the use of
sensitive information, proposing new techniques to bridge the semantic gap between
users’ expectations and app functionalities. For example, WHYPER [Pandita et al.
2013], AutoCog [Qu et al. 2014], and ACODE [Watanabe et al. 2015] propose to use
Natural Language Processing (NLP) techniques to infer permission use from app
descriptions. They build a permission semantic model to determine which sentences
in the description indicate the use of permissions. By comparing the result with
the requested permissions, they can detect inconsistencies between the description
and requested permissions. However, the results suggest that, for more than 90%
of apps, it is impossible to understand why permissions are used based solely on
app descriptions. ASPG [Wang and Chen 2014] has proposed generating semantic
permissions using NLP techniques on app descriptions. It then tailored the requested
permissions that are not listed in the semantic permissions to get the minimum set
of permissions an app needs. CHABADA [Gorla et al. 2014] uses Latent Dirichlet
Allocation (LDA) on app descriptions to identify the main topics of each app, and then
clusters apps based on related topics. By extracting sensitive APIs used for each app,
it can identify outliers that use APIs that are uncommon for that cluster. All of these
approaches have attempted to infer permission use or semantic information from app
descriptions, and bridge the gap between app descriptions and functionalities.

Ismail et al. [2015] leveraged crowdsourcing to find the minimal set of permissions
to preserve the usability of an app for diverse users. RiskMon [Jing et al. 2014] builds a
risk assessment baseline for each user according to the user’s expectations and runtime
behaviors of trusted applications, which can be used to assess the risks of sensitive
information use and rank apps. Amini et al. introduced Gort [Amini et al. 2013], a
tool that combines crowdsourcing and dynamic analysis to help users understand and

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

Understanding the Purpose of Permission Use in Mobile Apps 43:7

flag unusual behaviors of apps. AppIntent [Yang et al. 2013] uses symbolic execution to
infer whether a transmission of sensitive data is by user intention or not. Past research
[Shih et al. 2015; Mancini et al. 2009; Toch et al. 2010] has also attempted to measure
users’ privacy preferences in different contexts. For example, Shih et al. [2015] found
that the purpose of data access is the main factor affecting users’ choices.

Our work contributes to this body of knowledge, looking primarily at using text
mining technique on decompiled code to infer the purpose of permission uses.

2.2.2. Fine-Grained Privacy Enforcement. Mobile privacy is a growing concern, while many
research works have proposed to enforce privacy protection. One line of work is fine-
grained controls to prevent access to sensitive information, including OS-level protec-
tion such as Kirin [Enck et al. 2009], Saint [Ongtang et al. 2009], APEX [Nauman et al.
2010], ProtectMyPrivacy [Agarwal and Hall 2013], FlaskDroid [Bugiel et al. 2013], ASF
[Backes et al. 2014] and ASM [Heuser et al. 2014], and app-level protection through
instrumentation such as Aurasium [Xu et al. 2012], AppGuard [Backes et al. 2013], I-
arm-droid [Davis et al. 2012], RetroSkeleton [Davis and Chen 2013]. These approaches
only prevent information from being accessed, while they typically do not consider how
the sensitive information is used in the app.

Another line of work has extended the system to track information flows. TISSA
[Zhou et al. 2011], MockDroid [Beresford et al. 2011], and AppFence [Hornyack et al.
2011] replace sensitive information with fake data. CleanOS [Tang et al. 2012] modifies
TaintDroid to enable secure deletion of information from application memory. Kynoid
[Schreckling et al. 2013] extends TaintDroid with user-defined security policies such
as restrictions on destinations IP address to which data is released. BayesDroid [Tripp
and Rubin 2014] is proposed for quantitative information flow analysis, which is to
measure the amount of privacy information that can be inferred from the leaked data.
FlowDroid [Arzt et al. 2014], DroidSafe [Gordon et al. 2015], and DroidInfer [Huang
et al. 2015] use static information flow analysis to detect privacy leakage.

Another area of related work is focused on privilege separation of apps and ad
libraries. Ad libraries share the same permissions with the host app, which can poten-
tially lead to privacy issues. AdSplit [Shekhar et al. 2012] extends Android to allow
an app and its Ad libraries to run as separated processes with different user IDs.
AdDroid [Pearce et al. 2012] introduces new APIs and permissions for Ad libraries,
which enables it to separate privileged advertising functionality from the host app.
Roesner and Kohno [2013] propose to allow Android to permit ad libraries to embed
User Interface (UI) elements in the main logic without exposing data or privileges of
the main app. PEDAL [Liu et al. 2015] uses a machine-learning approach to identify
Ad libraries first, then rewrites the resource access and resource sharing functions to
enforce access control for Ad libraries.

These past works could detect privacy leaks or help enforce privacy, but do not
investigate why an app is using sensitive data.

2.2.3. Determining the Purpose of Permission Uses. Understanding the purpose of why
sensitive data is used could help improve privacy as well as enable new kinds of
access control. Lin et al. [2012, 2014] first introduced the idea of inferring the purpose
of a permission request by analyzing what third-party libraries an app uses. They
categorized the purposes of 400 third-party libraries (advertising, analytics, social
network, etc.), and used crowdsourcing to ascertain people’s level of concern for data
use (e.g., location for advertising versus location for social networking). Then they
clustered and analyzed apps by similarity. Their results suggest that both users’
expectations and the purpose of permission use have a strong impact on users’
subjective feelings and their mental models of mobile privacy.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

43:8 H. Wang et al.

Fig. 1. The overall architecture of the static analysis approach. We first decompile each app and filter out
third-party libraries using a list of the most popular libraries. We then use static analysis to identify where
permission-related code is located. We extract several kinds of features from this code and then train the
classifier. The classifier outputs 10 different purposes for location and for contacts.

However, a major gap in this existing work is how to infer the purpose of a per-
mission request in custom-written code, which turns out to be a much more difficult
problem. According to the results of a recent work [PrivacyGrade 2015; Wang et al.
2017] that analyzed 1.2 million apps from Google Play, most permission requests occur
in custom code. Specifically, for apps that use the location permission, more than 55.7%
of them use the location permission in their custom code. For apps that use the con-
tacts permission, more than 71.2% of them use the contacts permission in their custom
code.

Our work focuses on addressing this gap to infer the purpose of permission uses in
custom code, relying primarily on text mining and machine-learning techniques. We
focus on inferring the purpose for two sensitive permissions: location and contacts.
We chose these two permissions as a proof of concept for our technique, and believe that
our approach should generalize to other permissions. Based on our analysis of more
than 7,000 apps, we created a taxonomy of the purpose of location permission use and
the purpose of contacts permission use, as shown earlier in Table I.

We present the design, implementation, and evaluation of two complementary ap-
proaches to infer the purpose of permission use, one using purely static analysis, the
other using primarily dynamic analysis combined with static analysis.

3. INFERRING THE PURPOSE USING STATIC ANALYSIS

3.1. Overview

As shown in Figure 1, we first use static analysis to identify the corresponding custom
code that uses the location or contacts permission. Then, we extract various kinds of
features from the custom code using text mining (e.g., splitting identifier names and
extracting meaningful text features) and static analysis (identifying important APIs,
Intents, and Content Providers). In the training phase, we manually label instances
to train a classifier. The classifier outputs the purpose of an instance as one of the 10
different purposes for location or one of the 10 different purposes for contacts. Note
that we opted not to examine third-party libraries here, partly because there was no
previous work for custom code, and partly because we found that many third-party
libraries were obfuscated, which makes static analysis and text mining more difficult.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

Understanding the Purpose of Permission Use in Mobile Apps 43:9

3.2. Decompiling Apps

For each app, we first decompile it from DEX (Dalvik Executable) into intermediate
Smali code using Apktool [2016]. Smali is a kind of register-based language, and one
Smali file corresponds to exactly one corresponding Java file. We use Smali because we
found that it is easier to identify permission-related code based on this format.

We then decompile each app to Java using dex2jar [Dex2jar 2016] and JD-Core-
Java [JD-Core-Java 2016]. We use the decompiled Java source code to extract features.
Previous research [Enck et al. 2011] found that more than 94% of classes could be
successfully decompiled. One potential issue, though, is that DEX can be obfuscated.
In practice, we found that roughly 10% of the apps are obfuscated during our static
analysis experiments. In Section 6.1, we will measure the code obfuscation rate in
current Android apps, measure the effectiveness of our approach, and explore feasible
ways to deal with code obfuscation.

Because our work focuses on custom code, we first filter third-party libraries before
we identify the permission-related code and extract features. We use a list of several
hundred third-party libraries built by past work [Lin et al. 2012] to remove libraries;
we found that it works reasonably well in practice, in large part due to a long tail
distribution of the libraries used in Android apps.

3.3. Identifying Permission-Related Code

For Android apps, three types of operations are permission related: (1) explicit calls
to standard Android APIs that lead to the checkPermission method, (2) methods in-
volving sending/receiving Intents, and (3) methods involving management of Content
Providers.

We leverage the permission mapping [PermissionMappings 2015] provided by PScout
[Au et al. 2012] to determine which permissions are actually used in the code and
where they are used. More specifically, we created a lightweight analyzer for search-
ing sensitive API invocations, Intents, and Content Providers in the Smali code. For
example, if we find the Android API string “Landroid/location/LocationManager;->
getLastKnownLocation” in the code, we know it uses the location permission. Since
the Smali code preserves the original Java package structure and has a one-to-one
mapping with Java code, we can pinpoint which decompiled source file uses a given
permission.

Code Granularity for Inferring Purposes. An important question here is: what is
the granularity of code that should be analyzed? One option is to simply analyze the
entire app; however, this is not feasible since an app might use the same permission for
several purposes in different places. For example, the same app might use location for
geotagging, nearby searching, and advertisement, but a coarse-grained approach might
not find all of these purposes. Another option is applying a fine-grained approach, such
as at the method level or class level. However, in our early experiments, we found that
there was often not enough meaningful text information contained in a single method
or class, making it hard to infer the purpose.

In our static approach, we decided to use all of the classes in the same directory
as the level of granularity. In Java, a directory (or file folder) very often maps directly
to a single package, although for simplicity we chose to use directories rather than
packages. Conceptually, a directory should contain a set of classes that are functionally
cohesive, in terms of having a similar goal. Here we assume that a directory will also
only have a single purpose for a given permission, which we believe is a reasonable
starting point. Thus, we use static analysis to identify all the directories that use a given
sensitive permission, and then analyze each of those directories separately. Note that
we only consider the classes in a directory, without considering code in subdirectories.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

43:10 H. Wang et al.

Table IV. The Features Used in the Classification Model

Type Feature Feature Description Representation Method

App-
Specific
Features

Android API
Call frequency of each
permission-related API

A 680 dimension vector;
each value represents the
number of occurrences of
corresponding API.

Static
Analysis

Android
Intent

Call frequency of each
permission-related Intent

A 97 dimension vector;
each value represents the
number of occurrences of
corresponding Intent

Content
Provider

Call frequency of each
permission-related Content
Provider Uri

A 78 dimension vector;
each value represents the
number of occurrences of
corresponding Content
Provider

Text-based
Features

Package-
level

Features

Key words extracted from
current package names

Calculate TF-IDF for
all the key words,
with each instance
represented as a
TF-IDF vector

Text
Mining

Class-level
Features

Key words extracted from
class and interface names

Method-
level

Features

Key words extracted from
defined and used method
and parameter names

Variable-
level

Features

Key words extracted from
defined and used variable
names

3.4. Feature Extraction

A number of features are used for inferring different kinds of purposes. We group the
features into two categories: app-specific features and text-based features, as shown
in Table IV. App-specific features are based on app behaviors and code functionality,
while text-based features rely on meaningful identifier names as given by developers.

3.4.1. App-Specific Features. App-specific features include permission-related APIs, In-
tents, and Content Providers. We use these features since they should, intuitively, be
highly related to app behaviors. For example, for the contacts permission, we find that
API “sendTextMessage()” is often used for the “Call and SMS” purpose, but very rarely
so for other purposes.

We use static analysis to extract these features. For each kind of API, Intent, and
Content Provider, the feature is represented by the number of calls (rather than a
binary value of whether the API was used at all), allowing us to consider weights
for different features. We normalize these features to [0, 1] before feeding them to
the classifier. Features with higher values mean they are used more in the code than
features with lower values.

Due to the large number of APIs in Android (more than 300,000 APIs according to
previous research [Au et al. 2012]), it is not feasible to take all of them as features, thus
we choose to use documented permission-related APIs. Besides, we also use permission-
related Intents and permission-related Content Providers as features. For Android 4.1.1,
there are a total of 680 kinds of documented permission-related APIs [PScout API 2015],
97 kinds of Intents associated with permissions [PScout Intent 2015], and 78 kinds of
Content Provider URI Strings associated with permissions [PScout ContentProvider
2015]. In total, we use 855 kinds of app-specific features. We represent each instance
as a feature vector, with each item in the vector recording the number of occurrences
of the corresponding API, Intent or Content Provider.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

Understanding the Purpose of Permission Use in Mobile Apps 43:11

(1) Permission-Related APIs. This set of features are related to APIs that require
an Android permission. During our experiment, we found that some distinctive APIs
could be used to differentiate purposes. For example, some Android APIs in the package
“com.android.email.activity” are related to contacts permission, and they are often
used for “email” purposes. Thus, for instances that use such APIs, it is quite possible
that it uses contacts for “email” purposes.

We use a list of 680 documented APIs that correlate to 51 permissions provided
by Pscout [PScout API 2015], and search for API strings such as “requestLocation-
Updates” in the decompiled code. Each instance corresponds to a 680 dimension vector,
while each item in the vector represents the number of occurrences of the corresponding
API.

(2) Intent and Content Providers. We also extract features related to permission-
related Intent and Content Provider invocations. Intents can launch other activities,
communicate with background services, and interact with smartphone hardware. Con-
tent Providers manage access to a structured set of data. For example, Intents such
as “SMS_RECEIVED” and Content Providers such as “content://sms” mostly appear in
instances with the “Call and SMS” purpose.

We use a list of 97 Intent [PScout Intent 2015] and 78 Content Provider URI strings
[PScout ContentProvider 2015]. We search for Android Intent strings such as “an-
droid.provider.Telephony.SMS_RECEIVED” and Content Provider URI strings such as
“content://com.android.contacts” in the decompiled code. Each instance corresponds
to a 97 dimension Intent feature vector and a 78 dimension Content Provider feature
vector, respectively. Each item in the vector represents the number of occurrences of
the corresponding Intent or Content Provider.

3.4.2. Text-Based Features. We extract text-based features from various identifiers in
decompiled Java code. Package names, class names, method names, and field names
(instance variables, class variables, and constants) are preserved when compiling, al-
though local variables and parameter names are not. Our goal here is to extract mean-
ingful key words from these names as features.

However, there are several challenges in extracting these features. First, naming
conventions may vary widely across developers. Second, identifiers in decompiled Java
code are not always words. For example, the method name “findRestaurant” cannot be
used as a feature directly. Rather, we want the embedded words “find” and “restaurant.”
Thus, we need to split identifiers appropriately to extract relevant words. Third, not
all words are equally useful, and so we need to consider weights for different words.

We extract text-based features as follows. First, we apply heuristics to split identifiers
into separate words. Then we filter out stop-words to eliminate words that likely offer
little meaning. Next, the remaining words are stemmed into their respective common
roots. Finally, we calculate the TF-IDF vector of words for each instance.

(1) Splitting Identifiers. We use two heuristics to split identifiers, namely, explicit
patterns and a directory-based approach. By convention, identifiers in Java are often
written in camelcase, although underscores are sometimes used. For identifiers with
explicit delimiters, we use their construction patterns to split them into subwords. The
identifier patterns we used are as listed as follows:

camelcase(1) : AbcDef → Abc, Def
camelcase(2) : AbcDEF → Abc, DEF
camelcase(3) : abcDef → abc, Def
camelcase(4) : abcDEF → abc, DEF
camelcase(5) : ABCDef → ABC, Def
underscore : ABC def → ABC, def

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

43:12 H. Wang et al.

ALGORITHM 1: Dictionary-Based Identifier Splitting Algorithm
Input: identi f ierI and wordlist
Output: a list of splitted keywords

1: initial keywords = NULL
2: subword ← FindLongestWord(I, wordlist)
3: while subword �= NULL and len(I) > 0 do
4: keywords.add(subword)
5: if len(I) = len(subword) then
6: break
7: end if
8: I ← identi f ier.substring(len(subword), len(I))
9: subword ← FindLongestWord(I, wordlist)

10: end while

However, some identifiers do not have clear construction patterns. In these cases,
we use a dictionary-based approach to split identifiers. We also use this dictionary to
split subwords extracted in the previous step. We use the English wordlist provided by
Lawler [WordList 2015]. We also add some domain-related and representative words
into the list, such as Wifi, jpeg, exif, facebook, SMS, etc. For each identifier, we find the
longest subword from the beginning of the identifier that can be found in the wordlist.
Details of the algorithm are shown in Algorithm 1.

(2) Filtering. We then build a list to filter out stop-words. In addition to common
English words, we also filter out words common in Java such as “set” and “get,” as well
as special Java keywords and types, such as “public,” “string,” and “float.”

(3) Stemming. Stemming is a common Natural Language Processing technique to
identify the “root” of a word. For example, we want both singular forms and plural forms,
such as “hotel” and “hotels,” to be combined. We use the Porter stemming algorithm
[Porter 2015] to stem all words into a common root.

(4) TF-IDF. After words are extracted and stemmed, we use TF-IDF to score the
importance of each word for each instance. TF-IDF is good for identifying important
words in an instance, thus providing great support for the classification algorithm.
Common words that appear in many instances would be scaled down, while words that
appear frequently in a single instance are scaled up. To calculate TF, we count the
number of times each word occurs in a given instance. IDF is calculated based on a
total of 7,923 decompiled apps.

3.5. Classification Model

Since the ranges of feature values vary widely, we normalize them by scaling them to [0,
1]. Then we apply machine-learning techniques to train a classifier. We have evaluated
three different algorithms for the classification: SVM [2016], Maximum Entropy [2016],
and C4.5 Decision Tree [C4.5 2016]. The implementation of SVM is based on the python
scikit-learn [SciKit 2016] package. We use a Support Vector Machine (SVM) with linear
kernel, and the parameter C is set as 1 based on our practice. Maximum entropy and
C4.5 algorithms are based on Mallet [2016]. We then compare different classifiers using
various metrics.

3.6. Evaluation

3.6.1. Dataset. We downloaded 7,923 apps from Google Play, all of which were top-
ranked apps across 27 different categories. For text-based features, we calculate IDF
based on a corpus of these apps.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

Understanding the Purpose of Permission Use in Mobile Apps 43:13

To train the classifier, we use a supervised learning approach, which requires labeled
instances. We focus on apps that use location or contacts permissions. After decompil-
ing the apps and filtering out third-party libraries, we use static analysis to identify
permission-related custom code. Each directory of code that uses location or contacts
permission is an instance.

To facilitate accurate classifications, we tried to manually label at least 50 instances
for each purpose. For the location permission, we had more than 3,000 instances in
our dataset, so we stopped once we got more than 50 examples for a given purpose.
As shown in Table I, we have 50 labeled instances for most of the purposes, except for
some purposes that have fewer instances in our dataset (we labeled 30 instances for
“geotagging” and “location spoofing” purposes). In contrast, for the contacts permission,
we found fewer than 800 instances in our dataset, so we manually checked and labeled
the purposes for all these instances (which is why the number of instances in Table II
are not as uniform as those in Table I).

Purpose Labeling Process. To label the purpose of an instance, we manually inspect
the decompiled code, especially the methods and classes that use location or contacts
permission. We examine the method and variable names, as well as the parameters and
sensitive APIs used in methods to label purposes. It is true that for several instances,
due to code obfuscation4 or indirect permission use, we cannot spell its purpose in our
previous static analysis and we omit these instances when we label the ground truth.
But for many instances, we could infer its purpose accurately. For example, in one case,
we found custom code using location data, including method and variable names con-
taining words such as “temperature” and “wind,” which we labeled as “location-based
customization.” As another example, we found an instance using photo files and loca-
tion information (longitude and latitude) by calling the API “getLastKnownLocation(),”
which we labeled as “geotagging.” As a third example, we saw an instance invoked API
“sendTextMessage()” after getting contacts, which we labeled as “Call and SMS” pur-
pose. These examples convey the intuition behind how we label instances and why we
identify these features for the machine-learning algorithms.

We also looked at the app descriptions from Google Play to help us label purposes.
However, for most of the apps we examined, we could not find any indication of the
purpose of permission use. This observation matches previously reported results [Qu
et al. 2014], which found that for more than 90% of apps, users could not understand
why permissions are used based solely on descriptions. This indicates the importance
of inferring the purpose of permission uses, which could offer end-users more insight
as to why an app is using sensitive data.

In total, we manually labeled the purposes of 1,020 instances that belong to 622
different apps, with 460 instances for location and 560 instances for contacts. Each
purpose has 30 to 90 instances, which is shown in Tables II and III.

Note that our dataset is not comprehensive. For a few apps, we could not understand
how permissions are used, thus we did not include them. Our dataset also does not
include some apps that have unusual design patterns for using sensitive data. We feel
that our dataset is good enough as an initial demonstration of our idea. We will offer
more details on this issue in Sections 4 and 5.

3.6.2. Evaluation Method. We used 10-fold cross-validation [Cross-Validation 2016] to
evaluate the performance of different classifiers. That is, we split our dataset 10 times
into 10 different sets for training (90% of the dataset) and testing (10% of the dataset).
We manually split our dataset into 10 different sets to ensure that instances of each
purpose are equally divided, and that there was no overlap between training and test

4We will detailedly analyze the impact of code obfuscation in Section 6.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

43:14 H. Wang et al.

Table V. The Results of Inferring the Purpose of Location Uses

Classification Algorithm Accuracy Macroaverage Precision Macroaverage Recall
SVM 81.74% 85.51% 83.20%
Maximum Entropy 85.00% 87.07% 85.88%
C4.5 79.57% 83.26% 81.77%

sets across cross-validation runs. To evaluate the performance of different classifiers,
we present metrics for each classification label and metrics for the overall classifier.

Evaluation Metrics. For each class, we measure the number of True Positives (TPs),
False Positives (FPs), True Negatives (TNs), and False Negatives (FNs). We also present
our results in terms of precision, recall, and f-measure. Precision is defined as the ratio
of the number of TPs to the total number of items reported to be true. Recall is the ratio
of the number of true positives to the total number of items that are true. F-measure
is the harmonic mean of precision and recall.

To measure the overall correctness of the classifier, we use the standard metric of
accuracy as well as microaveraged and macroaveraged metrics to measure the preci-
sion and recall. For microaveraged metrics, we first sum up the TPs, FPs, and FNs
for all the classes, and then calculate precision and recall using these sums. In con-
trast, macroaveraged scores are calculated by first calculating precision and recall for
each class and then taking the average of them. Microaveraging is an average over
instances, and so classes that have many instances are given more importance. In con-
trast, macroaveraging gives equal weight to every class. We calculate microaveraged
precision, microaveraged recall, macroaveraged precision, and macroaveraged recall
as follows, where c is the number of different classes.

MicroAvgPrecision =
∑c

i=1 TPi
∑c

i=1 TPi + ∑c
i=1 FPi

, (1)

MicroAvgRecall =
∑c

i=1 TPi
∑c

i=1 TPi + ∑c
i=1 FNi

, (2)

MacroAvgPrecision =
∑c

i=1 Precisioni

c
, (3)

MacroAvgRecall =
∑c

i=1 Recalli
c

. (4)

Note that both microaveraged precision and microaveraged recall are equal to the ac-
curacy of the classifier in our experiment. Thus, we only list the accuracy and macroav-
eraged metrics in Tables V and VIII.

3.6.3. Results of Inferring Location Purposes. Table V shows our results in classifying
the purpose of location. The Maximum Entropy algorithm performs the best, with
an overall accuracy of 85%. The results of SVM and C4.5 algorithms also perform
reasonably well.

Table VI presents more detailed results for each specific purpose. The results across
different categories vary greatly. The category “location-based customization” achieves
the best result, with precision and recall both higher than 96%. The categories “search
nearby places” and “location spoofing” have the lowest precision, both under 80%. The
purposes “geotagging” and “alert and remind” have 100% precision, but recall un-
der 80%. Table VII shows more details about misclassifications. The category “search

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

Understanding the Purpose of Permission Use in Mobile Apps 43:15

Table VI. The Results of Inferring the Purpose of Location Permission Uses
for Each Category (Maximum Entropy)

Purpose Precision* Recall* F-measure*

L1 Search Nearby Places 76.85% 84.58% 78.99%
L2 Location-based Customization 96.67% 96.33% 95.98%
L3 Transportation Information 100% 86.81% 92.02%
L4 Recording 80.33% 79.19% 77.04%
L5 Map and Navigation 80.54% 93.85% 84.15%
L6 Geosocial Networking 82.57% 87.31% 83.66%
L7 Geotagging 100% 77.67% 84.39%
L8 Location Spoofing 75.48% 90.00% 80.42%
L9 Alert and Remind 100% 76.63% 85.40%
L10 Location-based Game 80.50% 86.38% 81.48%

∗The results of precision, recall, and f-measure are mean values of 10-fold
cross-validation.

Table VII. The Confusion Matrix of Inferring the Purpose of Location Permission Use (Maximum Entropy). The
Purpose Number (e.g., L1, L2, etc) Corresponds to that Listed in Table VI. Each Value is the Sum of 10-fold
Cross-Validation. Each Column Represents the Instances in a Predicted Class, While Each Row Represents

the Instances in an Actual Class

Label L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 Total

L1 42 - - - 2 1 - 3 - 2 50
L2 1 48 - - - - - 1 - - 50
L3 2 - 44 - 1 1 - 1 - 1 50
L4 3 - - 38 2 3 - 3 - 1 50
L5 - 1 - 1 46 - - - - 2 50
L6 4 - - 2 - 43 - - - 1 50
L7 - - - 4 3 - 21 2 - - 30
L8 - - - - 2 - - 28 - - 30
L9 1 - - 2 1 2 - 2 39 3 50
L10 3 - - 2 1 2 - - - 42 50

Total 56 49 44 49 58 52 21 40 39 52 460

Table VIII. The Results of Inferring the Purpose of Contacts Permission Uses

Classification Algorithm Accuracy Macroaverage Precision Macroaverage Recall
SVM 93.94% 94.38% 92.94%
Maximum Entropy 94.64% 94.42% 93.96%
C4.5 92.86% 91.36% 89.59%

nearby places” has the most false positives (see column L1, 14 of 56 classified instances),
and four misclassified instances belong to the “geosocial networking” category. The cat-
egory “recording” has the most false negatives (see row L4, 12 of 50 labeled instances),
and most of them are misclassified as “search nearby places,” “geosocial networking,”
and “location spoofing.”

3.6.4. Results of Inferring Contacts Purposes. Table VIII shows our results for inferring
the purpose of contacts. All three classification algorithms have achieved better than
90% accuracy, with the Maximum Entropy classifier still performing the best at 94.64%.

Table IX presents the details on each category. Our results show that we can achieve
high precision and recall for most categories, especially “contact-based customization,”
“record,” and “fake calls and SMS,” which have both the precision and recall higher
than 95%. However, the “contact management” category is not as good, with both

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

43:16 H. Wang et al.

Table IX. The Results of Inferring the Purpose of Contacts Permission Use
for Each Category (Maximum Entropy)

Purpose Precision* Recall* F-measure*
C1 Backup and Synchronization 98.75% 94.92% 96.52%
C2 Contact Management 84.33% 84.17% 81.83%
C3 Blacklist 94.17% 93.14% 92.81%
C4 Call and SMS 84.58% 97.08% 89.56%
C5 Contact-based Customization 98.75% 98.33% 98.42%
C6 Email 94.87% 97.09% 95.77%
C7 Find Friends 93.50% 84.17% 87.06%
C8 Record 96.87% 100% 98.35%
C9 Fake Calls and SMS 98.33% 96.67% 97.42%
C10 Remind 100% 94.07% 96.69%

∗The results of precision, recall, and f-measure are mean values of 10-fold
cross-validation.

Table X. The Confusion Matrix of Inferring the Purpose of Contacts Permission Use (Maximum Entropy). The
Purpose Number (e.g., C1, C2, etc.) Corresponds to that Listed in Table IX. Each Value is the Sum of 10-Fold

Cross-Validation. Each Column Represents the Instances in a Predicted Class, While Each Row Represents the
Instances in an Actual Class

Label C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Total

C1 57 1 - 1 - 1 1 - - - 61
C2 1 25 - 1 - - 2 1 - - 30
C3 - - 48 1 - 2 1 - - - 50
C4 - 1 1 52 - - - - - - 54
C5 - - - - 50 - - 1 - - 51
C6 - 2 - 1 - 75 - - - - 78
C7 - - 1 3 1 1 40 - - - 46
C8 - - - - - - - 93 - - 93
C9 - 1 - - - - - 1 47 - 49
C10 - - - 2 - - - - 1 43 46
Total 58 30 50 61 51 79 44 96 48 43 560

precision and recall under 85%. Table X shows the confusion matrix. The category “call
and SMS” has the most false positives (see column C4, 9 of 61 classified instances),
and “find friends” has the most false negatives (see row C7, 6 of 46 labeled instances).
Three instances that belong to “find friends” category are misclassified as “call and
SMS” purpose.

3.6.5. Qualitative Analysis of Classification Results. Here, we examine why some categories
performed well, while others did not. We inspected several instances and found two fac-
tors that play important roles in the classification: distinctive features and the number
of features.

Categories with high precision and recall tend to have distinctive features. For ex-
ample, instances in “location-based customization” have words like “weather,” “tem-
perature,” and “wind,” which are very rare in other categories. In contrast, mis-
classified instances have more generic words. For example, the labeled instance
“com.etech.placesnearme” uses location information to search nearby places, and its
top key words were “local,” “search,” “place,” “find,” etc., which also frequently appeared
in other categories. In our experiment, it was misclassified as the “geosocial network-
ing” purpose.

On the other hand, most misclassified instances have fewer features, meaning
that there is less meaningful text information that we could extract. For example,

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

Understanding the Purpose of Permission Use in Mobile Apps 43:17

Table XI. Using Text-Based Features vs. Using All Features. Text-Based Features Achieve Very Good
Accuracy Alone, with App-Specific Features Offering Marginal Improvements

Permission Algorithm Accuracy (words) Accuracy (total) Difference

Location
SVM 80.00% 81.74% 1.74%
Maximum Entropy 81.97% 85.00% 3.03%
C4.5 75.38% 79.57% 4.19%

Contacts
SVM 92.32% 93.94% 1.62%
Maximum Entropy 93.57% 94.64% 1.07%
C4.5 91.79% 92.86% 1.07%

Fig. 2. The distribution of the number of nonempty (a) app-specific features and (b) text-based features per
instance.

“com.flashlight.lite.gps.passive” uses location information for “recording.” How-
ever, it only has 19 kinds of word features and six kinds of API features, which is far
less than other instances that have hundreds of features. This instance was misclassi-
fied as “map and navigation” category in our experiment.

3.6.6. Feature Comparison. We are also curious how well text-based features alone are
able to perform in the process, since that is one of the key novel aspects of our work.
We train our classifiers using text-based features only and compare the results against
classifiers trained by both text-based and app-specific features. The results are shown
in Table XI.

We can see that text-based features alone can achieve an accuracy of 81.97% and
93.57% for location and contacts permissions, respectively. Incorporating all the fea-
tures, the performance has only 1.07% to 4.22% improvement. This result suggests
that text-based features alone perform very well, while app-specific features play a
supporting role.

Figure 2 offers one possible explanation. It shows the number of nonempty app-
specific features and nonempty text-based features for each instance. We can see that
instances almost always have more text-based features than app-specific features,
which may be the main reason why text-based features are more dominant in the
classifier. The number of text-based features for each instance is about four times
higher than the number of app-specific features on average (270 and 62, respectively).
More than 90% of the instances have fewer than 256 kinds of app-specific features,
and in particular, 3% of them have only fewer than 16 kinds of app-specific features.
In contrast, more than 74% of the instances have over 256 text-based features, and
roughly 10% have over 1,024.

One possible implication, and an area of future work, is to develop more app-specific
features that can help capture the essence of how sensitive data is used.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

43:18 H. Wang et al.

Fig. 3. Overall architecture of our dynamic analysis approach for inferring the purpose of a permission. At
runtime, our system uses dynamic taint analysis to track sensitive data propagation. Once an app is about to
leak the sensitive data, our system will construct the call stack and analyze its purpose using a library-based
method in combination with text-based techniques with the aid of the app profile. We use offline learning
(static analysis) to improve the accuracy of purpose inference by statically analyzing each app beforehand to
build its profile.

4. INFERRING PURPOSES AT RUNTIME

Relying on static analysis to infer the purpose has several limitations. First, in many
cases, the sensitive data invocation is indirect. For example, many apps use a particular
design pattern where one part of the app periodically accesses and caches the sensitive
data, while other parts of the app accesses that data asynchronously. Second, in many
apps, third-party libraries request sensitive data by invoking methods in the app logic
that provides access to resources, rather than accessing resources directly [Liu et al.
2015]. Furthermore, specifying purpose at a package granularity is too coarse-grained
as there may be multiple purposes of data use in each package.

To overcome these limitations of static analysis, we introduce a call stack based
method to infer the purpose of sensitive permission uses at runtime. By analyzing the
call stack, we can learn which classes and methods access the sensitive data and how
that data is used. In combination, these techniques offer a hint as to why sensitive data
is being used. The overall architecture of our dynamic analysis approach for inferring
the purpose of a permission is shown in Figure 3. We use dynamic taint analysis to track
the flow of sensitive data. Here, we take advantage of a modified version of TaintDroid
[Enck et al. 2010]. We analyze the call stack at taint sink points (e.g., network interface)
to infer the purpose of privacy leakage. We choose to infer purpose at the sink point
because using sensitive data at the source and intermediate points does not always
lead to privacy leakage (used within the app client). Besides, because we build the full
call stack traces, we could capture the information of acquired resources and how the
information is used at sink point. On one hand, the call stack directly reflects how the
resource is used (the sink); on the other hand, we are able to know which resource is
accessed (the source) using dynamic taint tracking. For example, at the sink point, we
can check the taint tag of sinked data to know where the data come from, and how the
sensitive data is used within the app and what the data is used for using the call stack
traces.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

Understanding the Purpose of Permission Use in Mobile Apps 43:19

Fig. 4. An example call stack from the Yahoo Weather app showing the challenge of stack traces with
multithreading. The app tried to send location data (tag 0x11) to a remote server. However, due to a common
design pattern, when we get the call stack at a taint sink, we only get it from the current child thread. As a
result, a great deal of potentially useful information has been lost.

More specifically, we examine the call stack for well-known libraries and use machine-
learning techniques on key words in the call stack to infer the purpose. Because the call
stack often does not contain enough information by itself, and since package names are
sometimes obfuscated, we also introduce an offline learning step to statically analyze
each app beforehand to build the app profile. This profile includes the third-party
libraries used in the app and key words extracted from each class. The purpose can then
be inferred based on all this information dynamically. Thus, our approach combines
both dynamic analysis and static analysis.

4.1. Constructing the Call Stack

Several Java APIs (e.g., printCallStack()) can be used to get stack traces of the current
thread in Android. However, Android apps are often programmed as multithreaded,
making it difficult to infer the purpose using just the call stack of the current thread.
For example, one common design pattern in Android apps is to request sensitive data
(such as getting location) in the parent thread, and then spawn another thread to send
sensitive data to a remote server. One such instance is the Yahoo Weather5 app. When
we get to the sink point (see Figure 4), we can only get the call stack of the child thread,
which only shows rather ordinary network behaviors using the volley HTTP library.

Thus, to improve dynamic runtime analysis, we need to retrieve not only the call
stack trace of the current thread, but also other threads related to the current thread.
There are three common design patterns for how developers use threads in Android
[MultipleThreads 2016]:

—Pattern 1: Using Java thread APIs. Java provides a set of low-level APIs to allow a
program to create threads and start them immediately. More specifically, the parent
thread first creates a new Thread instance, implementing a callback function such
as run(). It can then start the child thread by invoking method start().

—Pattern 2: Android platform-specific APIs based on ThreadPool. Android man-
ages threads with a thread pool, which is implemented in the class ThreadPool-
Executor. Most high-level Android thread APIs such as AsyncTask and Sched-
uledThreadPoolExecutor are implemented based on ThreadPool. ThreadPool man-
ages a set of threads and a queue of tasks, and dispatches tasks one by one when
there are available threads. These APIs are good encapsulations of the Java Thread
class.

5com.yahoo.mobile.client.android.weather.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

43:20 H. Wang et al.

Fig. 5. Usage example of AsyncTask. Two methods (execute and doInBackground) work together to accom-
plish asynchronous tasks.

—Pattern 3: Looper-based multithread APIs in Android. Looper [2016] is a Java
class within Android that, together with the Handler class, can be used to process
UI events such as button clicks. In Android, the main thread (the UI thread) keeps
looping in the background and waits for messages from other threads. Once a message
is received, the main thread starts to process the message. The Handler class and
Message class, which are typically used in updating UI from non-UI threads, are
based on Android Looper.

4.1.1. Identifying the Full Call Stack Trace. There are often some shared objects between
the current thread and its related threads, which can be used to identify connections
between threads and uncover related stack traces. To identify the thread bridges, we
use a heuristic thread-pairing approach at runtime.

For example, as shown in Figure 5, consider the class AsyncTask with two methods
(execute and doInBackground) that work together to accomplish asynchronous tasks,
while they share the same AsyncTask instance object. To use the AsyncTask API, the
developer should implement the doInBackground callback and call execute to start an
asynchronous task. The execute method is called in the parent (caller) thread, which
will create a child (callee) thread and pass arguments to it while doInBackground is
then called from the callee thread.

When we tried to get the call stack trace at the taint sink (in method doInBackground),
we can only get the call stack trace of the child thread, which missed potentially useful
information in the parent thread.

However, the AsyncTask instance shared between the two threads can help us find the
connection between them. The child thread knows the task it is executing (by referring
to this object in doInBackground), which is the same task object used by the parent
thread to start the child thread. By comparing the objects shared between threads, we
are able to find the corresponding parent thread.

The other kinds of multithread programming patterns are similar to this AsyncTask
example. Thus, we introduce a thread-pairing approach to identify the thread bridges
(shared objects) between threads:

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

Understanding the Purpose of Permission Use in Mobile Apps 43:21

Fig. 6. A bridge-building example in the AsyncTaskAPI. The two threads share the same AsyncTask instance
object, which can be used to find the connection between them.

—For threads using Java thread APIs, the caller and callee threads share the same
child Thread instance.

—The threads using the ThreadPool share the same task instance with their children
threads.

—The caller threads using Handler share the identical Message instance with the main
thread.

To implement multithread stack trace tracking in Android, we modified Dalvik to
maintain a bridge-thread mapping during runtime. First, we located the key APIs of
the three multithread programming patterns in Android source code and identified
the shared instances (bridges). Then we instrumented these APIs to connect related
threads. For example, in the AsyncTask shown in Figure 6, we built a caller-to-instance
bridge after the execute method and an instance-to-callee bridge before the doIn-
Background method.

Note that our system takes a snapshot of the caller stack when the caller thread
invokes a method to start a new thread. When getting the full call stack, we first get
the call stack of the current thread with the getStackTrace() API, look up the bridges
to find the parent threads, then we read the call stack snapshots of the parent threads
from memory, and finally we concatenate the stacks together to form a full call stack.
Because the caller stack we used is a snapshot of when the caller thread tries to start
the callee thread, we are fully convinced that the caller stack is deterministic in our
implementation. We discuss the implementation details in Section 4.3.

4.2. Inferring Purpose Based on Call Stack

Based on the call stack, we use two heuristics to infer the purpose. We first analyze
the call stack traces to see whether the sensitive data is used by well-known third-
party libraries (e.g., advertising libraries) based on a previously labeled list of popular
libraries [Lin et al. 2012]. If a well-known library is not found, then we use a text-based
machine-learning method, which demonstrated to be effective in our static approach.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

43:22 H. Wang et al.

We extract meaningful key words from the methods and classes that related to the call
stack, and calculate the TF-IDF as features, and then feed it to a machine-learning
classifier to learn the purpose.

4.2.1. Challenges. Even after linking stack traces from multiple threads together, there
are still two substantial challenges in inferring the purpose:

—Prior research [Liu et al. 2015] shows that many third-party libraries use obfuscation,
making it hard to identify third-party libraries using package names alone, let alone
knowing the purposes.

—While call stacks contain package names, class names, and method names, this
information is sometimes still not enough for inferring purposes.

4.2.2. Extracting App Profile. To address these two challenges, we generate an app profile
beforehand using static analysis, which is then used to help infer purposes at runtime.

We use static analysis in two ways. First, we identify third-party libraries that may
be obfuscated. To do this, we use a clustering-based approach [Ma et al. 2016; Wang
et al. 2015a] to identify third-party libraries in the app based on API features rather
than comparing package names. Then we use a categorization of about 400 popular
third-party libraries labeled previously [Lin et al. 2012, 2014] to label the purpose
of sensitive data used by these third-party libraries. Note that the categorization is
somewhat outdated, thus we added some new libraries, and added a new category
called “map library” that includes SDKs such as osmdroid.

Second, we extract additional identifiers such as field names and method names
in the same class, which can also offer some hints to infer the purpose. We process
the decompiled code and extract meaningful key words from identifier names for each
class. Based on the results, we can extend the key words extracted from call stack.
The features we use contain not only the key words that appear in the call stack, but
also the key words extracted from various kinds of identifier names (field names, class
names, method names) from classes used in the call stack. To extract keywords for each
class, we apply identifier splitting as introduced in Section 3.

4.2.3. Inferring Purpose at Runtime. Based on the call stack traces and app profile, our
dynamic purpose inferring algorithm is comprised of the following steps:

—We first check for sensitive dataflows through third-party libraries using the previ-
ously built app profiles. If this sensitive data is used by a known third-party library,
we label its purpose directly. Otherwise, the sensitive data is used by the custom app
code.

—Based on the call stack and app profile, we identify the classes used in the call stack,
and combine the key words used in them. Then we calculate the TF-IDF vector as
features. IDF is calculated based on a corpus of 2,000 apps.

—Finally, we use a pretrained SVM model to infer the purpose. The SVM classifier
is trained offline with 460 instances labeled in our static approach (Section 3). We
implement the SVM classifier in the Android libcore, and the classifier runs entirely
on the Android device.

Note that, to improve the performance of purpose inferring at runtime, we calculate
the TF-IDF for each class when creating an app profile. At runtime, when we need to
extract features for a call stack, we first find used classes in the call stack and then
calculate the new feature vector based on the TF-IDF vectors of related classes. Let
fc(wordi) be the TF-IDF result for wordi in class c, Countc (wordi) is the term frequency
of wordi in class c, and IDF(wordi) is the inverse document frequency of wordi. If the
call stack contains two related class c1 and c2, the TF-IDF result for wordi in the call

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

Understanding the Purpose of Permission Use in Mobile Apps 43:23

stack can be calculated as

fc1 (wordi) = Countc1 (wordi)
T otalc1

× IDF(wordi),

fc2 (wordi) = Countc2 (wordi)
T otalc2

× IDF(wordi),

fcall−stack (wordi) = T otalc1 × fc1 (wordi) + T otalc2 × fc2 (wordi)
T otalc1 + T otalc2

.

4.2.4. Optimization with Purpose Caching. We discovered significant repetition of several
call stack traces, meaning that the app was trying to send the same sensitive data
to a remote server multiple times. In most apps, the number of unique sensitive call
stack traces is small (less than 10), providing an opportunity to optimize the runtime
performance.

To improve the runtime performance, we introduce purpose caching, which involves
caching and reusing previous inferences of the exact same call stack. To enable efficient
comparison, we use a lightweight format to represent the call stack trace, which is
comprised of a quad including the destination IP address, sensitive data type, the
length of the call stack, and its purpose. The intuition is that, for repeated call stack
traces, these attributes should be identical, while nonrepeated call stack traces should
rarely, if ever, have identical attributes. In our experiment, we have manually checked
480 call stack traces and we did not find the nonrepeated call stack traces have all
these same identical attributes including IP, data type, and length. Nevertheless, even
if multiple distinct call stacks have all these same identical attributes, it is also easy to
optimize the efficient comparison in our work; we could add more features such as “the
key packages used in the call stack” to build a more robust feature vector of call stack.

As a result, our dynamic analysis system only needs to infer the purpose of a new
privacy leakage trace once. In steady state, the purposes can be reused from the cache
directly, reducing the overhead of our system.

4.3. Implementation

We have implemented a prototype of our dynamic analysis approach on top of Android.
Specifically, our implementation is based on TaintDroid [Enck et al. 2010] (Android
Version 4.3_r1). We modified both the Android framework and Android runtime as
follows:

—To construct the call stack, we modified Dalvik to maintain a bridge-thread map-
ping during runtime. More specifically, we instrumented and added several APIs
in classes including java.lang.Thread, java.util.concurrent.ThreadPoolExecutor,
and android.os.Handler. For example, we added four key APIs in java.lang.Thread,
including API setConcurrentTracingEnabled(), API setCallerBridge(), API set-
CalleeBridge(), and API getConcurrentStackTrace(). These APIs are used to take
a snapshot of the caller stack when the caller thread invokes a method to start a new
thread, find the bridge-thread mapping, and concatenate the stacks together to form
a full call stack.

—To infer the purpose at runtime, we implemented the library-based method and text-
based machine-learning method in the libcore of Android. We used the SVM [2016]
algorithm to do classification, and the implementation is based on LIBSVM [LibSVM
2016]. We used 460 labeled instances that use location permission provided by our
static approach (Section 3) to train a classifier offline and ported it to Android.

—We use TaintDroid for taint tracking. We instrumented each taint sink point to infer
the purpose based on the call stack.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

43:24 H. Wang et al.

4.4. Evaluation

4.4.1. Dataset. We performed experiments on 830 popular apps, including 400 popular
apps randomly selected from the top 10,000 Google Play apps6 and 430 popular apps
selected from the recommendation pages of the Baidu App Market (a popular third-
party market in China). We used the Monkey testing tool [Monkey 2016] to dynamically
test these apps in an automated way on a Nexus 4 phone with an instrumented Android
4.3_r1 OS. Each app was tested for 60 seconds, although this can be increased easily.
We performed our experiments outdoors with network accesses, in order to have the
device connect to the GPS and trigger the sensitive behavior of mobile apps. Note that
dynamic analysis relies heavily on the coverage of execution traces, thus it is almost
impossible to reach 100% with automated testing techniques. In this work, we only
focus on using dynamic analysis to infer the purpose of permission use, thus using
other UI automated testing tools is outside the scope of this article.

We first evaluate the accuracy of our dynamic analysis system in terms of purpose
inference. Next, we evaluated the performance overhead as compared to native Android
4.3 as well as TaintDroid.

4.4.2. Dataset Statistics. We found a total of 81 apps (out of a total of 831 apps we tested)
that leak GPS location data to remote servers, 630 apps leak the IMEI, and only three
apps leak the contacts. In our evaluation, we focused on the leakage of location data,
because few apps (only three apps) leak contacts data in our dataset.

During our experiments, we collected 480 call stack traces that leak location, of
which 171 were unique. In other words, more than 60%7 of the call stack traces were
repeated (i.e., apps tried to send sensitive data multiple times during experiments).
Among the 171 unique call stack, 74 of them (more than 40%) were constructed using
thread-pairing method, which means that they contain call stack traces from at least
two threads, thus demonstrating the utility of our thread-pairing method.

4.4.3. Accuracy of Inferring Purpose. To measure the accuracy of our system, we manually
checked the 171 unique call stack traces and labeled their purposes. Note that, for the
permissions used by third-party libraries (e.g., ads, analytics), we could get very accu-
rate data in our evaluation and it is easy for us to verify the detection results, because
we use LibRadar [2016], an obfuscation-resilient tool developed by our team, which
could accurately detect third-party libraries used in these apps based on the results of
analyzing 1.2 million Android apps, even if they are obfuscated. For the call stack traces
related to permission use in custom code, we used the app description, screenshots,
and the text of the call stack, related decompiled code to label these purposes. We also
intercepted the outgoing data at taint sinks in the Android system to try to understand
the contents and the outgoing IP address they sent. Then we compared the result with
the purposes our system inferred at runtime. Note that we could not label the purposes
of 18 instances in our dataset, because the code is either fully obfuscated or the app
mostly used native methods by calling “java.lang.reflect.Method.invokeNative.” This
left us with 153 unique call stack trace instances.

Overall Result. The overall result is shown in Table XII. Without considering the
fully obfuscated instances, for the 153 instances, we can correctly infer the purpose of
138 instances. Considering the repeated call stacks in our dataset, we could achieve
an accuracy of 94.73% (line XV, row VII in Table XII). Taking the fully obfuscated ones
also into account, our overall accuracy of inferring the purpose correctly is around 80%
and 90% for the unique stack traces and overall traces, respectively.

6Note that some apps use Google services that are inaccessible in China, thus these apps cannot run properly.
7Note that the longer the testing time, the higher the repetition rate.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

Understanding the Purpose of Permission Use in Mobile Apps 43:25

Table XII. The Result of Inferring the Purpose of Location Permission Use at Runtime

Purpose

#Unique
Call

Stacks

#Correct
Inferred
(Unique)

%Correct
Inferred
(Unique)

#All Call
Stacks

#Correct
Inferred

(All)

%Correct
Inferred

(All)

ad library 93 89 95.70% 234 229 97.86%
map library 3 3 100% 107 107 100%
social networking 2 2 100% 3 3 100%
analytics library 1 1 100% 8 8 100%
game engine library 1 1 100% 2 2 100%
total (library) 100 96 96% 354 349 98.59%

nearby searching 9 8 88.89% 31 29 93.55%
map and navigation 3 3 100% 15 15 100%
tracking 3 3 100% 6 6 100%
transportation 11 7 63.6% 12 8 66.67%
customization 27 21 77.78% 37 24 64.86%
total (custom code) 53 42 79.25% 101 82 81.19%

obfuscated/cannot infer 18 - - 25 - -

total (w/o obfuscated) 153 138 90.20% 455 431 94.73%
total (with obfuscated) 171 138 80.70% 480 431 89.80%

Results for Third-Party Libraries. Over 60% of call stacks in our evaluation are due
to third-party libraries, most of which are ad libraries. Our system could achieve over
96% accuracy in inferring purposes for unique call stack traces and more than 98% for
all traces. However, because the list of labeled third-party libraries [Lin et al. 2012] is
incomplete, our system missed four instances in our experiment. For example, the ad
library “net.miidi” was not labeled in the list. However, it is easy to add more labeled
libraries to improve accuracy.

Results for Custom Code. For the 53 call stack traces related to permission use in
custom code, we were able to infer the purpose correctly for 42 of them (79.25%). For the
“map/navigation” and “tracking” purposes, we achieve 100% accuracy. For the “trans-
portation” purpose, we only achieve an accuracy of 63.6%. The accuracy is determined
by the machine-learning classifier we used. As we discussed in Section 3, two factors
play an important role in the classification: distinctive features and the number of
features.

4.4.4. Performance Evaluation. Since our system is implemented based on TaintDroid,
our performance evaluation consists of two parts: (1) the overall system overhead using
Java benchmarks, and (2) the additional performance overhead of our dynamic analysis
system compared to TaintDroid.

Java Microbenchmark. We use the CaffeineMark 3.0 benchmark [CaffeineMark
2016] for Android to evaluate the performance of our system. Figure 7 compares the
performance of our dynamic analysis system with TaintDroid and native Android 4.3,
in terms of the CaffeineMark benchmark score.

The result shows that our system performs similar to TaintDroid (within the mea-
surement uncertainties), since these benchmarks do not leak sensitive data. The loop
benchmark experiences the greatest overhead, with a slowdown of about 47%. For other
benchmarks, the overhead ranges from 15% to 38%. The overall result is the cumula-
tive score across other individual benchmarks. Our system has a 27% overhead with
respect to unmodified Android, primarily due to the taint tracking overhead introduced
by TaintDroid.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

43:26 H. Wang et al.

Fig. 7. Overhead of Java benchmarks when comparing our dynamic analysis system with native Android
and TaintDroid (higher score is better).

Fig. 8. Performance overhead distribution. The average performance overhead is about 258ms in total. SVM
classification and TF-IDF calculation account for most of the overhead.

4.4.5. Overhead of Purpose Inferring at Runtime. Compared to TaintDroid, our system in-
troduces overhead only when an app leaks sensitive data. The overhead imposed by
our dynamic analysis system comprises four components: call stack construction, li-
brary comparison, TF-IDF calculation, and SVM classification. For apps that have no
sensitive permissions, the performance of our system is the same as TaintDroid.

To measure the overhead, we instrumented the OS to log the execution time of pur-
pose inference at the time when app leaks location data. We conducted an experiment
with 30 apps and collected 253 logs (call stack traces), including 77 unique call stack
traces. For the 77 unique call stack traces, 40 call stack traces used location in ad
libraries, and 37 call stack traces used location in custom code. For the 40 call stack
traces with the purpose of advertisement, the overhead is 53ms on average, which only
contains the execution time of call stack construction and library comparison. For the
37 call stack traces that used sensitive data in custom code, the distribution of per-
formance overhead is shown in Figure 8. The average performance overhead is about
258ms in total. For each step, the average performance overhead and standard devia-
tion is shown in Table XIII. SVM classification accounts for most of the overhead, with
an average time of 160ms. TF-IDF calculation takes 43ms on average, with a standard
deviation of 29.7, which is based on the number of features (key words). The time of
library comparison varies from 1ms to around 250ms, which goes up along with the
increasing of call stack size. We leave out the call stack construction time in Figure 8,

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

Understanding the Purpose of Permission Use in Mobile Apps 43:27

Table XIII. Performance Overhead Breakdown

Call Stack Library TF-IDF SVM

Average time (ms) 5.81 49.03 43.38 159.95
Standard deviation 0 80.53 29.7 18.38

because it only costs 5.81ms on average, which is too short to compare with the other
steps.

Efficacy of Purpose Caching. As mentioned earlier, some apps send the same data
repeatedly, resulting in the same call stack traces. To evaluate the efficacy of our
caching optimization, we analyzed the overhead of the 176 repeated call stack traces.
The average time to look up the “purpose cache” is only 4.5ms, which greatly reduces
the overhead of our system in steady-state operation. The result shows that our system
introduced minimal performance reduction compared with TaintDroid.

5. COMPARISON OF THE STATIC AND DYNAMIC APPROACHES

Here we compare the static approach and the dynamic approach, discussing the
pros and cons of both approaches and the trade-offs involved. First, we present a
quantitative analysis on the static and dynamic approaches. We applied them to the
same dataset and compared their performance. Then, we present a qualitative analysis
of the static and dynamic approaches in Table XV from these aspects: granularity to
infer the purpose, accuracy, scalability, code coverage, impact of code obfuscation, and
the best fit application scenarios.

5.1. Quantitative Analysis

In this comparison, we manually collected more than 100 apps that likely access loca-
tion data. We used several keywords to search on Google Play (e.g., “location,” “nearby,”
“navigation,” “weather,” etc.), and downloaded top related apps.

We used the Monkey testing tool [Monkey 2016] to dynamically test these apps
in an automated way on a Nexus 4 smartphone with an instrumented Android 4.3
r1 OS. Each app was tested for 60 seconds. We performed our experiments outdoors
with network accesses, in order to have the device connect to the GPS and trigger
the sensitive behavior of mobile apps. We found 24 apps leaked GPS location data at
runtime. Note that some apps cannot run properly on Nexus 4 due to incompatible
versions, and some apps use services that are inaccessible in China. To make this a fair
comparison, we applied static analysis on the 24 apps to infer the purpose of permission
use. Besides, to measure the effect of multithreading call stack construction, we also
use the dynamic approach without multithreading call stack construction to test these
apps and compare the results. We manually checked the dynamic call stack traces, and
we also checked the packages that use location permission identified by static analysis
to measure the accuracy of both approaches.

The result is shown in Table XIV. Note that each instance (call stack or code package)
will receive 10 similarity values indicating the probabilities it belongs to each of the
10 categories (besides third-party libraries), and the sum of all 10 similarity values is
equal to 1. We choose the category with the largest similarity value as its category if the
similarity is larger than 0.20, otherwise we will put this instance into a new category
called cannot infer.

Based on the results, we make the following observations:
—Our dynamic approach could identify the purpose of permission use in third-party

libraries correctly. For 14 apps, our dynamic approach identified the sensitive data
leaked by third-party libraries, while our static analysis cannot identify these cases.
Although we could extend our static approach to work on third-party libraries,

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

43:28 H. Wang et al.

Table XIV. Quantitative Analysis of Our Static Approach and Dynamic Approach

App Name

Dynamic Analysis Static Analysis
Purpose

(Dynamic)
Purpose

(Dynamic w/o multi)
Manually
Checked

Purpose
(Static)

Manually
Checked

com.apalon.weatherlive.free customized,
ads(mopub)

customized,
ads(mopub)

customized,
ads(mopub)

customized customized

com.aws.andoid
customized,
geosocial

customized,
geosocial

customized customized customized

com.local.places.near.by.me nearby
searching

cannot infer nearby
searching

cannot
infer

nearby
searching

com.grabtaxi.passenger map library
(mapquest),
transport

map library
(mapquest),

transport
map library
(mapquest),
transport

transport transport

air.byss.mobi.instaplacefree analytics
(flurry),
cannot
infer

analytics (flurry),
cannot infer

analytics
(flurry),
cannot
infer

cannot
infer

geotag

com.appon.mancala ads(mopub) ads(mopub) ads(mopub) none none
com.fitnesskeeper.-

runkeeper.pro
ads

(KiipSDK)
ads

(KiipSDK)
ads

(KiipSDK)
transport

cannot
infer

com.grupoheron.worldclock ads(mopub) ads(mopub) ads(mopub) customized customized
com.reliancegames.-

singhamreturnsthegame
ads(vserv) ads(vserv) ads(vserv) location-

based game
location-
based game

com.devexpert.weather ads(domob),
customized

ads(domob),
customized

ads(domob),
customized

customized customized

com.android.game3dpool game engine
(unity3d),
social net-
working,
ads (crazy-
media)

game engine
(unity3d),

cannot infer,
ads (crazymedia)

game engine
(unity3d),
cannot
infer, ads
(crazy-
media)

cannot
infer

cannot
infer

com.digcy.mycast customized cannot infer customized customized customized
com.myteksi.passenger nearby

searching
nearby searching transport nearby

searching
transport

com.raycom.kcbd ads ads ads none none
com.tranzmate geosocial geosocial transport geosocial,

transport
transport

com.opensignal.weathersignal customized cannot infer customized
cannot
infer

cannot
infer

com.gau.go.launcherex ads ads ads
cannot
infer

cannot
infer

com.gpsserver.gpstracker tracking tracking tracking tracking tracking
com.gamecastor.nearbyme social

(foursquare)
social (foursquare) social

(foursquare)
none none

air.byss.instaweather customized customized customized customized customized
ro.startaxi.android.client transport cannot infer transport transport transport
com.seatosoftware.mapapic analytics

(flurry)
analytics (flurry) analytics

(flurry)
none none

sinhhuynh.map.fakelocation map library map library map library none none
com.foreca.android.weather customized customized customized customized customized

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

Understanding the Purpose of Permission Use in Mobile Apps 43:29

third-party libraries always contain unused permissions [Stevens et al. 2012; Wang
et al. 2015b] and some third-party libraries request sensitive data by invoking
methods in the app logic that provides access to resources, rather than accessing
resources directly [Liu et al. 2015]. Thus, extending the static approach to work on
third-party libraries could introduce false positives.

—Our dynamic approach reconstructing call stacks across multiple threads is better
than our approach without this reconstruction. For example, the app “com.local.
places.near.by.me” used the “com.android.volley” library to send asynchronous HTTP
requests, thus dynamic approach without multithreading call stack construction
cannot get useful information at the taint sinks, so it cannot infer the purpose as
a result. Our dynamic approach could construct the full call stack traces, which
could infer the purpose of the indirect data access. Besides third-party libraries, our
dynamic approach could infer the purpose of permission use in custom code that
static approach cannot identify in two cases.

—Our static approach focused on the use of sensitive data (taint source), while our
dynamic approach focused on the leakage of sensitive data (taint sink). In this
experiment, static analysis identified sensitive permission uses in four cases, but
dynamic analysis did not find these leakages at taint sinks. For example, app
“com.grupoheron.worldclock” and app “com.reliancegames.singhamreturnsthegame”
were found using location permission and static approach could accurately infer the
purpose, but dynamic approach did not find these leakages of sensitive data. This
result indicates that static approach and dynamic approach are suitable for different
usage scenarios; we will discuss it further in Section 5.2. Besides, dynamic analysis
relies heavily on the coverage of execution traces. Although static analysis has good
coverage, some sensitive API calls may never be executed by the app.

5.2. Qualitative Analysis

5.2.1. Granularity. The goal of our static approach is to identify packages that use
sensitive permissions and label the purpose for each package (directory). This is based
on the assumption that a directory will also have only a single purpose for a given
permission. Specifying purpose at a package granularity is coarse-grained as there
may be multiple purposes of data use in each package in reality. While in our dynamic
approach, the purpose is determined by the call stack traces of each sensitive date
leakage, which is more fine-grained and accurate.

5.2.2. Accuracy. Our static approach achieved high accuracy in our labeled dataset.
However, our labeled dataset is not comprehensive. For a few apps (less than 10%) in
the experiment, we could not understand how permissions are used, thus we did not use
them in our evaluation of static approach. In the static approach evaluation, our dataset
also did not include some apps that have unusual design patterns for using sensitive
data. For example, some apps provide services that access sensitive data, while other
parts of the app access these services to use sensitive data. Take the social networking
app “Skout” as an example. It has a package called “com.skout.android.service,” con-
taining services such as “LocationService.java” and “ChatService.java.” In this design
pattern, these services access sensitive data, with other parts of the app accessing these
services. There was very little meaningful text information in the directory where these
services are located, so the static approach would simply fail.

Our dynamic approach uses fine-grained call stack traces, which could deal with this
design pattern easily. By analyzing the call stack traces, we can learn which classes
and methods access the sensitive data and how that data is used. Thus our dynamic
approach is more accurate than the static approach. For the cases that our dynamic
approach fails, the static approach would fail too.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

43:30 H. Wang et al.

Table XV. A Comparison of Our Static Approach and Dynamic Approach
for Inferring Purposes in Smartphone Apps

Static Approach Dynamic Approach

Granularity Coarse-grained Package level
(a directory of source code)

Fine-grained (call stack trace of
a sensitive data leakage)

Accuracy Medium (cannot handle indirect
permission use)

High

Scalability High Low
Coverage High Low
Application
Scenarios

Market level app analysis, help
respect to privacy

Purpose-based access control

5.2.3. Scalability. Our static approach does not need to run the app, which means it
has good potential for scalability. In contrast, our dynamic approach is not as scalable,
as it relies on dynamic testing tools to trigger an app’s behaviors. Due to the limitation
of automated UI testing tools, it is hard to apply dynamic analysis to millions of apps.

5.2.4. Code Coverage. While our static approach has good code coverage, our dynamic
analysis approach relies heavily on execution traces, making it hard to reach complete
coverage due to the large number of potential paths. Prior studies have proposed
techniques for more advanced testing of mobile apps, such as UI fuzzing [Hu and
Neamtiu 2011] and targeted event sequence generation [Jensen et al. 2013], which
can be leveraged in our dynamic analysis in the future. It also demonstrated that the
dynamic approach is suitable for privacy enforcement at runtime, rather than dynamic
testing that relies on the coverage of execution traces.

5.2.5. Application Scenarios. Since our static analysis based approach has good code
coverage and scalability, it is feasible to deploy it on the app market to identify sensitive
behaviors of mobile apps, and help users to understand permissions used by an app and
help to respect privacy. Prior work [Lin et al. 2012] showed that purpose information is
important to assess people’s privacy concerns. Both users’ expectation and the purpose
of why sensitive resources are used have a major impact on users’ subjective feelings
and their trust decisions. Besides, properly informing users of the purpose of resource
access can ease users’ privacy concerns to some extent. Shih et al. [2015] showed similar
findings. They found that the purpose of data access is the main factor affecting users’
privacy choices. Thus, it is important to understand the purpose of permission use and
our work is the first attempt to infer the purpose of permission use from decompiled
code.

Our dynamic approach is fine-grained and accurate, thus it is more suitable to deploy
dynamic approach on real users’ phones and help them enforce privacy protection.
For example, users could define their privacy policies first, which specify whether an
app is allowed to use a sensitive data item for a particular purpose (e.g., disallow
accurate location for advertisement). If the detected sensitive behavior violates the
policy, an exception would be thrown to block the data path. Based on our experiment,
the overhead of inferring purpose at runtime is negligible and imperceptible to mobile
users. The average performance overhead to infer the purpose of sensitive data use is
258ms at runtime. Using a purpose caching optimization, the overhead is reduced to
4.5ms on average in steady state.

5.3. Purpose-Based Access Control

To demonstrate the usability of our dynamic analysis, we have implemented a prototype
access control system that can enforce purpose-based privacy policies. As shown in

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

Understanding the Purpose of Permission Use in Mobile Apps 43:31

Fig. 9. Overall architecture of the prototype access control system. We added the privacy policy and access
control parts (padding with green) based on the dynamic analysis framework we proposed.

Table XVI. Examples of Access Control Policies

Policy Description

< location, ads, block > disallow accurate location for advertisement
< location, nearbysearching, allow > allow to use location for nearby searching

Figure 9, we added the privacy policy and access control parts based on the dynamic
analysis framework we proposed.

Users can easily define global privacy policies for all the apps using a triple
<permission, purpose, action>. For example, a set of privacy policies for a par-
ticular user could use the form as shown in Table XVI. Further, we expect that more
complex policies can also be implemented on top of our system in the future. For ex-
ample, user could define policies based on app category, app name, used permission,
purpose of permission use, destination IP address, and whether it uses SSL connection.
For example, a user could block egress of sensitive contacts data for all game apps.
Furthermore, we could use context information such as at home or at work to enforce
purpose-based context-aware access control.

Note that currently we do not have a UI to specify these policies for our prototype
system. Instead, in this article we focus on exploring the capability of dynamic analysis
in inferring purposes, and enabling the new functionality of purpose-based control, and
demonstrating its feasibility. We leave the design and evaluation of appropriate UIs for
allowing users to specify these access policies to future work. However, we note that
such a UI can be integrated with Android AppOps or with other systems such as the
ProtectMyPrivacy app [Agarwal and Hall 2013].

For policy enforcement, we modified TaintDroid such that at each sink point the
app behavior is checked against user-defined policies. If the sensitive behavior violates
the policy, an exception would be thrown to block the data path. Note that if the
app does not catch and handle the exception, the app may crash. Our goal is to let
users selectively enforce privacy policies for sensitive behaviors associated with certain
purposes, without affecting other behaviors or functionalities of the app. During our
experiments, we observed three kinds of results for blocking sensitive data at runtime,
as shown in Figure 10.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

43:32 H. Wang et al.

Fig. 10. Impact to app functionality. Examples of three kinds of behaviors if we block sensitive data: “run
normally and no result is shown,” “run normally but show error,” and “app crash at runtime.”

Blocking necessary sensitive data use in some apps can cause it to crash (less than
10% of apps in our experiment), mainly because the apps did not catch and handle the
exceptions when our system blocked the data. In contrast, blocking sensitive data in
third-party libraries rarely caused crashes. We also note that since the arrival of fine-
grained permission control in Android 6.0, it is only a matter of time before developers
will change their apps to add exceptional handlers as users use the Android UI to allow
or deny access to sensitive data to the entire app.

6. DISCUSSION

6.1. Code Obfuscation

In our previous experiments, we first identified the classes that use sensitive permis-
sions, then we determined whether the class is obfuscated or not. We only examined
code using permission-related android APIs, and we found that about 10% of apps
contain obfuscated code, with much of it belonging to third-party libraries. Previous
research [Linares-Vásquez et al. 2014] analyzed 24,379 Android apps, and they only
found 415 apps (less than 2%) with obfuscated custom code.

To further measure the code obfuscation rate in current Android apps and measure
the effectiveness of our approach, we manually downloaded 1,600 popular Android
apps from Google Play in September 2016. All of them are top apps from different
categories. Then we analyzed these apps in detail.

We focus on four research questions:

—How many of the popular apps are obfuscated?
—How many of them are fully obfuscated? Even when an app is obfuscated, not all

classes in it are obfuscated (e.g., some code cannot be obfuscated because it is defined
or referenced externally, etc). So what is the obfuscation rate of these obfuscated
apps?

—Do they have significant impact on the effectiveness of our approach?
—Are there any feasible ways to deal with code obfuscation?

We investigated these apps in detail, and answer each question in the following.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

Understanding the Purpose of Permission Use in Mobile Apps 43:33

6.1.1. How Many of the Popular Apps are Obfuscated? Following previous work [Linares-
Vásquez et al. 2014], we use a simple heuristic to measure whether an app is obfuscated
or not. This heuristic is based on the fact that certain obfuscators, in particular the
popular tool Proguard, renames classes using a lexicographic order. Therefore, to detect
obfuscated apps, we look for apps with class names that have only a single letter, for
example, a.java, b.java, c.java, etc. We decided to use this simple heuristic because we
were interested only in the impact of identifier obfuscation. That is to say, as long as we
find an app with a class named with a single letter, we will mark this app as obfuscated.

For the 1,600 popular apps, 1,144 of them are marked as obfuscated apps, which
accounts for 71.5% of the apps. This result suggested that obfuscation is quite popular
in Android apps. But does it mean we cannot infer the purpose of permission use in
these apps? We further analyzed these apps in the following.

6.1.2. How Many of Them are Fully Obfuscated? What is the Obfuscation Rate of Obfuscated
Apps? Note that even if an app is obfuscated, not all classes in it are obfuscated. On
one hand, some code cannot be obfuscated because it is defined or referenced exter-
nally, such as APIs defined in the framework and components related to the Android
app lifecycle. On the other hand, some code may need extra efforts if they are to be
obfuscated. For example, some complicated packages or classes may result in runtime
errors due to improper ProGuard rules. Many developers would leave these packages
and classes alone because they have to debug them and configure detailed obfuscation
rules if they want to obfuscate them.

We define obfuscation rate as the proportion of likely obfuscated classes (a class in
which more than 50% of the identifier names are likely obfuscated) among all classes
in an app. We build an identifier name dictionary to identify regular obfuscated names,
including the names in short alphabet format (e.g., a, b, c, aa, ab,...) produced by
ProGuard in default setting and other customized rules using different dictionaries.

As a result, we find that most of the obfuscated packages and classes are from third-
party libraries, while the obfuscation rate in custom code is low. Roughly more than
50% of the obfuscated apps have obfuscation rate less than 20% in their custom code
excluding third-party libraries. Only 14 apps (out of 1,600 apps we examined) are fully
obfuscated.

6.1.3. Do they have Significant Impact on the Effectiveness of Our Approach? We use an
obfuscation-resilient method [LibRadar 2016; Ma et al. 2016] to identify third-party
libraries in the app based on Android API features. Most of the obfuscated classes are
from third-party libraries, so these classes almost have no impact on the effectiveness
of our approach.

For code obfuscation in custom code, as long as they are not fully obfuscated, our
approach might still be able to extract meaningful features and learn its purpose.
Excluding third-party libraries, most of the apps do not have a higher obfuscation rate.

We also examined the apps we studied in our previous experiment. For the roughly
600 apps in our static analysis, around 300 of them are found to have a class that is
named with a single letter, which means roughly 50% of them are possibly obfuscated.
But in our previous experiment, we could still label the purposes and using text-mining
to extract features and learn the purposes.

Thus, whether code obfuscation could have great impact on the effectiveness of our
approach depends on the obfuscation level and obfuscation rate.

6.1.4. Are there any Feasible Ways to Deal with Code Obfuscation? A recent work DE-
GUARD [Bichsel et al. 2016] was proposed to reverse layout obfuscation (naming
obfuscation) of Android APKs. In layout obfuscation, the names of program identi-
fiers that carry key semantic information are replaced with other (short) identifiers

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

43:34 H. Wang et al.

with no semantic meaning. Examples of such elements are variable, method, and class
names. They learn probabilistic models from “Big Code” and then use these models to
achieve overall precision and scalability of the probabilistic predictions. It could recover
79.1% of the program element names obfuscated with ProGuard, which could be used
in our work to recover obfuscated code and help us extract meaningful features.

In summary, based on our preliminary study on 1,600 recent popular apps from
Google Play, we have the following findings:

—Code obfuscation is quite popular in Android apps; more than 70% of apps are obfus-
cated to some extent in our study.

—Most of the obfuscated packages and classes are from third-party libraries, while the
obfuscation rate in custom code is low. Only 14 apps (out of 1,600 apps we examined)
are fully obfuscated.

—Third-party library obfuscation almost has no impact on the effectiveness of our
approach. Whether code obfuscation could have great impact on the effectiveness of
our approach depends on the obfuscation level and obfuscation rate of custom code.

—There are some feasible ways to deal with code obfuscation, which could be potentially
used to help us infer the purpose.

6.2. Implicit Control Flow and Native Code

Our dynamic analysis system inherits two limitations from TaintDroid, that is, im-
plicit control flow analysis and native code issues. TaintDroid does not track implicit
dataflows, for example, an app’s control flow [Sarwar et al. 2013] (e.g., conditional
branching). Besides, native code is unmonitored in TaintDroid. Thus, our dynamic
analysis approach would fail in these cases. Subsequent work [Gilbert et al. 2011] pro-
posed to add implicit flow support to TaintDroid, which we could use to improve our
system.

6.3. Indirect Permission Use

As stated earlier, some apps use sensitive data through a level of indirection rather
than directly accessing it. In this case, our static analysis approach would fail, while our
dynamic approach could deal with this design pattern easily. One approach would be
expanding the static analysis to look for this kind of design pattern. Another approach
would be expanding the granularity of analysis from a directory to the entire app, and
changing the classification from single-label classification to multilabel classification.

6.4. ICC-Based Multihreading

The thread-pairing method we used to construct the full call stack at runtime is
also able to handle the case of Inter-Component Communication (ICC) based multi-
threading. Using ICC, the parent thread can send an intent to framework, and the
framework handles the intent to start a new thread. In this case, the “intent” object can
be used as a bridge between the sender thread and receiver thread, just like the “task”
object used as a bridge between caller thread and callee thread in AsyncTask-based
multithreading. Figure 11 shows an example of ICC-based multithreading, the sender
Activity starts the receiver Activity by sending an Intent, and the “intent” object is
shared by both sender and receiver. We can hook the “startActivity()” method in sender
thread to record the mapping from sender to the intent, and hook the “onCreate()”
method of receiver to get the “intent” object that started the receiver thread.

Thus, it is easy to extend our current dynamic analysis system and implement ICC-
based call stack construction. Previous work AppContext [Yang et al. 2015] proposed
to chain all ICCs within the app and construct an Extended Call Graph (ECG) to
infer activation events, which we could also use to improve our work. We did not

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

Understanding the Purpose of Permission Use in Mobile Apps 43:35

Fig. 11. A bridge-building example of ICC-based multithreading. The “intent” object can be used as a bridge
between the sender thread and receiver thread.

implement it in the current system, because ICC is often used to start an Android
component (Activity, Service, etc.). In this article, we think different components often
have different purposes. For example, a normal Activity may start a new Activity to
present an Advertisement. As our goal is to infer the purpose based on call stack
traces, we only need the call stack of the current Android component. Although it is
better to connect current component with the background services in some cases (e.g.,
malware performs suspicious behaviors in the thread initiated by ICC), we are still not
sure how much it will impact the performance of our system. During our preliminary
experiment, we found that if current component is connected with other components
using ICC and they cooperate to exhibit some behaviors, the current component will
need to receive intent from the other components, and the code that handles the intent
will provide some information to help us infer the purpose of permission use in the
current component. We will further analyze this issue in the future.

6.5. The Diversity of Developer Defined Features

Our approach is mainly based on text-based features. However, developers do not
always use good identifier names, for example, “v1” for a variable name. Developers also
use abbreviations, for example, using “loc” instead of “location.” Our current splitting
method does not work well for these cases. One option is to manually label some known
abbreviations. Another option is to use techniques such as approximate string matching
[StringMatching 2016] to infer abbreviated words.

6.6. Expanding to Other Permissions and Purposes

We have created a taxonomy of 10 purposes for the location permission and 10 purposes
for the contacts permission. While our taxonomy is good enough for our experiments, it
is possible that there are other purposes that we cannot find. Furthermore, depending
on how purposes are used, our taxonomy might be too fine-grained or too coarse-
grained. This article demonstrated that we could infer purpose from the decompiled
code or call stack at runtime. We believe that our approach should generalize for new
purposes and for other sensitive permission. For example, if there are more purposes
for location data or contact list, we can simply add more training instances.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

43:36 H. Wang et al.

Besides, if possible, and depending on how the purposes are used, we could use
clustering-based approaches to automatically learn the purposes of permission uses
from the extracted text features in future work. For example, one possible way is that
we could use LDA on the extracted texts from decompiled permission-related code,
and identify the main topics for each package, and then cluster packages by related
topics. We could regard each cluster as a “purpose” of permission use. Based on how
the purposes are used, we could use clustering algorithm such as k-means to define the
number of clusters. Then we could identify fine-grained or coarse-grained “purposes”
based on the number of clusters. Note that one problem remains here is that maybe it
is hard to assign a name for each automated identified purpose.

Moreover, previous work AppContext [Yang et al. 2015] proposed to use information
flow analysis and machine learning to identify malicious behaviors, which we could use
to improve our work and identify malicious purposes.

6.7. Bypassing Our Detection System

Note that our work assumes that developers do not deliberately use misleading identi-
fiers. If our approach becomes popular, a malicious developer could rename identifiers
to confuse our classification. For example, a developer could rename identifiers to con-
tain words such as “weather” or “temperature” to mislead how location data is used.
Fortunately, we did not find any instances of this in our experimental data. It is also
not immediately clear how to detect these kinds of cases either.

6.8. Practicality and Usability of the Dynamic System

The goal of this article is to show that purpose-based access control of permissions
is indeed possible and to present a prototype implementation. In order to deploy our
dynamic system widely to regular users, we will ideally need the functionality we have
proposed to be integrated into the OS itself (e.g., Android or through a port such as
Cyanogen) and support different versions of Android. Our work is based on TaintDroid
to track sensitive information flow, which only supports up to Android 4.2. To work on
new versions of Android (especially 6.0 and above), we should use other dynamic taint
analysis approaches.

Furthermore, while prior work showed that purpose information is important to
assess people’s privacy concerns, there have been no user studies to show how users
interact with a system with these capabilities and what the appropriate UI might look
like. We are investigating ways to deploy and test our system on real users, but note
that it will require an extensive user study.

7. CONCLUSIONS

In this article, we propose a text mining based method to infer the purpose of a permis-
sion use for Android apps. We present the design, implementation, and evaluation of
two approaches to inferring purposes, which are based on static analysis and dynamic
analysis, respectively. We first evaluate the effectiveness of using text analysis tech-
niques on decompiled code statically. Our experiments show that we can achieve about
85% accuracy in inferring the purpose of location use, and 94% for contact list use.
Then we introduce a dynamic analysis technique to overcome the limitations of static
analysis. For the dynamic approach, we try to infer the purpose of permission use in
the entire app, including third-party libraries and custom code. Experimental results
show that we are able to successfully infer the purpose of over 90% sensitive location
data uses. We also discuss the pros and cons of both static and dynamic approaches,
and the trade-offs involved.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

Understanding the Purpose of Permission Use in Mobile Apps 43:37

REFERENCES

Yuvraj Agarwal and Malcolm Hall. 2013. ProtectMyPrivacy: Detecting and mitigating privacy leaks on ios
devices using crowdsourcing. In Proceedings of the 11th Annual International Conference on Mobile
Systems, Applications, and Services. 97–110.

Hazim Almuhimedi, Florian Schaub, Norman Sadeh, Idris Adjerid, Alessandro Acquisti, Joshua Gluck,
Lorrie Faith Cranor, and Yuvraj Agarwal. 2015. Your location has been shared 5,398 times!: A field
study on mobile app privacy nudging. In Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems (CHI’15). 787–796.

Shahriyar Amini, Jialiu Lin, Jason I. Hong, Janne Lindqvist, and Joy Zhang. 2013. Mobile application
evaluation using automation and crowdsourcing. In Proceedings of the PETools.

Apktool 2016. Apktool: A tool for reverse engineering Android apk files. Retrieved from https://code.google.
com/p/android-apktool/.

AppStore 2016. Wikipedia App Store (iOS). Retrieved from https://en.wikipedia.org/wiki/App_Store_(iOS).
Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le

Traon, Damien Octeau, and Patrick McDaniel. 2014. FlowDroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI’14). 259–269.

Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. PScout: Analyzing the android per-
mission specification. In Proceedings of the 2012 ACM Conference on Computer and Communications
Security (CCS’12). 217–228.

Michael Backes, Sven Bugiel, Sebastian Gerling, and Philipp von Styp-Rekowsky. 2014. Android security
framework: Extensible multi-layered access control on android. In Proceedings of the 30th Annual
Computer Security Applications Conference (ACSAC’14). 46–55.

Michael Backes, Sebastian Gerling, Christian Hammer, Matteo Maffei, and Philipp von Styp-Rekowsky.
2013. AppGuard: Enforcing user requirements on android apps. In Proceedings of the 19th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’13). 543–548.

Rebecca Balebako, Jaeyeon Jung, Wei Lu, Lorrie Faith Cranor, and Carolyn Nguyen. 2013. “Little brothers
watching you”: Raising awareness of data leaks on smartphones. In Proceedings of the 9th Symposium
on Usable Privacy and Security (SOUPS’13). 12:1–12:11.

Alastair R. Beresford, Andrew Rice, Nicholas Skehin, and Ripduman Sohan. 2011. MockDroid: Trading
privacy for application functionality on smartphones. In Proceedings of the 12th Workshop on Mobile
Computing Systems and Applications (HotMobile’11). 49–54.

Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and Martin Vechev. 2016. Statistical deobfuscation of
android applications. In CCS’16.

Sven Bugiel, Stephan Heuser, and Ahmad-Reza Sadeghi. 2013. Flexible and fine-grained mandatory ac-
cess control on android for diverse security and privacy policies. In Proceedings of the 22nd USENIX
Conference on Security (SEC’13). 131–146.

C4.5 2016. Wikipedia. C4.5 Algorithm. (2016). http://en.wikipedia.org/wiki/C4.5_algorithm.
CaffeineMark 2016. CaffeineMark. Retrieved from https://play.google.com/store/apps/details?id=com.

android.cm3&hl=zh_CN.
Erika Chin, Adrienne Porter Felt, Vyas Sekar, and David Wagner. 2012. Measuring user confidence in

smartphone security and privacy. In Proceedings of the 8th Symposium on Usable Privacy and Security
(SOUPS’12).

Cross-Validation 2016. Wikipedia. Cross-validation. Retrieved from https://en.wikipedia.org/wiki/Cross-
validation_(statistics).

Benjamin Davis and Hao Chen. 2013. RetroSkeleton: Retrofitting android apps. In Proceedings of the Inter-
national Conference on Mobile Systems, Applications, and Services (MobiSys’13).

Benjamin Davis, Ben Sanders, Armen Khodaverdian, and Hao Chen. 2012. I-arm-droid: A rewriting frame-
work for in-app reference monitors for android applications. In Proceedings of the Mobile Security
Technologies.

Dex2jar 2016. dex2jar. Retrieved from https://code.google.com/p/dex2jar/.
Serge Egelman, Adrienne Porter Felt, and David Wagner. 2012. Choice architecture and smartphone privacy:

There’s a price for that. In Proceedings of the Workshop on the Economics of Information Security (WEIS).
William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol

N. Sheth. 2010. TaintDroid: An information-flow tracking system for realtime privacy monitoring on
smartphones. In Proceedings of the 9th USENIX Conference on Operating Systems Design and Imple-
mentation (OSDI’10).

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

https://code.google.com/p/android-apktool/
https://code.google.com/p/android-apktool/
https://en.wikipedia.org/wiki/App_Store_(iOS)
http://en.wikipedia.org/wiki/C4.5_algorithm
https://play.google.com/store/apps/details?id$=$com.android.cm3
https://play.google.com/store/apps/details?id$=$com.android.cm3
https://en.wikipedia.org/wiki/Cross-validation_(statistics)
https://en.wikipedia.org/wiki/Cross-validation_(statistics)
https://code.google.com/p/dex2jar/

43:38 H. Wang et al.

William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. 2011. A study of android applica-
tion security. In Proceedings of the 20th USENIX Conference on Security (SEC’11).

William Enck, Machigar Ongtang, and Patrick McDaniel. 2009. On lightweight mobile phone application
certification. In Proceedings of the 16th ACM Conference on Computer and Communications Security
(CCS’09). 235–245.

Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and David Wagner. 2012.
Android permissions: User attention, comprehension, and behavior. In Proceedings of the 8th Symposium
on Usable Privacy and Security (SOUPS’12). 3:1–3:14.

Peter Gilbert, Byung-Gon Chun, Landon P. Cox, and Jaeyeon Jung. 2011. Vision: Automated security valida-
tion of mobile apps at app markets. In Proceedings of the 2nd International Workshop on Mobile Cloud
Computing and Services (MCS’11). 21–26.

GooglePlay 2016. Wikipedia. Google Play. Retrieved from http://en.wikipedia.org/wiki/Google_Play.
Michael I. Gordon, Deokhwan Kim, Jeff Perkins, Limei Gilham, Nguyen Nguyen, and Martin Rinard. 2015.

Information flow analysis of android applications in DroidSafe. In Proceedings of NDSS 2015.
Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller. 2014. Checking app behavior against

app descriptions. In Proceedings of the 36th International Conference on Software Engineering (ICSE’14).
1025–1035.

Marian Harbach, Markus Hettig, Susanne Weber, and Matthew Smith. 2014. Using personal examples to
improve risk communication for security and privacy decisions. In Proceedings of the 32nd Annual ACM
Conference on Human Factors in Computing Systems (CHI’14).

Stephan Heuser, Adwait Nadkarni, William Enck, and Ahmad-Reza Sadeghi. 2014. ASM: A programmable
interface for extending android security. In Proceedigns of the 23rd USENIX Security Symposium
(USENIX Security’14). 1005–1019.

Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David Wetherall. 2011. These aren’t
the droids you’re looking for: Retrofitting android to protect data from imperious applications. In Pro-
ceedings of the 18th ACM Conference on Computer and Communications Security (CCS’11). 639–652.

Cuixiong Hu and Iulian Neamtiu. 2011. Automating GUI testing for android applications. In Proceedings of
the 6th International Workshop on Automation of Software Test. 77–83.

Wei Huang, Yao Dong, Ana Milanova, and Julian Dolby. 2015. Scalable and precise taint analysis for android.
In Proceedings of the 2015 International Symposium on Software Testing and Analysis (ISSTA’15). 106–
117.

Qatrunnada Ismail, Tousif Ahmed, Apu Kapadia, and Michael Reiter. 2015. Crowdsourced exploration of
security configurations. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing
Systems (CHI’15).

JD-Core-Java 2016. JD-Core-Java. Retrieved from http://jd.benow.ca/.
Casper S. Jensen, Mukul R. Prasad, and Anders Møller. 2013. Automated testing with targeted event

sequence generation. In Proceedings of ISSTA’13. 67–77.
Yiming Jing, Gail-Joon Ahn, Ziming Zhao, and Hongxin Hu. 2014. RiskMon: Continuous and automated risk

assessment of mobile applications. In Proceedings of the 4th ACM Conference on Data and Application
Security and Privacy (CODASPY’14). 99–110.

Jaeyeon Jung, Seungyeop Han, and David Wetherall. 2012. Short paper: Enhancing mobile application
permissions with runtime feedback and constraints. In Proceedings of the 2nd ACM Workshop on Security
and Privacy in Smartphones and Mobile Devices (SPSM’12). 45–50.

Patrick Gage Kelley, Lorrie Faith Cranor, and Norman Sadeh. 2013. Privacy as part of the app decision-
making process. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI’13). 3393–3402.

LibRadar 2016. LibRadar: Detecting Libraries in Android Apps. Retrieved from http://radar.pkuos.org/.
(2016).

LibSVM 2016. LIBSVM—A Library for Support Vector Machines. Retrieved from https://www.csie.
ntu.edu.tw/ cjlin/libsvm/.

Jialiu Lin, Shahriyar Amini, Jason I. Hong, Norman Sadeh, Janne Lindqvist, and Joy Zhang. 2012. Expec-
tation and purpose: Understanding users’ mental models of mobile app privacy through crowdsourcing.
In Proceedings of the 2012 ACM Conference on Ubiquitous Computing (UbiComp’12). 501–510.

Jialiu Lin, Bin Liu, Norman Sadeh, and Jason I. Hong. 2014. Modeling users’ mobile app privacy preferences:
Restoring usability in a sea of permission settings. In Proceedings of the 2014 Symposium On Usable
Privacy and Security (SOUPS’14).

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

http://en.wikipedia.org/wiki/Google_Play
http://jd.benow.ca/
http://radar.pkuos.org/
https://www.csie.ntu.edu.tw/
https://www.csie.ntu.edu.tw/

Understanding the Purpose of Permission Use in Mobile Apps 43:39

Mario Linares-Vásquez, Andrew Holtzhauer, Carlos Bernal-Cárdenas, and Denys Poshyvanyk. 2014. Revis-
iting android reuse studies in the context of code obfuscation and library usages. In Proceedings of the
11th Working Conference on Mining Software Repositories (MSR’14). 242–251.

Bin Liu, Bin Liu, Hongxia Jin, and Ramesh View. 2015. Efficient privilege de-escalation for ad libraries in
mobile apps. In Proceedings of the the 13th International Conference on Mobile Systems, Applications,
and Services (MobiSys’15).

Looper 2016. Looper. Retrieved from http://developer.android.com/reference/android/os/Looper.html.
Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. 2016. LibRadar: Fast and accurate detection of

third-party libraries in android apps. In Proceedings of the 2016 IEEE/ACM 38th IEEE International
Conference on Software Engineering Companion. 653–656.

Mallet 2016. Mallet: MAchine Learning for LanguagE ToolkiT. Retrieved from http://mallet.cs.umass.edu/.
Clara Mancini, Keerthi Thomas, Yvonne Rogers, Blaine A. Price, Lukazs Jedrzejczyk, Arosha K. Bandara,

Adam N. Joinson, and Bashar Nuseibeh. 2009. From spaces to places: Emerging contexts in mobile
privacy. In Proceedings of the 11th International Conference on Ubiquitous Computing (UbiComp’09).
1–10.

Maximum Entropy 2016. Wikipedia Maximum Entropy. Retrieved from http://en.wikipedia.org/wiki/
Maximum_entropy.

Monkey 2016. UI/Application Exerciser Monkey. Retrieved from developer.android.com/tools/help/monkey.
html.

MultipleThreads 2016. MultipleThreads. Retrieved from http://developer.android.com/intl/en-us/training/
multiple-threads/index.html.

Mohammad Nauman, Sohail Khan, and Xinwen Zhang. 2010. Apex: Extending android permission model
and enforcement with user-defined runtime constraints. In Proceedings of the 5th ACM Symposium on
Information, Computer and Communications Security (ASIACCS’10). 328–332.

Machigar Ongtang, Stephen McLaughlin, William Enck, and Patrick McDaniel. 2009. Semantically rich
application-centric security in android. In Proceedings of the 2009 Annual Computer Security Applica-
tions Conference (ACSAC’09). 340–349.

Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. 2013. WHYPER: Towards automating
risk assessment of mobile applications. In Proceedings of the 22nd USENIX Conference on Security
(SEC’13). 527–542.

Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David Wagner. 2012. AdDroid: Privilege separation
for applications and advertisers in android. In Proceedings of the 7th ACM Symposium on Information,
Computer and Communications Security (ASIACCS’12).

PermissionMappings 2015. Permission mappings. Retrieved from http://pscout.csl.toronto.edu/.
Porter 2015. The Porter Stemming Algorithm. Retrieved from http://tartarus.org/martin/PorterStemmer/.
PrivacyGrade 2015. PrivacyGrade: Grading the privacy of smartphone apps. Retrieved from http://

privacygrade.org/.
PScout API 2015. Documented API calls mappings. Retrieved from http://pscout.csl.toronto.edu/

download.php?file=results/jellybean_publishedapimapping.
PScout ContentProvider 2015. Content Provider (URI strings) with permissions. Retrieved from http://

pscout.csl.toronto.edu/download.php?file=results/jellybean_contentproviderpermission.
PScout Intent 2015. Intents with Permissions. Retrieved from http://pscout.csl.toronto.edu/download.php?

file=results/jellybean_intentpermissions.
Zhengyang Qu, Vaibhav Rastogi, Xinyi Zhang, Yan Chen, Tiantian Zhu, and Zhong Chen. 2014. AutoCog:

Measuring the description-to-permission fidelity in android applications. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security (CCS’14). 1354–1365.

Franziska Roesner and Tadayoshi Kohno. 2013. Securing embedded user interfaces: Android and beyond. In
Proceedings of the 22nd USENIX Conference on Security (SEC’13). 97–112.

Golam Sarwar, Olivier Mehani, Roksana Boreli, and Dali Kaafar. 2013. On the effectiveness of dynamic taint
analysis for protecting against private information leaks on android-based devices. In Proceedings of the
10th International Conference on Security and Cryptography (SECRYPT’13). 461–467.

Daniel Schreckling, Johannes Kstler, and Matthias Schaff. 2013. Kynoid: Real-time enforcement of fine-
grained, user-defined, and data-centric security policies for Android. Information Security Technical
Report 17, 3 (2013), 71–80.

SciKit 2016. Scikit-learn Machine learning in Python. Retrieved from http://scikit-learn.org/stable/
index.html.

Shashi Shekhar, Michael Dietz, and Dan S. Wallach. 2012. AdSplit: Separating smartphone advertising from
applications. In Proceedings of the 21st USENIX Conference on Security Symposium (Security’12).

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

http://developer.android.com/reference/android/os/Looper.html
http://mallet.cs.umass.edu/
http://en.wikipedia.org/wiki/Maximum_entropy
http://en.wikipedia.org/wiki/Maximum_entropy
http://developer.android.com/intl/en-us/training/multiple-threads/index.html
http://developer.android.com/intl/en-us/training/multiple-threads/index.html
http://pscout.csl.toronto.edu/
http://tartarus.org/martin/PorterStemmer/
http://privacygrade.org/
http://privacygrade.org/
http://pscout.csl.toronto.edu/download.php?file$=$results/jellybean_publishedapimapping
http://pscout.csl.toronto.edu/download.php?file$=$results/jellybean_publishedapimapping
http://pscout.csl.toronto.edu/download.php?file$=$results/jellybean_contentproviderpermission
http://pscout.csl.toronto.edu/download.php?file$=$results/jellybean_contentproviderpermission
http://pscout.csl.toronto.edu/download.php?file$=$results/jellybean_intentpermissions
http://pscout.csl.toronto.edu/download.php?file$=$results/jellybean_intentpermissions
http://scikit-learn.org/stable/index.html
http://scikit-learn.org/stable/index.html

43:40 H. Wang et al.

Fuming Shih, Ilaria Liccardi, and Daniel Weitzner. 2015. Privacy tipping points in smartphones privacy
preferences. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems (CHI’15). 807–816.

Irina Shklovski, Scott D. Mainwaring, Halla Hrund Skúladóttir, and Höskuldur Borgthorsson. 2014. Leaki-
ness and creepiness in app space: Perceptions of privacy and mobile app use. In Proceedings of the 32nd
Annual ACM Conference on Human Factors in Computing Systems (CHI’14). 2347–2356.

Ryan Stevens, Clint Gibler, Jon Crussell, Jeremy Erickson, and Hao Chen. 2012. Investigating user privacy
in android ad libraries. In Proceedings of the Workshop on Mobile Security Technologies (MoST).

StringMatching 2016. Wikipedia Approximate String Matching. Retrieved from http://en.wikipedia.org/
wiki/Approximate_string_matching.

SVM 2016. Wikipedia Support Vector Machine. Retrieved from http://en.wikipedia.org/wiki/Support_vector_
machine.

Yang Tang, Phillip Ames, Sravan Bhamidipati, Ashish Bijlani, Roxana Geambasu, and Nikhil Sarda. 2012.
CleanOS: Limiting mobile data exposure with idle eviction. In Proceedings of the 10th USENIX Confer-
ence on Operating Systems Design and Implementation (OSDI’12). 77–91.

Eran Toch, Justin Cranshaw, Paul Hankes Drielsma, Janice Y. Tsai, Patrick Gage Kelley, James Springfield,
Lorrie Cranor, Jason Hong, and Norman Sadeh. 2010. Empirical models of privacy in location sharing.
In Proceedings of the 12th ACM International Conference on Ubiquitous Computing (UbiComp’10). 129–
138.

Omer Tripp and Julia Rubin. 2014. A Bayesian approach to privacy enforcement in smartphones. In Pro-
ceedings of the 23rd USENIX Conference on Security Symposium (Security’14).

Haoyu Wang, Yao Guo, Ziang Ma, and Xiangqun Chen. 2015a. WuKong: A scalable and accurate two-
phase approach to android app clone detection. In Proceedings of the ACM International Symposium on
Software Testing and Analysis (ISSTA’15). 71–82.

Haoyu Wang, Yao Guo, Zihao Tang, Guangdong Bai, and Xiangqun Chen. 2015b. Reevaluating android
permission gaps with static and dynamic analysis. In Proceedings of GLOBECOM’15.

Haoyu Wang, Jason I. Hong, and Yao Guo. 2015c. Using text mining to infer the purpose of permission use in
mobile apps. In The 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing
(UbiComp’15). 1107–1118.

Haoyu Wang, Zhe Liu, Yao Guo, Xiangqun Chen, Miao Zhang, Guoai Xu, and Jason Hong. 2017. An explo-
rative study of the mobile app ecosystem from app developers’ perspective. In Proceedings of the 26th
International Conference on World Wide Web (WWW’17). 163–172.

Jiayu Wang and Qigeng Chen. 2014. ASPG: Generating android semantic permissions. In Proceedings of the
IEEE 17th International Conference on Computational Science and Engineering. 591–598.

Takuya Watanabe, Mitsuaki Akiyama, Tetsuya Sakai, and Tatsuya Mori. 2015. Understanding the incon-
sistencies between text descriptions and the use of privacy-sensitive resources of mobile apps. In 11th
Symposium On Usable Privacy and Security (SOUPS 2015). 241–255.

WordList 2015. English wordlist. (2015). http://www-personal.umich.edu/jlawler/wordlist.
Rubin Xu, Hassen Saı̈di, and Ross Anderson. 2012. Aurasium: Practical policy enforcement for android

applications. In Proceedings of the 21st USENIX Conference on Security Symposium (Security’12).
Wei Yang, Xusheng Xiao, Benjamin Andow, Sihan Li, Tao Xie, and William Enck. 2015. AppContext: Differen-

tiating malicious and benign mobile app behaviors using context. In Proceedings of the 37th International
Conference on Software Engineering (ICSE’15). 303–313.

Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and X. Sean Wang. 2013. AppIntent: Analyzing
sensitive data transmission in android for privacy leakage detection. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer and Communications Security (CCS’13). 1043–1054.

Yajin Zhou, Xinwen Zhang, Xuxian Jiang, and Vincent W Freeh. 2011. Taming information-stealing smart-
phone applications (on android). In Proceedings of the 4th International Conference on Trust and Trust-
worthy Computing (TRUST’11). 93–107.

Received July 2016; revised March 2017; accepted April 2017

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: July 2017.

http://en.wikipedia.org/wiki/Approximate_string_matching
http://en.wikipedia.org/wiki/Approximate_string_matching
http://en.wikipedia.org/wiki/Support_vector_machine
http://en.wikipedia.org/wiki/Support_vector_machine
http://www-personal.umich.edu/jlawler/wordlist

