BuildingRules: A Trigger-Action-Based System to Manage
Complex Commercial Buildings

ALESSANDRO A. NACCI and VINCENZO RANA, Politecnico di Milano
BHARATHAN BALAJI, University of California San Diego

PAOLA SPOLETINI, Kennesaw State University

RAJESH GUPTA, University of California San Diego

DONATELLA SCIUTO, Politecnico di Milano

YUVRAJ AGARWAL, Carnegie Mellon University

Modern Building Management Systems (BMSs) have been designed to automate the behavior of complex
buildings, but unfortunately they do not allow occupants to customize it according to their preferences, and
only the facility manager is in charge of setting the building policies. To overcome this limitation, we present
BuildingRules, a trigger-action programming-based system that aims to provide occupants of commercial
buildings with the possibility of specifying the characteristics of their office environment through an intuitive
interface. Trigger-action programming is intuitive to use and has been shown to be effective in meeting user
requirements in home environments. To extend this intuitive interface to commercial buildings, an essential
step is to manage the system scalability as large number of users will express their policies. BuildingRules
has been designed to scale well for large commercial buildings as it automatically detects conflicts that occur
among user specified policies and it supports intelligent grouping of rules to simplify the policies across large
numbers of rooms. We ensure the conflict resolution is fast for a fluid user experience by using the Z3 SMT
solver. BuildingRules backend is based on RESTful web services so it can connect to various BMSs and scale
well with large number of buildings. We have tested our system with 23 users across 17 days in a virtual office
building, and the results we have collected prove the effectiveness and the scalability of BuildingRules.

CCS Concepts: « Information systems — Triggers and rules; - Computer systems organization —
Embedded and cyber-physical systems; - Human-centered computing — User interface management
systems; Ubiquitous and mobile computing;

Additional Key Words and Phrases: Cyber-physical systems, mobile and ubiquitous systems, smart environ-
ment

ACM Reference format:

Alessandro A. Nacci, Vincenzo Rana, Bharathan Balaji, Paola Spoletini, Rajesh Gupta, Donatella Sciuto,
and Yuvraj Agarwal. 2018. BuildingRules: A Trigger-Action-Based System to Manage Complex Commercial
Buildings. ACM Trans. Cyber-Phys. Syst. 2, 2, Article 13 (May 2018), 22 pages.
https://doi.org/10.1145/3185500

This work was partially funded by Telecom Italia S.p.A., Strategy and Innovation/Open Innovation Research, Joint Open
Lab S-Cube.

Authors’ addresses: A. A. Nacci, V. Rana, B. Balaji, P. Spoletini, R. Gupta, D. Sciuto, and Y. Agarwal; emails: {alessandro.nacci,
vincenzo.rana}@polimi.it, bbalaji@cs.ucsd.edu, pspoleti@kennesaw.edu, rgupta@ucsd.edu, donatella.sciuto@polimi.it,
yuvraj@cs.cmu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 ACM 2378-962X/2018/05-ART13 $15.00

https://doi.org/10.1145/3185500

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 2, Article 13. Publication date: May 2018.

https://doi.org/10.1145/3185500
mailto:permissions@acm.org
https://doi.org/10.1145/3185500

13:2 A. A. Nacci et al.

1 INTRODUCTION

In the past few years, many research projects have focused on making long-standing smart building
visions technically feasible, up to the point that augmented buildings are starting to become reality.
However, living in and interacting with such spaces typically introduces a huge complexity while
offering quite limited benefits. As recently discussed in two of the top conferences in the smart
buildings field (Ubicomp' 2014 and 2015 and CHI? 2015) (De Russis and Corno 2015; Mennicken
et al. 2014; Woo and Lim 2015; Huang and Cakmak 2015), one of the main challenges that still have
to be solved is the automatic coordination of all the components of a smart building. This issue is
crucial and requires a careful management of the policies that define the behavior of the complex
distributed systems realizing generic smart buildings.

Currently, smart building policies are written manually by technicians and specified by building
managers, which exploits their expertise and knowledge to accomplish this task. However, to
enable widespread diffusion of these smart buildings and to allow the occupants to directly inter-
act with them, it is necessary to automate the policies definition procedure with an easy-to-use
programming interface, so that also users with a non-technical background can take advantage
of this technology.

Within this context, Mennicken et al. (2014) underlines how it is now fundamental to focus on
the interaction between humans and the smart-things network, i.e., sensors, actuators, and smart
appliances. To this end, many technological aspects have to be faced: The right level of abstraction
has to be defined, as well as the right model for the system, to let the users express their require-
ments (e.g., their comfort preferences) in a clear and simple way, without taking into account the
low-level implementation details, such as the state of the sensors. As demonstrated in De Russis
and Corno (2015), in fact, users find it non-intuitive to directly interact with sensors and actuators.

Starting from the preliminary work we presented at Ubicomp’15 (Nacci et al. 2015), in this article,
we present an in-depth design of our trigger-action programming paradigm-based BuildingRules
system for commercial buildings. Our approach is based on the idea of separating the language
provided to the users to express the rules and the backend formal language used to represent
the rules. With BuildingRules, users will be able to easily describe the rules of interest, and the
internal formal representation will be instead used to automatically and unambiguously detect
conflicts, i.e., unfeasible situations. We focus on quickly resolving conflicts that occur between user
roles using the Z3 SMT solver. Our grouping and access control mechanism allows for building
managers to specify high-level policies as well as external applications such as Automated Demand
Response to interact with user policies. BuildingRules has been designed to solve most of the issues
that currently exist to enable personalized and complex user policies, as highlighted by the smart
buildings community (De Russis and Corno 2015; Mennicken et al. 2014).

2 CONTEXT DEFINITION AND GENERAL OVERVIEW

Over the years, commercial buildings have evolved to satisfy the different requirements of present
day enterprises. Typically, modern buildings have centralized Heating, Ventilation, and Air
Conditioning (HVAC) systems in addition to lighting, fire safety, elevators, and security systems.
While there are numerous Building Management Systems (BMSs) (Johnson Controls nd; Siemens
Building Technologies nd; Niagara AX nd) to manage and control buildings, these have evolved
from traditional HVAC controls and do not support emerging smart building applications such as
integration with the Smart Grid (Amin and Wollenberg 2005), Microgrid (Lasseter and Paigi 2004),
Demand Response (Rahimi and Ipakchi 2010), and Building Automation (Agarwal et al. 2011;

! ACM International Joint Conference on Pervasive and Ubiquitous Computing.
2 ACM Conference on Human Factors in Computing Systems.

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 2, Article 13. Publication date: May 2018.

BuildingRules: A Trigger-Action-Based System to Manage Complex Commercial Buildings 13:3

Pichler et al. 2011; Majumdar et al. 2012). Recently, web service-based BMSs have been proposed
(Agarwal et al. 2012; Arjunan et al. 2012; Dawson-Haggerty et al. 2013) to better address the
challenges and requirements of scalability, maintainability, and easier application development.

BMSs deployed today (Johnson Controls nd; Siemens Building Technologies nd; Niagara AX nd)
are mainly designed for building managers and maintenance personnel. Occupants interact with
buildings in a limited way—e.g., by using thermostats for HVAC control, switches for lights, keys
cards for locks, and outlets for plug loads. With existing BMSs, it is not possible for the occupants
to automate and personalize the environment such as setting the temperature according to outside
weather or automatically brewing coffee at 8am, and so on. Modern web service—based BMSs, and
advanced sensor technology, would provide the flexibility to express and implement such policies
that can improve occupant comfort and productivity (Haynes 2008) as well as building energy
efficiency (Erickson and Cerpa 2012; Krioukov and Culler 2012; Balaji et al. 2013a).

However, while giving occupants the ability to personalize their living environment is
promising, there are several challenges that must be addressed. First, building occupants do not
understand the details of the building infrastructure and are not necessarily programmers. As
shown in prior work (Sohn and Dey 2003; Truong et al. 2004; Ur et al. 2014), occupants prefer not
to interact with sensors and actuators directly; for instance, they relate better to “someone walked
into a room” than “motion sensor was activated.” Therefore, it is critical that the right level of
abstraction and an intuitive user interface is provided by a building automation system to enable
occupants with varying levels of programming expertise to express their preferences (Ur et al.
2014). In addition, it is also crucial to provide the appropriate access control mechanisms when
the number of users—i.e., both occupants and building managers—increases to ensure proper
system operation. Finally, when multiple users customize the same spaces, a scalable mechanism
to detect and resolve conflicts becomes necessary. Existing BMSs, in addition to being mainly
designed for the facility managers, also have limited or no support for such type of access control
or conflict resolution mechanisms.

To address the above challenges, we present the design and the implementation of Buildin-
gRules, a system that allows building occupants to express their comfort preferences and can de-
tect and resolve potential conflicts among them. BuildingRules is based on the trigger-action pro-
gramming paradigm, i.e., occupants can express policies using the “IF something happens THEN
do something” (IFTTT) pattern. Prior work has shown that the trigger-action programming is an
expressive and intuitive interface to implement building automation policies for people without
programming experience (Dey et al. 2006; Ur et al. 2014). BuildingRules extends the IFTTT abstrac-
tion to commercial buildings and addresses the challenges in integrating the system with our web
service BMS (Agarwal et al. 2012). While similar systems have been proposed for smart homes, com-
mercial buildings are significantly more complex due to their scale and their shared nature, where
multiple occupants with different needs live and work in the same space, thus leading to more
conflicts. To study the extent of conflicts, we conducted a survey with 72 users asking for their pre-
ferred rules in shared office spaces of varying capacity. The survey revealed conflicts in 99% of the
cases (more details can be found in Section 6). To resolve these conflicts, in BuildingRules we lever-
age techniques from context-aware frameworks to check for conflicts at the moment of the policy
definition (Zhang and Brigge 2004; Park et al. 2005) and assign rule priority to resolve conflicts
that arise during actuation (Ranganathan and Campbell 2003). Furthermore, we show that Buildin-
gRules is able to keep the latency of conflict detection low enough to ensure a good user experience.

Typically, the facility managers of commercial building set up automation policies by using the
existing BMS, such as the minimum allowable temperature or air flow. It is critical that occu-
pants customizations do not violate these policies. Furthermore, occupants should not be able to
control rooms to which they do not have access to. As automated applications such as Demand

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 2, Article 13. Publication date: May 2018.

13:4 A. A. Nacci et al.

Response (Alliance nd) become prevalent, BuildingRules also needs to incorporate their policies.
BuildingRules supports hierarchical levels of policy expression to address these challenges, and
extends an open source web service-based BMS (Agarwal et al. 2012; Weng et al. 2013). Since
BuildingRules is targeting commercial buildings, it has to scale to many hundreds of rooms. No-
tice that the number of occupants in the building can be very high, but the space is generally
divided and each room (e.g., an office) is shared among a few people. For this reason, the system
is designed to scale well with the number of spaces: We achieve this by implementing different
design choices. First, BuildingRules supports the definition of rules for the entire building, or a
subset of rooms, using a grouping mechanism. We expect only a few spaces shared across many
users such as restrooms and kitchens. For such spaces, if the conflict resolution does not provide
a satisfying solution, then the building manager can assign the rights of managing the room to a
restricted number of users, who are considered to be the administrators of that space. Our conflict
resolution mechanism can work in parallel for each room, and thus, the system latency latency
does not increase with the number of rooms.

We evaluate BuildingRules by creating a virtual office environment with 30 rooms, and testing
it on 23 users spread across 17 days. We show that the conflict detection latency is around 250ms
in the worst case, and around 100ms in the average case; 636 rules were specified during the
experiment, and we detected up to 50 conflicts in a day.

3 BACKGROUND AND RELATED WORK

It has been shown that automation reduces time spent by occupants to manage their office en-
vironment, such as adjusting temparature and light levels, which in turn improves their produc-
tivity (Haynes 2008). In addition, current buildings provide a limited control to the occupants,
and they either ask the facility managers to override default settings or implement ad hoc solu-
tions such as space heaters (Erickson and Cerpa 2012), leading to energy wastage and deviation
from designed operation (Mills 2011). Providing control to the occupants by design, i.e., within
the boundaries specified by the building manager, would help reducing energy wastage while im-
proving the comfort and satisfaction to the occupants (Haynes 2008; Erickson and Cerpa 2012;
Krioukov and Culler 2012).

Moreover, current sensing technology—occupancy sensors (Balaji et al. 2013b; Beltran et al.
2013), light sensors (DeBruin et al. 2013; Roisin et al. 2008), and plug meters (Jiang et al. 2009; Weng
et al. 2011)—enable automation applications for office buildings. Several context-aware frame-
works and web service-based BMSs have been developed in anticipation of such sensors (Agarwal
et al. 2012; Dawson-Haggerty et al. 2013; Dey et al. 2001). For instance, Greenberg (2001) and
Bellotti and Edwards (2001) observe that users need to be an integral part of such systems, as it
is not possible to automatically infer their specific wishes with the sensing technology available
today.

For what concerns the definition of custom policies, trigger-action programming has emerged
as a promising solution to involve users in home automation, as it provides an expressive and
an intuitive interface (Sohn and Dey 2003; Truong et al. 2004; Ur et al. 2014). Dey et al. show
that the IFTTT paradigm expresses 95% of all the applications envisioned by users in smart
homes, demonstrating its expressiveness across a wide set of context-aware applications (Dey
et al. 2006). More recently, Ur et al. showed that 63% of smart-home applications requested by
occupants required programming, and all of these applications could be expressed by the IFTTT
paradigm (Ur et al. 2014). IFTTT.com is a popular web application that already uses this method-
ology for connecting various web services and different smart-home appliances (e.g., Belkin
Wemo) (IFTTT nd). With BuildingRules, we focus on extending trigger-action programming to
provide personalized automation in complex commercial buildings and address the challenges

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 2, Article 13. Publication date: May 2018.

BuildingRules: A Trigger-Action-Based System to Manage Complex Commercial Buildings 13:5

that emerge when deploying such a system on a large scale, such as the resolution of conflicts
that arise due to incompatible user requirements.

Existing BMSs already support conflict resolution to some extent. The Building Automation and
Control Networks (BACnet) protocol is a widely adopted standard by industrial BMSs (Bushby
1997), with support for a priority table for every writable sensor. Conflicts are resolved by as-
signing levels of priority to the different applications, depending on their importance. Web service
BMSs extend this methodology to include access control and provide more metrics for conflict res-
olution. SensorAct (Arjunan et al. 2012) manages permissions through a combination of priority
and guard-rules, a script that specifies validation conditions based on time, date, duration, loca-
tion, and the frequency of operation. BOSS (Dawson-Haggerty et al. 2013) defines every sensor
write as a transaction to resolve conflicts. BuildingDepot (Weng et al. 2013) proposes a combina-
tion of priority and lease times at the sensor level. However, conflict resolution in these systems is
at the sensor level and does not involve the users by design. Conflict resolution has been studied
extensively also in context-aware systems (Resendes et al. 2013). A number of conflict resolu-
tion strategies focus on automatically resolving application inconsistencies without involving the
user (Xu and Cheung 2005; Ranganathan and Campbell 2003). Systems that involve humans need
to abstract information such that users can understand the nature of these conflicts and can resolve
them (Dey et al. 2006). CARISMA (Capra et al. 2003) resolves conflicts among multiple users for a
single application with pre-recorded preferences. Park et al. (2005) extend the conflict resolution
to multiple applications, incorporating user preference and user intent in the application meta-
data. To avoid conflicts, BuildingRules checks if a proposed rule conflicts with the existing rules
and shows the conflicting rules back to the user so that he or she can modify them appropriately.
The rules are converted to first-order logic and checked using an Satisfiability Modulo Theories
(SMT) solver (De Moura and Bjarner 2008), similarly to the strategy followed by Zhang and Brigge
(2004). Some of the conflicts cannot be detected at the time of rule specification as the conflict is
evident only during actuation. Users specify a priority of rules to resolve these runtime conflicts,
similarly to the solution proposed by Gaia (Ranganathan and Campbell 2003).

In this work, we employ Z3 as the SMT solver for resolving conflicts (De Moura and Bjegrner
2008). This choice provide us with advantages with respect to the other state-of-the-art solutions.
For instance, Park et al. (2005) use JESS to build and execute their context-aware sets of rules and
also manage conflicts among rules. Unlike Z3, Java Expert System Shell (JESS) (Friedman-Hill 2003)
is not an SMT solver but a rule engine for the Java platform, which supports the development of
rule-based systems that can be tightly coupled to code written entirely in Java. In their system, a
context variable can change only in two directions (increase and decrease) and when rules cause
a change in opposite directions to the same variable simulataneously, a conflict is detected. Thus,
the conflict is detected only when actuation by a new activated rule is in contrast with the already
active rules. Instead, we analyze conflict as soon as a rule is added, even if it is not active yet. This
allows us to solve potential conflicts before they actually arise. Moreover, since JESS is not an SMT
solver, it has to be enriched with inference rules to define what is considered a conflict. Thus, every
time a rule type or structure is added, new customized inference rules need to be added as well.

Besides the work proposed for smart buildings, the literature on policy definition and policy
conflict management is also related to our work. Since a policy is a rule that enables the execution
of an action when an event takes place and if a pre-defined condition holds, it can be expressed as an
event-condition-action and it is called ECA-rule. There are many different policy languages, such
as Ponder (Damianou et al. 2001) and PDL (Chomicki et al. 2000). Policy languages have in general
a built-in conflict detection and resolution approach and are defined for a specific context. Ponder
is a declarative, object-oriented language defined to specify security and management policies. The
language allows the specification of both primitive and composite ECA-rules. Analogously, PDL

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 2, Article 13. Publication date: May 2018.

13:6 A. A. Nacci et al.

Table 1. Currently Supported Rule Triggers (T) and Actions (A) Categories

TYPE | DATA CATEGORY EXAMPLE NAME EXAMPLE HUMAN READABLE SYNTAX EXAMPLE Z3 SMT TRANSLATION

1| T |BOOLEAN OCCUPANCY OCCUPANCY_TRUE someone is in the room (inRoom)

"+ | INTEGER | EXT TEMPERATURE | EXT TEMPERATURE RANGE xternal temperature is between @val and @val (and (5= (ext @val) (== (ext @val))
3| 1 | INIEGER TIME TIME_RANGE time is between @val and @val (and (>= (time) @val) (<= (time) @val))
4| 1 | BOOLEAN DATE DATE_RANGE the date 1s between @val and @val (and (>= (day) @val) (< (day) @vaD)
5| 1 | BOOLEAN WEATHER SUNNY s sunny (Sunny)
6| 1 | NIEGER | ROOM TEMPERATURE | ROOM_TEMPERATURE RANGE Toom temperature is between @val and @val (and (= (tempInRoom) @val) (<= (tempInRoom) @val))
5| 1 | BOOLEAN | DEFAULT STATUS NO_RULE o rule specified (noRulc)
s | 1 | INIEGER DAY TODAY today Is @val (= (today) @val)

| BOOLEAN EXTERNAL APP CALENDAR MEETING Calendar meeting cvent (mectingEvent)
m A__| BOOLEAN LIGHT LIGHT ON turn on the room light (light)
1| A | BOOLEAN WINDOWS WINDOWS_OPEN open the windows (openWindows)
12| A | INTEGER TIVAC SET_TEMPERATURE Set temperature between @val and @val (and (>= (lempSetpoint) @val) (< (tempSetpoint) @vah))
13| A | BOOLEAN APPLIANCES COFFEE_ON turn on the coffee machine (coffee)
14| A | BOOLEAN MESSAGES SEND_COMPLAIN Send complain to building manger (SendComplain)
15| A | BOOLEAN CURTAINS CURTAINS_OPEN open the curtains. (openCurtains)

Note: An example of trigger or action for each category is provided.

allows the description of ECA-rules that can be translated to Datalog. Both languages are equipped
with a priority and grouping mechanism to specify to which group the rules apply and with which
priority and with conflict resolution mechanism based on meta-policies that describes what to do
when a conflict happens. The meta-rules define the conflicts and the events that characterized
the conflict are monitored. When these events are detected, the resolution actions are performed.
Differently from our approach, Ponder and PDL require the ad hoc definition of the resolution
policies. Notice that while we automatically detect conflict as an unsatisfiable sets of rules, we can
also define additional conflicts by adding rules to the specification that is given as input to the
SMT-solver.

4 BUILDINGRULES DESIGN

The main goal of BuildingRules is to provide the building occupants with a simple, scalable, and
intuitive framework to allow them to express their preferences regarding the behavior of the build-
ing itself, thus making it possible for them to customize their working environment according to
their needs. The policies defined by the BuildingRules framework are then exploited to actually
control the building subsystems, such as HVAC, more effectively. In this section, we describe the
different aspects of the BuildingRules framework.

4.1 Rules

As mentioned earlier, similarly to prior work (Dey et al. 2006; IFTTT nd; Ur et al. 2014), we use
the trigger-action paradigm to allow users to specify rules in the following format:

if (something happens) then (do something).

The “if” part of the rule is called trigger while the “then” part is called action. According to this
paradigm, a user can specify an action to be performed when certain event conditions are met, and
the combination is a rule. For example, “if it is cloudy then turn on lights,” where “cloudy weather”
is the trigger and “turn on lights” is the action. This paradigm allows the users to express rules
using a constrained version of natural language. The constraints are given by limiting both the
structure of the rules as explained above and the set of pre-defined triggers and actions (the list of
currently available triggers and actions is represented in Table 1).

BuildingRules is designed to manage two entities of buildings: rooms and groups of rooms. Each
room is owned by one or more occupants, and the rules are specified at the room level. A room
represents a physical space—an office, a conference room, a lobby, or a kitchen. Occupants are
assigned to these rooms by the building manager, and occupants can customize the behavior of
their room by adding new rules. Rooms with similar characteristics can be grouped and controlled

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 2, Article 13. Publication date: May 2018.

BuildingRules: A Trigger-Action-Based System to Manage Complex Commercial Buildings 13:7

using the same set of rules. In our implementation, we chose the room as the smallest controllable
element, even though the representation can be easily extended to employ a more fine-grained
solution, thus considering elements such as cubicles or desk spaces.

Each rule is assigned to one of several predefined categories (third column in Table 1), based
on what they control. For example, the two rules “if it is rainy then turn on the light” and “if it
is a holiday then turn off the light” are in the same “Light” category, while the rule “if it is rainy
then close the windows” is in the “Window” category. NO_RULE is a special trigger available for
the building administrators (Rule 7 in Table 1). This trigger is always set to True and is used for
setting the default conditions of the building. Occupants can override these default rules with
more specific rules. BuildingRules also supports external applications through virtual triggers that
is controlled via RESTful APIs (Rule 9 in Table 1).

Even though there are many policy languages, such as PDL (Chomicki et al. 2000) and Ponder
(Damianou et al. 2001), that can be used to formalize the same information in a similar way, we
believe that the chosen format is more simple. Moreover, the fact that it is close to natural language
considerably helps users in the overall understanding and usage of the system. This language
represents only the frontend of our approach, and it corresponds to a logic language that is used
as a backend representation, as explained in the next section. This separation allows us to have,
on one hand, a user-friendly language for the users and, on the other, a formal representation that
can be used for conflict resolution. Notice that the proposed conflict resolution approach described
in the next section could be applied also on different input formats, with the only constraint of
employing a language that can be encoded in the Z3 input language.

4.2 Conflict Resolution

Since users can express their own rules for rooms, some of which are shared by multiple users,
conflicts can arise. We define two rules as conflicting when they are simultaneously active and
specify actions that cannot be satisfied at the same time. If these conflicts are not resolved properly,
then damage of equipment can occur or user comfort can be compromised. As an example, let us
consider two users that independently specify the rules: “if time is between 9am and 6pm then
turn the HVAC on” and “if time is between 5pm and 8am then turn the HVAC off.” Between 5pm
and 6pm, the system would be in an inconsistent state. This may cause discomfort to the occupants
and could damage HVAC damper if not actuated properly (e.g., ON-OFF loops).

To identify the conflicts among rules, we formalize them as propositional formulae and analyze
them by using the SMT Solver Z3 (De Moura and Bjerner 2008), which is a very mature tool that
generally allows to obtain better results than ad hoc solutions.

A rule is composed of two parts: a (conjunction of) trigger(s) and an action. Before adding a rule,
it is verified against the set of rules already active in the room. If triggers that can be true at the
same time require actions that cannot be executed at the same time because the conjunction of the
two is unsatisfiable, then a conflict is detected. Formally, we represent each rule as a propositional
formula composed by an implication (the trigger implies the action) that is satisfied if the trigger
is not satisfied or if both the condition and the action are satisfied. In this context, the action is
considered as a proposition that is true if the action can be executed and false otherwise. The new
rule together with the existing ones are seen as a specification and automatically verified to check
their satisfiability. If the specification is satisfiable, then the rules are not in conflict with each other.
Otherwise, two or more rules are in conflict. If a user tries to insert a conflicting rule, then the list
of the conflicting rules is displayed to the user so that the conflict can be solved through priorities.
The fact that our conflict detection system is run every time a new rule is added guarantees that the
proposed approach prevents building to be in unsafe situation. Indeed, the system always detects
conflict situations and requires a solution from the user before a new rule is added to the system.

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 2, Article 13. Publication date: May 2018.

13:8 A. A. Nacci et al.

We formalize the rules as propositional formulae compliant with the following grammar:

rule u= trigger = action
trigger n= sTrig | sTrig A trigger
action = bAct | =bAct | iActe[n,m]
sTrig u= bTrig | =bTrig| iTrigeln,m]

A rule is an implication, where the action and trigger have a fixed structure. The trigger
is a conjunction of conditions sTrig that are built on the triggers represented in Table 1 (Rows
1-9). When the trigger is Boolean (Rows 1, 4, 5, 7, and 9), the condition is satisfied when the
data are true (bTrig) or false (=bTrig). When the trigger is an integer (Rows 2, 3, 6, and 8),
the condition is satisfied when value is in the specified interval [n, m], where n<m and they are
both specified according to the data domain. A similar method is used for both Boolean (Rows 10
and 11 and 13-15) and integer (Rows 12) action values. We do not allow the use of disjunction
in action or trigger or use of conjunction in the actions. The conjunction in the action (and the
disjunction in triggers) is equivalent to specifying multiple rules with the same trigger (action)
and different actions (triggers).

Note that the disjunction in actions introduces non-deterministic rules, meaning that there is a
choice in how the actions can be performed. Currently, we require the user to completely specify
the action for a rule using priority.

Since the rules correspond to a subset of propositional logic, they can be analyzed by encoding
them in the language of the Z3 SMT Solver (De Moura and Bjerner 2008). In our implementation,
the translation of the rules into the Z3 language is straightforward, since we have chosen to adopt
variable types (integer and boolean) that are natively supported by Z3. Note that formulae must
be expressed in the prefix form adopted by Z3. For example, the rule “if someone is in the room
then turn on light” is represented as

(assert (=> inRoom lightOn))

and the rule “if someone is in the room then set temperature between 68F and 72F” is represented
as

(assert (=> inRoom (and (<= 68 temp)
(<= temp 72)))).

We complete the Z3 model with a set of assertions that specify the characteristics of the integer
data (e.g., time is between 0 and 24) and the relationship among data (e.g., if it is sunny, then it
cannot be rainy). We then verify the model to check for possible conflicts. The model is verified
multiple times by asserting the trigger of each rule in the same category. Thus, we can identify
the conflicts related to the same trigger or related triggers. In BuildingRules, the rule verification
is performed as soon as a new rule is inserted. When a user inserts a rule that conflicts with the
existing ones, a notification is raised, and the user is asked to modify the rule. The user can also
modify the existing rules if he/she has the right access levels or find a compromise by identifying a
tradeoff with the other users. We translate the rules from human readable syntax to the Z3 syntax
using a pre-defined look up table (see Table 1).

We chose Z3 to detect conflicts as it is efficient and reusable. Although the satisfiability problem
is computationally expensive, we ensure low latency as Z3 solves this problem efficiently. The SMT
solver, in fact, only requires the addition of transformation rules to create a new model but does
not require re-evaluation of the algorithm, since it is computed efficiently by Z3. Further, the input
language of our SMT solver is generic, and it would be easy to switch to different SMT solvers,
such as Yices (Dutertre and De Moura 2006).

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 2, Article 13. Publication date: May 2018.

BuildingRules: A Trigger-Action-Based System to Manage Complex Commercial Buildings 13:9

4.2.1 Runtime Conflicts. Some conflicts cannot be detected at design time using the SMT solver,
because the involved rules work on different triggers. Consider the following example: (1) “if no-
body is in the room then turn off the light” and (2) “if it is between 6pm and 8pm then turn on the
light.”

Using Z3, we would run the verification twice: once by asserting nobody is in the room and
again with the time interval 6pm to 8pm. Both the runs are satisfiable, as it cannot be known a
priori if the triggers will conflict in time (see Table 1). We cannot identify the conflict that arises
when the room is empty between 6pm and 8pm. In this case, the light will be both on and off
at the same time. Note that supporting rules that operate on the same variable (and, thus, can
generate conflict) is totally natural, as the user may want to express a complex policy on a variable
by combining rules that depend on different triggers. For example, the user may want a rule that
generally turns on the light between 6pm and 8pm but not when the room is unoccupied.

To resolve these conflicts, we let the user assign a priority to each rule. If the desire of the user is
to set a policy like “generally I want this behavior but not when this event happens,” then the user
sets a lower priority to the general rule and a higher priority to specific rule. The priority number
is used to order the rules by importance and dynamically resolve conflicts during the actuation
phase in an efficient way. Moreover, it is simple to explain this concept to the occupants as they
only need to know the following: “give the more important rules a higher priority.”

At the moment, BuildingRules does not supper any other mechanism to deal with conflicts and
any other form of enriched semantics. The constrained natural language provided to the users is
interpreted as crisp logic, and conflicts correspond to an unsatisfiable set of rules. These situations
are solved only using priorities assigned by the users. However, the proposed framework is easily
extensible. For example, using the same structure with natural language as frontend and logic as
backend, the proposed framework can be extended to support fuzzy semantics, as done in Pasquale
et al. (2016) in the context of requirements engineering,.

triggeredRules = []
for room in getBuildingRooms (building) :
for rule in getAllRoomRules (room) :
if isTriggered(rule) :
triggeredRules.append(rule)
triggeredRules = orderByPriority (triggeredRules)

alreadyAppliedCategories = []
for rule in triggeredRules:
ruleCategory = getRuleCategory (rule)
if ruleCategory not in alreadyAppliedCategories:
actuate (rule)
alreadyAppliedCategories.append(ruleCategory)

Listing 1. Rules selection pseudo-code.

Once a valid ruleset is saved and the desired priority is assigned to each rule, it is possible to
apply those rules to the building. Obviously, in a specific instant, only some rules will be considered
(the ones that are triggered and with the highest priority). Listing 1 shows the pseudo-code of the
algorithm we designed for rule selection. For each rule in a room, we check if the rule is currently
triggered. If the rule is triggered, then it is copied into a temporary list (line 8). For every rule
category, the rules with the highest priority for that category that do not generate conflicts are
chosen for actuation (line 10).

4.2.2 User Feedback. The output of the Z3 verification phase only specifies that a new rule is
conflicting with one of the existing ones. Then, we need to show to the users the rules that are

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 2, Article 13. Publication date: May 2018.

13:10 A. A. Nacci et al.

User level 40
MANAGER

User level 30
APPLICATION

User level 20
USER

User level 10
DEFAULT

Maximum Rule
Priority

Manager Application User Default

Fig. 1. User level and rule priority relation.

conflicting, so that they can either edit the existing rules or revise the new one. We cannot easily
provide the list of conflicting rules, as Z3 only detects whether there is a conflict or not. A possible
solution is to create a new SMT problem for all possible pairs of rules. However, this approach
does not scale well with the number of rules: If n is the cardinality of the ruleset, then we would
have in fact to solve n? SMT problems. We opted for a less precise but more efficient and feasible
solution: When a conflicting rule is detected, we inform the user that the possible conflicting rules
are the rules that may be logically conflicting, i.e., all the rules with the same trigger category
and same action category. Suppose we have a conflicting rule, “if it is cloudy then set temperature
between 70F and 75F”; then we report that rules in the weather category and the HVAC category
can be statically conflicting. This strategy works in practice as there are generally few rules that
have both the same action and rule category, and the user can easily pick the specific one that is
conflicting.

4.3 Users

In a typical commercial building, there are different types of users who may express automation
policies. A department chair and the building manager can have overriding control, a lab manager
can control his or her specific lab, while individual users can control their own spaces. In Build-
ingRules, we need to express this hierarchy, since it affects how we resolve conflicts, by assigning
privilege levels to each user.

Figure 1 provides an example with four categories of users—building managers and standard
users, who are suited to represent the actual occupants of the building, and some special users—
applications and default status. Applications are external softwares that interact with BuildingRules
using RESTful APIs, while default represents agents controlling the default status of the building
(when users do not specify any rule).

User levels are used in two ways. First, it ensures that low level users cannot edit or delete the
rules specified by users with higher level. For example, for a room R; shared by two users (U; and
U>) (level of U; > level of U,), both users are allowed to enter rules into Ry; U; can edit or delete
rules specified by U, but not vice versa. Thus, a higher-level user, such as the building manager, can
enforce entire building policies by creating rules with a priority higher than the standard user. The
levels restrict the maximum priority a user can specify for a rule. A higher level user can assign a
higher priority to a rule, giving it preference in case of runtime conflicts, thereby overriding rules
expressed by a lower-level user.

4.4 Groups and Group Conflicts

In BuildingRules, we provide the facility manager with the possibility of creating groups of rooms
to reuse rules across them. Let us suppose an administrator wants to turn off all the building lights

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 2, Article 13. Publication date: May 2018.

BuildingRules: A Trigger-Action-Based System to Manage Complex Commercial Buildings 13:11

- THERMALZONE1 .cooeo

— 7 ADMINGROUP. — - — - - == -~ oo | i
"o S 1 Room1.1 J[Room1i.2],
: Room 1.1 Room1.2 Room 1.n I Vo o o oo oo d |

I S« 1stFLOORGROUP .-cccccccccccccccaaa- ‘0 -+ THERMALZONE2 .o—-__
[Stttk el C] [}
' | Room21 Room22 ... Room 2.n | I i(Room 1.3)(Room 1.4] |
I = 2ndFLOOR GROUP ====c-cocccccccaaaa / L
\ {"Room31 Room32 .. Rooman | ! i ;HERM:;Z??E: —
- 3rdFLOORGROUP ========c=ococooooc SR oom1> i
Sm—mes s st ==-==-7 | | (Reom 17) Room 1.6] |

(A) (B)

Fig. 2. (A) Example building groups. (B) Example building thermal zones distribution.

1
(mEE > S uenD L (pmp@E >
3 |Z| Rule 3

§ (O Ruleset §
“HONNOE [NOSROE::
nod) | \nom e lc
Standard Group i Cross Room Validation Group
(A) ' (B)

Fig. 3. Representation of the two different kinds of supported groups.

at night. Without the group feature, she would have to insert the rule “if time is between 10pm
and 7am then turn off the lights” in every room. Using groups, he or she needs to create the rule
just once by specifying it for a group with all the rooms in the building. Figure 2(A) shows an
example grouping of rooms on a per-floor basis. In this example, if R; is a generic room belonging
to a group G, then the rules specified at the group level are inherited by all the R; rooms.

We support another class of groups in BuildingRules to incorporate the physical characteristics
of commercial buildings. HVAC systems and lighting systems often divide the building into zones
of operation and can only be controlled at zone-level granularity (Balaji et al. 2013b; Krioukov and
Culler 2012). Figure 2(B) shows an example of HVAC thermal zone in a building. As a result, if two
rooms (R; and R;) belong to the same thermal zone, then the HVAC rules specified for Ry must
also be propagated to R,. We call such groups a Cross Room Validation Group (CRVG), and they
are specified for action categories that need to follow this property. The behavior of a CRVG is
depicted in Figure 3. In a CRVG, all the rules expressed (for specified actions) in one room within
the group are propagated to the other rooms.

The conflict checking algorithm needs to take care of which groups a room belongs to. For a
room not belonging to any group, the rule set is composed of the rules saved for the room. If the
room belongs to one or more standard groups, then the rule set to be checked is composed of the
rules saved in the considered room plus the union of all the rules saved in these groups. If the room
belongs to a Cross Room Validation Group, then the rule set of the room is the union of all the rule
set (for specified actions in CRVG) of the rooms belonging to that group. Listing 2 presents the

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 2, Article 13. Publication date: May 2018.

13:12 A. A. Nacci et al.

def getAllGroupRules(g):
groupRuleSet = getGroupRules (g)
if isCrossRoomValidation(g) :
for r in getGroupRooms (g) :
groupRuleSet.extend (getRoomRules (r))
return groupRuleSet

def getAllRoomRules (r) :
ruleSet = getRoomRules (r)
groups = getRoomGroups (g)
for g in groups:
ruleSet.extend(getAllGroupRules (g))
return ruleSet

Listing 2. Ruleset generation pseudo-code.

pseudo-code that illustrates all the possible cases to generate rule sets for performing static rule
verification.

5 IMPLEMENTATION

We have designed BuildingRules as a RESTful HTTP/JSON web service, with a frontend for the
user interface, and a backend that communicates with the BMS, stores information about rules,
runs the conflict resolution algorithm, and provides RESTful APIs for native mobile applications
or building management applications. Figure 4 shows the software architecture of the system. We
have implemented BuildingRules in Python 2.7 using the Flask framework (Flask, Web Develop-
ment One Drop at a Time nda).

The backend design follows the Model-View-Controller (MVC) architecture. The REST interface
enables communication with the frontend, and the controller implements the application logic. The
controller stores the data to manage buildings, rooms, groups, users, and rules by using the model
that works as a database abstraction layer. The controller also validates building rules using the
Z3 SMT solver. Finally, the controller gathers the needed data about weather, building systems,
and date-time status through a standardized driver interface. The drivers allow the controller to
read building sensors values and send actuation signals to the building to apply the triggered
rules. The driver interface allows BuildingRules to support a variety of web service BMSs like
BuildingDepot (Agarwal et al. 2012) and conform to standards such as oBIX (Ehrlich and Considine
2006).

Using REST APIs, the frontend facilitates tasks such as registering users, adding triggers and
actions, and specifying rules for individuals rooms or groups of rooms. On top of this API, appli-
cations can be implemented that can automatically insert rules. For example, a Demand Response
application (Amin and Wollenberg 2005) can inject rules to reduce energy use across all rooms
when a pre-registered trigger condition is met. Or a Calendar Manager that can insert rules like
turn ON/OFF the projector or modify temperature set points based on room schedules.

Drivers in BuildingRules provide necessary abstractions between the core system and low-level
sensors. These drivers act as a gateway to different sensor protocols, providing a standard naming
convention across devices from different vendors and allowing us to deploy BuildingRules in dif-
ferent buildings with minimum effort. Drivers are of two types: TriggerDrivers and ActionDrivers.
A TriggerDriver takes as input a sensor source (e.g., a temperature sensor in a room) and a con-
dition to verify (e.g., the temperature is set between 70F and 75F). When the above condition is
met, it provides a notification through the eventTriggered method. An ActionDriver takes a target
actuator (e.g., an HVAC control system) and the actual value (e.g., set temperature to 70F) as input

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 2, Article 13. Publication date: May 2018.

BuildingRules: A Trigger-Action-Based System to Manage Complex Commercial Buildings 13:13

FRONTEND
=
m
V)
>
i)
v
=
o
@
—
m
>
U
v

—
L
uy)
¢
ke
>
py)
—
<

APPS
REST INTERFACE APIs
CONTROLLER

BACKEND

MODEL TOOLS COMMUNICATION DRIVERS

Z3 SMT
WEATHER BUILDIN DATETIME
DATABASE SOLVER SIMULATOR U G

Fig. 4. BuildingRules System architecture.

and uses an actuate method to execute a rule action. In our current implementation, four Trig-
gerDrivers and one ActionDriver are available. The four TriggerDrivers are for weather, date/time,
external applications, and room-level sensors. We have implemented a single generic room level
ActionDriver that can be used for actuation such as changing the temperature in the room.

The user interface (Ul) is composed of a main page where the users can navigate among the rules.
For each room three different visualization tools are available: a rule editor tab, a room behavior
tab, and a rule navigator table The rule editor tab (Figure 5) presents the list of the inserted rules
ordered by priority; through this interface, the user can add, delete, modify, enable, and disable the
rules. As the number of rules in a room increases, it becomes harder to understand the impact of
a list of rules. To solve this problem, we implemented a filter by rule category. The room behavior
tab shows the expected behavior of the room with the expressed rules. Finally, the rule navigator
tab visualizes rules in a matrix where each row is an action category.

A simulator is also available to predict the behavior of the rooms with the specified rules. It is
a time-driven framework where, for each time step, the simulator reads the specified the environ-
ment conditions (the room temperature, the weather condition, the occupancy status, etc.), checks
for rules that are triggered, and decides the actions based on priority. The actions are not executed
but are written to a log file. The log file is converted to a timeline that represents the behavior of
the room.

6 RESULTS

To evaluate BuildingRules, we first examined the rules expressed by users in a preliminary sur-
vey, looking for conflicts and measuring the latency of our conflict detection. Next we ran a larger
user study with 23 users interacting with BuildingRules for a week. Using this dataset, we ana-
lyzed the rules expressed, the conflicts detected, and, finally, how our system can affect the office
environment.

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 2, Article 13. Publication date: May 2018.

13:14 A. A. Nacci et al.

Rules Editor Room Behavior Rules Navigator

Filter by category

SHOW ALL LIGHT WINDOWS HVAC HVAC_TEMP HVAC_HUM APP_COFFEE APP_PRINTER APP_COMPUTER
APP_DESKLIGHT APP_DISPLAYMONITOR SEND_COMPLAIN CURTAINS APP_PROJECTOR APP_AUDIO EXHAUST_FAN

FUME_HOODS BLIND

if-nobody-isintheroom-thenturn-onthe roormight

[99 J=Y r31 - None - [Edit] [Delete] [Enable]

if external temperature is between 80F and 83F then set temperature between 61F and 69F
© sy 24 - None - [Edit] [Delete] [Disable]

if external temperature is between 80F and 83F then open the windows
€ By: User24 - None - [Edit] [Delete] [Disable

Fig. 5. Rule Editor graphical user interface.

6.1 Preliminary Survey

We conducted a preliminary survey to get an understanding of the type of rules that would be
generated in an office setting and how these rules could conflict with each other. The participants
were asked to create trigger-action rules on a web interface using specified triggers and actions.
The trigger set included {occupancy, temperature, time, weather}, and the action set included {lights,
heating, cooling, window, curtains, coffee machine, microwave}.

We received a total of 72 valid (and 2 invalid) replies with a minimum of 2 rules per participant
and a total of 284 rules. The most popular trigger was occupancy, with 141 rules, and the most
popular action was lights, with 100 rules. To analyze the potential conflicts between the rules, we
assigned the participants randomly to shared offices (for a total of 3,069 offices combinations) and
ran our conflict detection algorithm. The participants were assigned to offices with capacity of
1 to 30 occupants. We detected conflicts 99% of the time, and there were duplicate rules in 96%
of these virtual offices. The conflicts are expected to be higher than what would be observed in
a BuildingRules installation as the occupants cannot view the rules expressed by others in the
same room. However, a significant number of rules would still conflict both statically (at rule
specification time) and at runtime due to the varying preferences of the occupants as we will
show in the next section. Figure 6 shows the trends of increase in static and runtime conflicts that
occur as more occupants share a single office space.

6.2 Conflict Resolution Latency

Our conflict resolution module checks for conflicts on a per-room basis. Each of these checks can
be run in parallel, thus making BuildingRules scalable to a large number of rooms in a building. A
transaction mechanism is required for handling race conditions when users simultaneously insert
rules in the same room or in rooms that belong to the same cross room validation group.

As BuildingRules is an interactive web application, the conflict resolution latency needs to be
tolerable to the users. We collected the rules obtained from the preliminary survey and measured

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 2, Article 13. Publication date: May 2018.

BuildingRules: A Trigger-Action-Based System to Manage Complex Commercial Buildings 13:15

40
35 ===n:Logical .
n 30 Runtlme ““‘_“--.‘
.-:g 25 eun® -
E20 T
o ““‘
U 15 “_“‘
= K
10 “"‘
5 o
0o
1 5 9 13 17 21 25 29

Occupants

Fig. 6. Preliminary survey: Number of logical and runtime conflicts detected as participants share office
spaces.

4000 === All verifications
Failed verifications (conflict found)

3000 Success verifications (no conflict found)
£
— 2000
)
£
= . ’-.-..,/',-'..--"""""--.""””":’“u.:

1000 "

0

0 10 20 30 40 50 60 70
Number of Rules with Same Trigger Category

Fig. 7. Conflict checking time when the inserted or modified rule. Successful inserts are slower as the rule
has been verified against all the rules with the same trigger category. Average detection time is 102ms for a
room with 100 rules.

the latency for resolving conflicts as the number of rules in a room increases. Figure 7 shows the
latency of conflict resolution when the inserted rules does not conflict with any of the existing
rules. Note that if the rule were conflicting, then the latency would decrease as Z3 would return
as soon as a conflict is found. Further, the conflict checking only occurs for rules that are in the
same rule category, i.e., related actions and triggers. The maximum ratio of the number of rules
in the same category to the total number of rules in a room is 6% from the rules collected in our
virtual building user study (see the next section). Thus, we estimate that for a room with 100 rules
in place, the average time for conflict checking is around 100ms, and the worst case time is around
250ms.

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 2, Article 13. Publication date: May 2018.

13:16 A. A. Nacci et al.

(® NUMBER OF MAXIMUM OCCUPANTS

LABORATORY MEETING OFFICE | OFFICE OFFICE |OFFICE |OFFICE | OFFICE OFFICE[OFFICE
ROOM 2108 2112 2116 2111 2118 2122 2126
@ @ ® ® @ [©) @
2128
2140
3113
KITCHEN CONFERENCE ROOM ®
2107
LOBBY STUDY ROOM
3208
STORAGE 2109
2144
MEETING
oo 2130
2154 OFFICE | OFFICE |OFFICE |OFFICE | OFFICE OFFICE |OFFICE |OFFICE
2203 2215 2217 | 2231 2138 2136 2134 2132
@ @ @ @ ©) ® ® ®

Fig. 8. Virtual office plan.

6.3 Virtual Building Study

To evaluate BuildingRules in a more realistic setting, we created a virtual office environment as
depicted in Figure 8. We chose a virtual setting, because it is easier to study the rules made using
different kinds of sensors that we cannot deploy in a real building.

We have designed the building plan to be representative of a typical office and incorporated
different types of rooms, such as conference rooms, a research laboratory, a kitchen, storage, and
offices with varying capacity. Each participant was assigned to a random set of rooms, for example,
an office space, kitchen, and meeting room. The participants were told to use BuildingRules for at
least 10 minutes and complete a set of actions, i.e., add, remove, edit rules, each day (10 actions
the first day, then decreasing each day, with an average of 5 actions per day). A final survey was
taken at the end of the week to understand the usability of the system. Each user was required to
have at least one month of office experience for participation. We had a total of 23 users spread
over 17 days. Notice that there is no bias in the choice of the population; the requirements in the
selection were imposed to test the system with a population chosen according to the target of
BuildingRules, i.e., offices.

We obtained a total of 636 rules from this study, with an average of 15 rules per room and
16 rules per user. Figure 9 shows the distribution of these rules across the various triggers and
actions. The default status rules were inserted for scheduling of lights and HVAC system when
no other rules were specified for a room. The most popular trigger was the day of week, followed
by occupancy. The most popular action was lights, followed by plug loads (computer, desk light,
monitor and printer). These results match with the ones obtained in the study presented in the
previous section.

Figure 10 shows the addition of rules across the period of the study. Understandably, the number
of logical conflicts have decreased compared to the preliminary survey as the users consider which
rules to add after looking at the current rules in effect.

We show the effect of the combination of rules on a room using BuildingRules simulator in the
UL The simulator results are based on real weather data and temperature readings we obtain from
the BMS, and we simulate occupancy using data collected in prior work (Balaji et al. 2013b). The
study was designed in such a way that participants were forced to create or modify rules, so that
we can analyze effect of the combination of these rules in the virtual office. As a result, some of
the rules inserted in the rooms were very similar but not in conflict. For example, in one of the
rooms there were three rules to open windows with three different temperature ranges. In a real
deployment, users would probably use one rule to cover all the three temperature ranges.

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 2, Article 13. Publication date: May 2018.

BuildingRules: A Trigger-Action-Based System to Manage Complex Commercial Buildings 13:17

Default External Room

Date Day Statatus Temperature Occupancy TmyErime Time Weather
Audio 0 9 0 0 6 0 3 1
Coffee Macchine 2 0 0 2 0 3 0
Computer 1 43 0 0 5 0 7 1
Desk Light 1 41 0 0 7 0 5 3
Display Monitor 2 39 0 0 9 0 1 1
Printer 1 40 0 0 5 0 5 0
Projector 0 10 0 0 10 0 6 0
Blind 3 8 0 0 6 0 7 24
Exhaust Fan 1 2 0 0 1 1 2 0
Fume Hoods 0 0 0 0 1 0 0
HVAC 12 18 0 4 23 13 3 6
Room Humidity 0 1 24 2 7 3 2 4
Room Temp. 3 24 6 9 6 1 1
LIGHT 5 47 5 0 38 0 18 24
Send Complain 0 1 2 8 19 5 0
Windows 4 12 0 26 22 9 4 29
Fig. 9. Rule usage frequency.
250 Q O ADD
200 £} EDIT
o <> CONFLICTS
150 o - d ‘\
')
100 ; \

D
\;
o O

SO A

Fig. 10. User requests.

Based on the feedback from the participants of this user study, we created a second version of
the study to improve the user experience and to help the users in the creation of realistic rules. We
improved our building simulator to incorporate the effects of actuation. For example, room tem-
perature changes linearly with time if HVAC is ON until it reaches its set-point, and temperature
would change linearly as a function of difference between indoor and outdoor temperature when
the HVAC is off. We also added power values to different appliances, with fixed values when they
are ON. These effects were a representation of what the user might expect in areal setting . The user
was assigned a happiness index based on comfort, i.e., an occupied room is within temperature/
humidity bounds, and lights are ON when it was dark outdoors. The building manager was as-
signed happiness index based on the power consumption of the building.

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 2, Article 13. Publication date: May 2018.

13:18 A. A. Nacci et al.

Date Tei‘;:rr’:lre Occupancy Ten‘::;’:me Time Weather
Audio 0 0 2 0 2 0
Coffee Macchine 0 0 3 0 4 0
Computer 1 0 3 0 6 0
Desk Light 0 0 5 0 2 1
Display Monitor 0 0 5 0 2 0
Printer 0 0 4 0 2 0
Projector 0 0 4 0 2 0
Blind 0 0 1 0 0 1
Exhaust Fan 0 0 0 0 0 0
Fume Hoods 0 0 1 0 2 1
HVAC 0 0 2 1 1 0
Room Humidity 0 1 10 0 4 8
Room Temp. 1 3 4 19 2 3
LIGHT 0 0 23 0 14 24
Send Complain 0 0 1 1 0 0
Windows 0 9 4 4 2 13

Fig. 11. Rule usage frequency for the second experiment.

The experiment was conducted over three days, with 13 users. The users were given a short
video tutorial and restricted to create 6 rules on the first day, 4 rules on the second, and 2 rules
on the final day. Each rule could be edited only twice a day. The goal of the participants was to
boost the happiness index of both the occupant and building manager, and the user with the high-
est score was awarded $20 Amazon Gift Card. We assigned two building managers for support to
users, as well as monitoring rules being created; 179 rules were created in this experiment. Their
composition is shown in Figure 11. The general behavior of the users were similar in both experi-
ments: The majority of the rules were about occupancy, room temperature, time, and weather with
respect to room temperature and humidity, lights, and windows.>

6.4 Usability Study

We asked our participants of virtual building study to fill a usability survey to better understand
their needs and to evaluate BuildingRules from an occupant’s view point. Table 2 shows the results
of our survey. The participants liked the idea behind BuildingRules (7.0), thought that it would be
useful to have such a system in their office (7.6), and liked the system overall (7.0). However, as
the number of rules in a room increased, our Ul was not adequate to give an overview of the rules
in place. Users found it difficult to create (5.4), edit (5.8), and understand (5.0) the rules.

In the second version of BuildingRules, users assigned higher scores than the baseline case study.
Thus, improving the user interface, a short preliminary tutorial, and giving a runtime support to
the users improved our system usability.

3More details about the experiments we have conducted are available on our technical report (Flask, Web Development
One Drop at a Time ndb).

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 2, Article 13. Publication date: May 2018.

BuildingRules: A Trigger-Action-Based System to Manage Complex Commercial Buildings 13:19

Table 2. Results of Usability Survey Note: Scores are of 10.

Survey Question User Study 1 | User Study 2
Overall impression score 7.0 7.8
System usability 6.0 7.6
Would BuildingRules be

useful in your office? 7.6 8.2
How difficult was it

to insert new rules? 5.4 8.3
How difficult was it

to edit existing rules? 5.8 5.9
Do you like the philosophy

behind the system? 7.0 8.8
How easy was it to resolve

conflicts within the rules? 5.8 5
Was it easy to understand

how the combination of rules

will affect the office? 5.0 7.2
How useful was the rule editor

to identify individual rules? X 7.2
Was it possible to grasp all

rules using rule navigator? X 7.1

Notice that the current implementation of BuildingRules is still an experimental tool, and further
work on usability is required. However, even with a simple interface, the users liked the overall
system and this demonstrates that BuildingRules is very promising and is considered an effective
tool to help users in managing their offices.

7 CONCLUSION

We have presented the design and the implementation of BuildingRules, a system that enables
expression of personalized automation rules in commercial buildings using trigger-action pro-
gramming paradigm, which can then be integrated with existing BMSs to actuate buildings. We
show that when multiple users express different policies for the same physical space, conflicts can
occur. To resolve these conflicts, we have implemented two mechanisms in BuildingRules. First,
we avoid logical conficts by detecting them as rules that are inserted using the Z3 SMT solver.
Second, BuildingRules resolves runtime conflicts using a priority assigned to individual rules. We
show that our conflict detection algorithm is parallelizable and scales to large commercial build-
ings, such that the latency is low enough to support the interactive web application UI of Build-
ingRules. To simplify rules expression and expose the physical constraints imposed by building
systems, BuildingRules provides a grouping mechanism. To incorporate the hierarchy commonly
seen in commercial buildings, BuildingRules provide mechanisms for access control and different
levels of privileges for rule expression. The final component of BuildingRules is an intuitive web
interface for building occupants to express their rules. Using this UI, we evaluated the use of Build-
ingRules in a virtual office building with 23 users across 17 days and found out that BuildingRules
allows the definition of a wide and interesting set of rules and that is able to automatically resolve
conflicts among them with a very limited timing overhead.

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 2, Article 13. Publication date: May 2018.

13:20 A. A. Nacci et al.

REFERENCES

Yuvraj Agarwal, Bharathan Balaji, Seemanta Dutta, Rajesh K. Gupta, and Thomas Weng. 2011. Duty-cycling buildings
aggressively: The next frontier in HVAC control. In Proceedings of the 2011 10th International Conference on Information
Processing in Sensor Networks (IPSN’11). IEEE, 246-257.

Yuvraj Agarwal, Rajesh Gupta, Daisuke Komaki, and Thomas Weng. 2012. Buildingdepot: An extensible and distributed
architecture for building data storage, access and sharing. In Proceedings of the 4th ACM Workshop on Embedded Sensing
Systems for Energy-Efficiency in Buildings. ACM, 64-71.

OpenADR Alliance®. OpenADR 2.0 Profile Specification - A Profile. Document Number: 20110712-1. http://savannah.gnu.
org/task/download.php?file_id=27590.

S. Massoud Amin and Bruce F. Wollenberg. 2005. Toward a smart grid: Power delivery for the 21st century. IEEE Power
Energ. Mag. 3, 5 (2005), 34-41.

Pandarasamy Arjunan, Nipun Batra, Haksoo Choi, Amarjeet Singh, Pushpendra Singh, and Mani B. Srivastava. 2012. Sen-
sorAct: A privacy and security aware federated middleware for building management. In Proceedings of the 4th ACM
Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings. ACM, 80-87.

Bharathan Balaji, Hidetoshi Teraoka, Rajesh Gupta, and Yuvraj Agarwal. 2013a. ZonePAC: Zonal power estimation and
control via HVAC metering and occupant feedback. In Proceedings of the 5th ACM Workshop on Embedded Systems for
Energy-Efficient Buildings. ACM, 1-8.

Bharathan Balaji, Jian Xu, Anthony Nwokafor, Rajesh Gupta, and Yuvraj Agarwal. 2013b. Sentinel: Occupancy based HVAC
actuation using existing WiFi infrastructure within commercial buildings. In Proceedings of the 11th ACM Conference on
Embedded Networked Sensor Systems. ACM, 17.

Victoria Bellotti and Keith Edwards. 2001. Intelligibility and accountability: Human considerations in context-aware sys-
tems. Hum.—Comput. Interact. 16, 2—4 (2001), 193-212.

Alex Beltran, Varick L. Erickson, and Alberto E. Cerpa. 2013. ThermoSense: Occupancy thermal based sensing for HVAC
control. In Proceedings of the 5th ACM Workshop on Embedded Systems for Energy-Efficient Buildings. ACM, 1-8.

Steven T. Bushby. 1997. BACnet™: A standard communication infrastructure for intelligent buildings. Autom. Construct.
6,5 (1997), 529-540.

Licia Capra, Wolfgang Emmerich, and Cecilia Mascolo. 2003. Carisma: Context-aware reflective middleware system for
mobile applications. IEEE Trans. Softw. Eng. 29, 10 (2003), 929-945.

Jan Chomicki, Jorge Lobo, and Shamim A. Naqvi. 2000. A logic programming approach to conflict resolution in policy
management. In KR, Anthony G. Cohn, Fausto Giunchiglia, and Bart Selman (Eds.). Morgan Kaufmann, 121-132.

Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. 2001. The ponder policy specification language. In
Proceedings of the International Workshop on Policies for Distributed Systems and Networks (POLICY’01). 18-38.

Stephen Dawson-Haggerty, Andrew Krioukov, Jay Taneja, Sagar Karandikar, Gabe Fierro, Nikita Kitaev, and David Culler.
2013. BOSS: Building operating system services. In Proceedings of the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’13).

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT solver. In Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 337-340.

Luigi De Russis and Fulvio Corno. 2015. HomeRules: A tangible end-user programming interface for smart homes. In
Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems. ACM,
2109-2114.

Samuel DeBruin, Bradford Campbell, and Prabal Dutta. 2013. Monjolo: An energy-harvesting energy meter architecture.
In Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems. ACM, 18.

Anind K. Dey, Gregory D. Abowd, and Daniel Salber. 2001. A conceptual framework and a toolkit for supporting the rapid
prototyping of context-aware applications. Hum.-Comput. Interact. 16, 2 (2001), 97-166.

Anind K. Dey, Timothy Sohn, Sara Streng, and Justin Kodama. 2006. iCAP: Interactive prototyping of context-aware appli-
cations. In Pervasive Computing. Springer, 254-271.

Bruno Dutertre and Leonardo De Moura. 2006. The Yices SMT solver. http://yices.csl.sri.com/papers/tool-paper.pdf.

Paul Ehrlich and Toby Considine. 2006. Open building information exchange (oBIX) version 1.0. OASIS Committee speci-
fication, December 2006.

Varick L. Erickson and Alberto E. Cerpa. 2012. Thermovote: Participatory sensing for efficient building hvac conditioning.
In Proceedings of the 4th ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings. ACM, 9-16.

Flask, Web Development One Drop at a Time. ndb. BuildingRules Technical Report. Retrieved from https://csetechrep.ucsd.
edu/Dienst/UI/2.0/Describe/ncstrl.ucsd_cse/CS2014-1008.

Flask, Web Development One Drop at a Time. nda. Flask Web Microframework. Retrieved from http://flask.pocoo.org/.

Ernest Friedman-Hill. 2003. JESS in Action. Manning, Greenwich, CT.

Saul Greenberg. 2001. Context as a dynamic construct. Hum.-Comput. Interact. 16, 2 (2001), 257-268.

Barry P. Haynes. 2008. The impact of office comfort on productivity. J. Facil. Manage. 6, 1 (2008), 37-51.

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 2, Article 13. Publication date: May 2018.

http://savannah.gnu.org/task/download.php?file_id$=$27590
http://yices.csl.sri.com/papers/tool-paper.pdf
https://csetechrep.ucsd.edu/Dienst/UI/2.0/Describe/ncstrl.ucsd_cse/CS2014-1008
http://flask.pocoo.org/

BuildingRules: A Trigger-Action-Based System to Manage Complex Commercial Buildings 13:21

Justin Huang and Maya Cakmak. 2015. Supporting mental model accuracy in trigger-action programming. In Proceedings
of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM, 215-225.

IFTTT. nd. Home Page. Retrieved from https://ifttt.com/.

Xiaofan Jiang, Stephen Dawson-Haggerty, Prabal Dutta, and David Culler. 2009. Design and implementation of a high-
fidelity ac metering network. In Proceedings of the International Conference on Information Processing in Sensor Networks
(IPSN°09). IEEE, 253-264.

Johnson Controls. Building Managament. http://www.johnsoncontrols.com/buildings/building-management.

Andrew Krioukov and David Culler. 2012. Personal building controls. In Proceedings of the 11th International Conference on
Information Processing in Sensor Networks. ACM, 157-158.

Robert H. Lasseter and Paolo Paigi. 2004. Microgrid: A conceptual solution. In Proceedings of the IEEE 35th Annual Power
Electronics Specialists Conference (PESC’04), Vol. 6. IEEE, 4285-4290.

Abhinandan Majumdar, David H. Albonesi, and Pradip Bose. 2012. Energy-aware meeting scheduling algorithms for smart
buildings. In Proceedings of the 4th ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings. ACM,
161-168.

Sarah Mennicken, Jo Vermeulen, and Elaine M. Huang. 2014. From today’s augmented houses to tomorrow’s smart homes:
new directions for home automation research. In Proceedings of the 2014 ACM International Joint Conference on Pervasive
and Ubiquitous Computing. ACM, 105-115.

Evan Mills. 2011. Building commissioning: A golden opportunity for reducing energy costs and greenhouse gas emissions
in the United States. Energ. Efficiency 4, 2 (2011), 145-173.

Alessandro Antonio Nacci, Bharathan Balaji, Paola Spoletini, Rajesh Gupta, Yuvraj Agarwal, and Donatella Sciuto. 2015.
BuildingRules: A trigger-action based system to manage complex commercial buildings. In Proceedings of the 2015 ACM
International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication. ACM.

Niagara AX. nd. Home Page. Retrieved from http://www.niagaraax.com.

Insuk Park, Dongman Lee, and Soon J. Hyun. 2005. A dynamic context-conflict management scheme for group-aware
ubiquitous computing environments. In Proceedings of the 29th Annual International Computer Software and Applications
Conference (COMPSAC’05), Vol. 1. IEEE, 359-364.

Liliana Pasquale, Paola Spoletini, Mazeiar Salehie, Luca Cavallaro, and Bashar Nuseibeh. 2016. Automating trade-off anal-
ysis of security requirements. Requir. Eng. 21, 4 (2016), 481-504.

M. F. Pichler, A. Dréscher, H. Schranzhofer, G. D. Kontes, G. I. Giannakis, E. B. Kosmatopoulos, and D. V. Rovas. 2011.
Simulation-assisted building energy performance improvement using sensible control decisions. In Proceedings of the
3rd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings. ACM, 61-66.

Farrokh Rahimi and Ali Ipakchi. 2010. Demand response as a market resource under the smart grid paradigm. IEEE Trans.
Smart Grid 1, 1 (2010), 82-88.

Anand Ranganathan and Roy H. Campbell. 2003. An infrastructure for context-awareness based on first order logic. Pers.
Ubig. Comput. 7, 6 (2003), 353-364.

Silvia Resendes, Paulo Carreira, and André C. Santos. 2013. Conflict detection and resolution in home and building au-
tomation systems: A literature review. J/Amb/Intell/Hum/Comput/ 5, 5, 699-715.

Benoit Roisin, Magali Bodart, A. Deneyer, and P. Dherdt. 2008. Lighting energy savings in offices using different control
systems and their real consumption. Energ. Build. 40, 4 (2008), 514-523.

Siemens Building Technologies. nd. Home Page. Retrieved from http://www.buildingtechnologies.siemens.com.

Timothy Sohn and Anind Dey. 2003. iCAP: An informal tool for interactive prototyping of context-aware ap-
plications. In Proceedings of the Extended Abstracts on Human Factors in Computing Systems (CHI'03). ACM,
974-975.

Khai N. Truong, Elaine M. Huang, and Gregory D. Abowd. 2004. CAMP: A magnetic poetry interface for end-user pro-
gramming of capture applications for the home. In Proceedings of the Conference on Ubiquitous Computing (UbiComp’04).
143-160.

Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and Michael L. Littman. 2014. Practical trigger-action programming in
the smart home. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems.

Thomas Weng, Bharathan Balaji, Seemanta Dutta, Rajesh Gupta, and Yuvraj Agarwal. 2011. Managing plug-loads for de-
mand response within buildings. In Proceedings of the 3rd ACM Workshop on Embedded Sensing Systems for Energy-
Efficiency in Buildings. ACM, 13-18.

Thomas Weng, Anthony Nwokafor, and Yuvraj Agarwal. 2013. BuildingDepot 2.0: An integrated management system
for building analysis and control. In Proceedings of the 5th ACM Workshop on Embedded Systems for Energy-Efficient
Buildings. ACM, 1-8.

Jong-bum Woo and Youn-kyung Lim. 2015. User experience in do-it-yourself-style smart homes. In Proceedings of the 2015
ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM, 779-790.

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 2, Article 13. Publication date: May 2018.

https://ifttt.com/
http://www.johnsoncontrols.com/buildings/building-management
http://www.niagaraax.com
http://www.buildingtechnologies.siemens.com

13:22 A. A. Nacci et al.

Chang Xu and Shing-Chi Cheung. 2005. Inconsistency detection and resolution for context-aware middleware support.

ACM SIGSOFT Softw. Eng. Not. 30, 5 (2005), 336-345.
Tao Zhang and Bernd Briigge. 2004. Empowering the user to build smart home applications. In Proceedings of the Interna-

tional Conference on Smart Home and Health Telematics (ICOST 04). 170-176.

Received July 2016; revised July 2017; accepted January 2018

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 2, Article 13. Publication date: May 2018.

