
Verifying GPU Kernels by Test Amplification ∗

Alan Leung Manish Gupta Yuvraj Agarwal Rajesh Gupta Ranjit Jhala Sorin Lerner
University of California, San Diego

{aleung,manishg,yuvraj,gupta,jhala,lerner}@cs.ucsd.edu

Abstract
We present a novel technique for verifying properties of data par-
allel GPU programs via test amplification. The key insight behind
our work is that we can use the technique of static information flow
to amplify the result of a single test execution over the set of all
inputs and interleavings that affect the property being verified. We
empirically demonstrate the effectiveness of test amplification for
verifying race-freedom and determinism over a large number of
standard GPU kernels, by showing that the result of verifying a
single dynamic execution can be amplified over the massive space
of possible data inputs and thread interleavings.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification – Validation; F.3.2 [Seman-
tics of Programming Languages]: Semantics of Programming Lan-
guages – Program analysis

General Terms Languages, Reliability, Verification

Keywords Test Amplification, Determinism, GPU

1. Introduction
Despite its relative infancy, CUDA and related programming lan-
guages have already become one of the most widely used models
for parallel programming. The appeal of this model is that it offers a
way to exploit fine-grained data-parallelism within the comforts of
C/C++ style imperative programming. The dramatic performance
gains offered by the approach have led to its widespread use in
a variety of domains including scientific computing, finance, and
computational biology [29].

CUDA programs are very hard to get right, for all the usual rea-
sons, and a few new ones. First, in the course of execution, a pro-
gram can spawn millions of threads, which are clustered in multi-
level hierarchies that mirror a multi-level shared memory hierarchy.
Second, for performance reasons, well-weathered synchronization
mechanisms like locks or transactions are eschewed in favor of bar-
riers, and it is up to the programmer to make sure that concurrently
executing threads do not conflict by ensuring that their algorithms
make threads touch disjoint parts of memory. Third, a key source
of efficiency is the extremely fine-grained memory sharing across

∗ This work was supported by NSF Expeditions in Computing grant CCF-
1029783 and CAREER grants CCF-0644306 and CCF-0644361.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’12, June 11–16, 2012, Beijing, China.
Copyright c© 2012 ACM 978-1-4503-1205-9/12/06. . . $5.00

threads. Memory bandwidth is maximized when threads with suc-
cessive identifiers access, in lock-step, addresses that are physically
adjacent in memory. This can lead to complex striding patterns of
memory access that are hard to reason about.

An unfortunate consequence of these factors is that CUDA par-
allelism is difficult to analyze with existing static or dynamic ap-
proaches. Static techniques are thwarted by the complexity of the
sharing patterns. A useful static analysis would have to find a suc-
cinct symbolic representation for the sets of addresses accessed by
each thread. It is common for CUDA code to use modular arith-
metic or bit-shifting to access memory indices according to com-
plex linear or even non-linear patterns which makes such analyses
difficult. Dynamic techniques are challenged by the combinatorial
explosion of thread interleavings and space of possible data inputs:
any reasonable number of tests would represent a small subset of
the possible behaviors of the system. Finally, mechanisms for en-
forcing isolation at run-time are likely to impose unacceptable over-
heads, and would leave the developer the unenviable task of sifting
through a huge execution trace to figure out what went wrong.

To attack these challenges, we employ test amplification, a
general notion wherein a single dynamic run can be used to learn
much more information about a program’s behavior than is directly
exhibited by that particular execution. Though this notion has been
explored in many settings, we contribute a new formulation of
test amplification specialized for verifying properties of CUDA
kernels, which we call flow-based test amplification. Our technique
skirts the limitations of existing static and dynamic approaches by
combining their complementary strengths, as follows.

First, we run a dynamic analysis where we log the behavior of
the kernel with some fixed test input and under a particular thread
interleaving. Second, we use a static information flow analysis to
compute the property-integrity inputs, namely, the input variables
that actually flow-to, or affect the integrity of, the variables appear-
ing in the property to be verified. Finally, we amplify the result of
the test to hold over all the inputs that have the same values for the
property-integrity inputs.

Of course, this approach would yield no mileage if all the in-
puts were property-integrity inputs. Our second contribution is to
empirically demonstrate over a large number of CUDA bench-
marks, that for key properties like race-freedom and determinism,
the set of property-integrity inputs comprises just a small core of
configuration inputs. These are typically parameters that describe
the dimensions of the thread- and memory- hierarchies and dataset,
and which are highly tuned for a given architecture and algorithm.
Thus, test amplification allows us to use a single execution over the
configuration to verify properties over the massive space of all pos-
sible data inputs (non-configuration inputs) and thread interleav-
ings that constitute the behaviors of the kernel.

This simple insight ties together the complementary strengths
of well-known static and dynamic approaches, yielding a clean
way to analyze CUDA kernels. The static analysis is just a simple
flows-to question that can be resolved via taint-propagation and

an alias analysis. The dynamic analysis performs the difficult task
of actually computing the sets of addresses that are accessed in
complex striding patterns. Using the information flow, we can then
generalize the dynamic analysis over all possible data inputs. In
summary, we make the following contributions:

• We present flow-based test amplification, a hybrid technique
specialized for analyzing GPU kernels which uses static infor-
mation flow to generalize the result of a dynamic analysis over a
large space of inputs (Section 3).

• We implement flow-based test amplification for CUDA using
the LLVM framework, by implementing static taint-propagation
and devising efficient ways to record and analyze traces of
CUDA kernels (Section 4).

• We empirically demonstrate the effectiveness of flow-based test
amplification for verifying race freedom and determinism of
CUDA kernels, by conducting a systematic evaluation over the
kernels available in the CUDA SDK [28] and demonstrating
that the technique can be used for most kernels. Even when the
technique does not apply, a kernel can often be slightly modified
to fall under the scope of our analysis (Section 5). As a result, we
believe test amplification can be a stepping stone to developing
various safety and performance analyses for massively data-
parallel programs.

2. Overview
We start with an overview of CUDA, and then motivate our tech-
nique with a textbook CUDA kernel.

2.1 CUDA Basics
To illustrate the CUDA programming model we use a simplified
version of scalarProd, shown in Figure 1, a program from the
CUDA SDK that performs a parallel dot product of two vectors. In
a nutshell, the CUDA language is a variant of C++ extended with
syntax to annotate parallel routines called kernels, and the shared
data structures that the routines manipulate. The kernels execute on
GPU hardware and must exploit the shared memory hierarchy in
order to obtain maximum performance.

Thread Hierarchy A program written in CUDA decomposes
parallel computation into a two-level geometric grid of gridDim
thread blocks, where each block comprises blockDim threads, each
performing a subset of the total workload. Due to hardware support,
CUDA threads have much less overhead relative to CPU threads: a
CUDA program might spawn more than one million threads in a
single execution. The gridDim and blockDim configuration pa-
rameters are together called the geometry of the computation. (Al-
though grids and thread blocks may be multi-dimensional, we omit
finer grained x− and y− dimensions for clarity.)

Memory Hierarchy Threads communicate via a hierarchical
memory model organized into three levels, in decreasing order of
their thread visibility, size, and latency: global memory which is
slowest and shared by all threads, shared memory which is faster
but shared only by the threads within a particular block, and regis-
ters which are fastest but private to each thread. In our example, all
threads belong to a single thread block, all with access to the shared
array accumRes and the global arrays d A and d B.

Parallel Execution Threads are spawned and executed via kernel
calls, which specify the kernel that is to be executed and the thread-
geometry, i.e., the delineation of threads into thread blocks. For
example, a kernel call of the form

ScalarProd<<<1, 128>>>(d C, d A, d B, 4096)

1: #define accumN 1024
2: void scalarProd(float *d_C

, float *d_A
, float *d_B
, int sizeN)

{
3: __shared__ float accumRes[accumN];

/***/
/********* Phase 1: Partial Sums ***********/
/***/

4: for(int i = threadIdx
; i < accumN
; i += blockDim)

{
5: float sum = 0;
6: for(int j = i; j < sizeN; j += accumN)

{
7: sum += d_A[j] * d_B[j];

}
8: accumRes[i] = sum;

}

/***/
/********* Phase 2: Tree Reduction *********/
/***/

9: for(int stride = accumN / 2
; stride > 0
; stride >>= 1)

{
10: __syncthreads();
11: for(int i = threadIdx

; i < stride
; i += blockDim)

{
12: accumRes[i] += accumRes[stride + i];

}
}

13: if(threadIdx == 0) *d_C = accumRes[0];
}

Figure 1. scalarProd kernel

begins execution of a single block containing 128 threads, where
each thread executes the code in the scalarProd routine from
Figure 1. Although all threads execute the same kernel, each thread
is distinguished by a unique identifier in the form of its coordinate
within the grid, that is by the tuple of the variables blockIdx and
threadIdx (and the elided x- and y- sub-dimensions.) Thus, a
thread can use the values of its blockIdx and threadIdx, and
the geometry variables gridDim and blockDim, to distinguish its
portion of the workload from those of other threads.

Synchronization Threads synchronize via barriers: a thread that
calls syncthreads() will wait until all other threads in its thread
block have also reached the barrier. No corresponding synchroniza-
tion mechanism exists for threads in different thread blocks. (While
one can encode synchronization mechanisms using global memory,
such mechanisms are brittle and inefficient and hence discouraged.)

2.2 Scalar Dot Product
Now that we are equipped with a basic understanding of the CUDA
model, let us turn our attention to the scalarProd benchmark

provided with the CUDA SDK. The original program calculates the
dot products of 256 pairs of vectors, each of length sizeN = 4096.
To simplify exposition, we have reduced the example to calculate
the dot product of a single pair of vectors of sizeN elements.

The example exhibits three characteristics of CUDA kernels op-
timized for performance: 1) Memory is accessed in strides in or-
der to maximize memory bandwidth, 2) Shared memory is used
to cache frequently accessed data, and 3) Threads cooperate to
perform reductions with minimal synchronization and communica-
tion. The example also demonstrates that even a seemingly simple
computation, an elementary linear algebra primitive, can require
hard-to-analyze optimizations when adapted for parallelization via
CUDA. The implementation uses a parallel algorithm separated
into two phases, each with a different parallelization strategy, to
increase performance.

Phase 1: Partial Products In the first phase (lines 4-8), each
thread computes accumN/blockDim (i.e., 8) partial dot-products,
of sub-vectors of size sizeN/accumN (i.e., 4), and stores these par-
tial products into the array accumRes. This phase is implemented
by the nested loops on lines 4 and 6. The outer loop on line 4 iter-
ates i over

threadIdx + 0× blockDim,
threadIdx + 1× blockDim,
threadIdx + 2× blockDim, . . .

and at each offset, uses the inner-loop on line 6 to compute the
dot-product of the sub-vectors at indices

i + 0× accumN,
i + 1× accumN,
i + 2× accumN, . . .

the result of which is stored in the shared accumRes[i] (line 8).
Note that the threads do not operate on contiguous vector el-

ements but instead access elements with a stride of accumN. The
strided access pattern is deliberate: we achieve maximum memory
bandwidth when neighboring threads access consecutive elements
in global memory because the hardware optimizes the accesses to
occur in parallel. This feature is known as memory coalescing. If
instead each thread accessed contiguous vector elements, the mem-
ory accesses would occur serially, thereby severely reducing perfor-
mance. Note also that the partial dot products are stored in shared
memory, not global memory, in order to exploit temporal locality
of access to intermediate results when performing the subsequent
reduction.

Phase 2: Tree Reduction In the second phase (lines 9-13), all
threads cooperate to add up the partial products to a final value.
A naı̈ve implementation would assign a single thread to perform
the entire sum, reverting to a sequential algorithm. Instead, we can
view the reduction as follows: each partial product is a leaf in a
binary tree, and each parent is the sum of its children. We iterate
up the levels of the tree by calculating the parents’ values until
we reach the root of the tree. Recall that the the array accumRes
contains the partial products. Thus, in each iteration, we simply
overwrite the “left child” at index i with the sum of its own value,
and that of the “right child” at index i+stride, thereby obtaining
the “parent” value.

Each iteration is parallelized by using thread threadIdx to
compute the “parent” values at indices

threadIdx + 0× blockDim,
threadIdx + 1× blockDim,
threadIdx + 2× blockDim, . . .

as done in the inner-loop on lines 11-12. As before, this strided
access pattern enables efficiency via parallel memory access.

We iterate up the levels of the tree using the outer loop on line 9
which shrinks stride by half at each iteration as the number of
leaf nodes halves across each iteration. Note that the cells accessed
by different threads overlap across levels. The syncthreads()
at line 10 ensures that a level has been completed before the com-
putation proceeds to the next level, and thereby preventing memory
conflicts between threads executing on different levels. When the
iterations have all completed, thread 0 copies the final value from
accumRes[0] into the destination d C at line 13, and the kernel ter-
minates.

2.3 Verification
Thus, the scalarProd kernel makes use of several sophisticated
optimizations to squeeze performance out of the GPU hardware.
Unfortunately, these optimizations are treacherous as it is easy
enough for the usual sorts of concurrency-related errors to creep in.
The GPU setting exacerbates matters, as dynamic monitoring and
protection mechanisms would likely require expensive hardware
support in order to be efficient. Even if such mechanisms could
be implemented, errors would be difficult to debug due to the scale
of the concurrency (millions of threads).

Property: Absence of Races Let us consider the concrete prob-
lem of verifying race freedom, i.e., verifying that a given thread
is not writing to a shared location at the same time that another is
reading from the location. In the CUDA setting, the only synchro-
nization primitive is the syncthreads() barrier, and hence, the
problem reduces to determining that the sets of memory locations
read and written by different threads within matching barriers, are
disjoint.

Difficulty of Static Verification Unfortunately, as the
scalarProd example illustrates, existing static analyses are
of little use in the face of the complex access patterns that are
idiomatic in CUDA kernels. Aliasing-, Shape- or Escape- based
approaches [30] can work for disjoint linked data structures, but
are not precise enough to distinguish disjoint regions within shared
arrays. More precise arithmetic abstractions for such regions, such
as intervals, octagons, polyhedra and even interval congruences
[26] would not suffice as the set of addresses accessed by each
CUDA thread often follows complex patterns.

For example, in the first phase of scalarProd the thread
threadIdx writes to the array accumRes at indices

{threadIdx +m× blockDim + n× accumN}

where m and n range over 0 and accumN/blockDim and
sizeN/accumN respectively. The second phase is even more chal-
lenging, as in the kth iteration of the outer-loop, each thread reads
the array accumRes at indices

{threadIdx +m× blockDim + accumN/2k}

where m ranges from 0 to accumN/(blockDim× 2k).

2.4 Our Approach
Our solution skirts the limitations of current static verification tech-
niques with a combination of dynamic race detection and static in-
formation flow analysis. Our dynamic analysis tests for races in
a single execution by instrumenting the kernel to log memory ac-
cesses and verifying disjointness of read and write addresses. We
then amplify the results of the dynamic analysis to apply to all pos-
sible executions of a configuration if we can verify that the kernel
always performs the same memory accesses, regardless of the val-
ues of its data inputs, a property we call access invariance. Given
that this property holds, we then know that a single execution’s
accesses are in fact representative for all the possible executions.

X
·
= threadIdx, x, y, . . . Locals

G
·
= g, h, . . . Globals

V
·
= X ∪G Variables

e ::= Expressions
| x local-read
| n constant
| e1 ⊕ e2 binop

c ::= Commands
| assume(e) assume
| x = e var-assignment
| x = g[x] global-read
| g[x] = e global-write
| c; c sequence

Figure 2. Syntax

Putting it together, we can effectively guarantee that the kernel is
race free and deterministic across all data inputs.

Dynamic Race Detection In addition to memory addresses we
record the identity of the thread performing the access and the lo-
cation of the barrier last encountered by that thread. To distinguish
accesses to shared and global memory, we record the address and
extent of each shared and global data structure.

We then check for races by verifying disjointness of write and
read addresses between threads that can race to the same global
or shared data structure. Given that the log demonstrates no such
conflicting access, we provide the guarantee that the kernel is
race free for the single instantiation of input values used for that
execution. Because the analysis checks for the possibility of a
race, not whether a destructive race has actually occurred, a kernel
verified to be race free by this analysis is race free regardless of
the particular interleaving exercised by the execution, once again
for this single instantiation of input values. In addition, since the
analysis verifies disjointness of accesses, we can also guarantee
that the verified kernel executes deterministically on that input.
However, note that this dynamic testing by itself can provide no
guarantees about execution on any other instantiation of inputs.

Information Flow Although the guarantees provided by our dy-
namic race detector are desirable, they extend only to a single in-
stantiation of inputs within an enormous universe of inputs, hence
the need for a static analysis to amplify those guarantees further.
In particular, we use a static information flow analysis that tracks
flows from data inputs throughout the kernel. Intuitively, we apply
a taint to data inputs values, track the flow of taint through program
variables, then check that no tainted program variable is used as the
address operand of a memory instruction. We additionally check
that no memory access is control dependent on a tainted variable.
If these two properties hold, we say that the kernel is access in-
variant and will exhibit the same memory accesses across all data
inputs.

By itself, this property is interesting but not immediately useful.
It is the combination of this property and the result of our dynamic
analysis that produces a much more powerful guarantee: the veri-
fied kernel will exhibit no races in any execution, and so the kernel
is deterministic.

3. Test Amplification via Information Flow
In this section we formalize a general framework for combining
tests with information flow, and show how we instantiate it to
verify CUDA kernels. We start by making precise the syntax and
semantics of kernels, which enables us to define the ingredients of
the main Theorem 1 which states how the results of a particular
test can be amplified across different inputs via information flow.
Next, we describe how the general framework is instantiated for the
setting of CUDA kernels.

3.1 Syntax
Figure 2 summarizes the syntax of kernels. Informally, a kernel is
a collection of concurrently executing threads which interact via
shared memory.

Variables Our kernels include two kinds of variables: (thread)-
local, denoted by x, y, etc. and global g, h, etc.. We write v, w to
denote either local or global variables. We assume for simplicity
that all global variables are arrays. Note that a scalar global is
simply an array of size 1. For clarity, we abuse notation to omit
the offset 0 when reading or writing such variables.

Expressions and Commands The set of kernel expressions in-
cludes reads of local variables, primitive constants (e.g., 0, 1, 2, . . .)
and binary operations over sub-expressions. Our language of ex-
pressions is side-effect free. The set of commands includes se-
quences of assume(·) (used to model branches), local assignment,
and reads from and writes to global variables.

Reads and Writes A variable v is read in an expression if it
appears in the expression. A variable is read in a command if the
command contains an expression in which the variable is read. A
variable v is written in a command if the command contains an
assigment of the form v = e or v[x] = e.

Threads A thread t is a tuple (V0, L, l0,C), where V0 is a set of
input variables, L is a finite set of program locations, l0 ∈ L is a
special entry location, and C is a control flow map from L × L to
the set of commands. A variable is read (resp. written) on an edge
if it is read (resp. written) on the command labelling the edge. A
variable v is immutable in a thread if it is not written on any edge
of the thread’s control-flow map. We assume that V0 includes any
local or global variables that may be read before they are written.
Finally, we assume that V0 includes distinguished immutable local
input variables threadIdx and blockDim that hold the (unique)
identifier of the thread and the total number of threads, respectively.

Kernels A kernel is a pair of a set of thread-identifiers T id ⊆ N
and a thread. Intuitively, a kernel (T id, V0, L, l0,C) has |T id|
many distinct threads executing the same commands (given by
C). However, the commands can inspect the value of the input
threadIdx, and hence, different threads can behave differently.

Example Recall the scalarProd kernel from Figure 1. The body
of the kernel can be mapped to a single thread’s control-flow map,
with locations corresponding to the program labels (3:, 4:, 5:,
etc..) in the standard way. The input variables of the thread are d A,
d B, d C, sizeN, the distinguished threadIdx, and blockDim.

3.2 Semantics
Next, we formalize the semantics via states and transitions.

Notation Let f map A to B. We write f [a 7→ b] for the map

λx. if x = a then b else f x

Let A′ be a subset of A. The restriction of f to A′, is the map from
A′ to B that coincides with f on A′.

Kernel Transition P ` σ ↪→ σ′

tid ,C ` σ ↪→ σ′

(T id, V0, L, l0,C) ` σ ↪→ σ′
[T-PGM]

Thread Transition tid ,C ` σ ↪→ σ′

l = σ(tid) c = C (l, l′) tid , c ` σ ↪→ σ′

tid ,C ` σ ↪→ σ′[tid 7→ l′]
[T-THREAD]

Command Transition tid , c ` σ ↪→ σ′

tid , c1 ` σ ↪→ σ′ tid , c2 ` σ′ ↪→ σ′′

tid , c1; c2 ` σ ↪→ σ′′
[T-SEQ]

σ(tid)(e) = true

tid , assume(e) ` σ ↪→ σ
[T-ASSUME]

σ(e)(tid) = n

tid , x = e ` σ ↪→ σ[x 7→ σ(x)[tid 7→ n]]
[T-ASGN]

σ(y)(tid) = n′ σ(g)(n′) = n

tid , x = g[y] ` σ ↪→ σ[x 7→ σ(x)[tid 7→ n]]
[T-READ]

σ(y)(tid) = n′ σ(x)(tid) = n

tid , g[y] = x ` σ ↪→ σ[g 7→ σ(g)[n′ 7→ n]]
[T-WRITE]

Figure 3. Semantics

States A state σ is a map from T id ∪ X ∪ G to L ∪ (T id →
N) ∪ (N → N), such that σ(tid) is the program location of thread
tid , σ(x)(tid) is the value of the local x in the thread tid , and
σ(g)(n) is the value of the global array g at the index n. We write
Σ for the set of all states.

Initial States A state σ is an initial state for kernel P =
(T id, V0, L, l0,C) written P ` σ if σ(blockDim) = |T id|,
and for each tid ∈ T id, we have σ(tid) = l0 and
σ(threadIdx)(tid) = tid .

Transitions The transition relation of a kernel is a subset of
Σ × Σ. We write P ` σ ↪→ σ′ if the pair σ, σ′ is in the transition
relation of the kernel, defined formally in Figure 3. Intuitively,
the transition relation is the union of the transition relations of
the individual threads. Each thread transition atomically moves the
thread from its current program location to a successor location,
updating the locals of the thread and the globals whilst leaving the
program locations and locals of all other threads untouched.

An assume transition [T-ASSUME] succeeds only if the condi-
tion holds, a local assignment [T-ASGN], [T-READ] updates the
value of the local for the executing thread, and a write [T-WRITE]
updates the global array at appropriate address. A command is a
sequence of assignments and assumes, and [T-SEQ] ensures that
the sequence executes atomically, thereby allowing us to construct
higher level synchronization mechanisms as described later.

Branch Determinism We say a control flow map is branch deter-
ministic if for any thread tid and state σ, there is at most a single
σ′ such that tid ,C ` σ ↪→ σ′. There is a simple sufficient condi-
tion for branch determinism, namely 1) the primitive operations ⊕
are deterministic, and 2) the program locations have at most two
successor edges, 3) the nodes with multiple successor edges have
edges labeled by assume(e) and assume(¬e). The control flow

maps compiled from standard structured languages are branch de-
terministic, so we will assume this property in the sequel.

Traces The traces of a kernel Traces(P) are finite sequences of
of states τ = σ0, . . . , σn such that P ` σ0 and P ` σk ↪→ σk+1,
for each 0 ≤ k < n. We write τ(k) for the kth state in a trace.

3.3 Test Amplification
Now that we have formalized the semantics of kernels, we can
describe what it means for a variable to flow-to another, and hence
the notion of flow-based test amplification.

Projection and Equivalence Let Y be a set of variables. The
projection of a state σ to Y , written σ[Y] is the restriction of σ to
the domain Y . We lift projection to sequences of states, i.e., traces,
in the natural way. A state σ is equivalent over Y to σ′, written
σ ≡Y σ′ if σ[Y] = σ′[Y].

Information Flow A variable v flows-to w written
v ∈ FlowsTo(P, w) if there exist traces, τ and τ ′ in Traces(P)
such that τ(0) ≡V \v τ

′(0), and τ(k) 6≡w τ
′(k) for some k.

Intuitively, v flows-to w if there are two traces that agree on all
variables except v at the beginning, but which differ on the value
of w at some time k [18]. For a set of variables W we define

FlowsTo(P,W)
·
= ∪w∈WFlowsTo(P, w)

Thread Interleavings We say that a variable w is non-
deterministically affected by thread interleavings if there exist
traces τ, τ ′ ∈ Traces(P) such that τ(0) = τ ′(0) but for some
k, τ(k)(w) 6= τ ′(k)(w). We make the following observations:

1. If w is non-deterministically affected by interleavings then triv-
ially, for all v we have v ∈ FlowsTo(P, w).

2. If w is not non-deterministically affected by thread interleav-
ings. Then v ∈ FlowsTo(P, w) only if v is an input variable.

Properties A property Φ over VΦ is a predicate over the (pro-
gram) variables VΦ. A state σ satisfies a property, written σ |= Φ
if the predicate evaluates to true in σ. A trace τ satisfies a prop-
erty, written τ |= Φ if for each k, we have τ(k) |= Φ. The set
FlowsTo(P, VΦ) is the set of property-integrity inputs, that is, the
set of inputs that flow-to a variable in VΦ.

THEOREM 1. [Test Amplification] Let Φ be a property over VΦ,
and Y be a subset of the input variables. If

• FlowsTo(P, VΦ) ⊆ Y
• τ ∈ Traces(P) is such that τ |= Φ

then ∀τ ′ ∈ Traces(P). τ(0) ≡Y τ ′(0) implies τ ′ |= Φ.

Informally, the theorem states that if Y contains the set of
property-integrity inputs, then we can amplify the success of a
single satisfying execution to conclude that all all executions that
start with the same values for Y , regardless of the values of other
inputs and thread scheduling, will also satisfy the property.

3.4 CUDA Verification
The conclusion of the test amplification theorem is trivial, and of
little practical value if the set Y includes all the program variables.
To analyze CUDA kernels, we must reduce Y to be as small as
possible. We demonstrate that for verifying determinism of CUDA
kernels, Y can be distilled down to a small core of configuration
inputs that are highly tuned to a limited set of values for a given
algorithm and architecture. Consequently, test amplification allows
us to use a dynamic single execution over the configuration to
verify properties over a massive space of possible data inputs and
thread interleavings that constitute the behaviors of the kernel.

Thus, next, we describe how our framework can be instanti-
ated to verify CUDA kernels. To do so, we need to: 1) encode
CUDA semantics, in particular, barrier synchronization, 2) en-
code the properties that we wish to check, 3) describe the prop-
erty variables VΦ and configuration variables Y , 4) compute the set
FlowsTo(P, VΦ).

Barriers CUDA includes a special barrier operation. Intuitively,
when a thread reaches a barrier, it waits until all the other threads
have reached the same barrier. We encode barriers by introducing
two special variables flag, a local variable that has the value 1 iff
the thread tid has reached a barrier, and count, a global variable
(initialized to 0) which holds the number of threads that have
reached the barrier. Now, a barrier operation between l and l′ is
a sequence of three CFG edges:

C (l, lwait)
·
= assume(flag = 0);

flag = 1;
count = count + 1

C (lwait, lgo)
·
= assume(count = blockDim)

C (lgo, l
′)

·
= assume(threadIdx = count);

flag = 0;
count = count− 1

where lwait, lgo are two distinct program locations introduced for
each barrier operation.

Instrumentation: Recording Global Accesses To verify that the
kernel is deterministic, we need to check in the trace that the set of
global addresses written by a thread is disjoint from the addresses
accessed by other threads. We need only perform this check on
accesses within the same barrier interval because two accesses
separated by a barrier cannot race [23]. Thus, we track both the set
of addresses read or written by each thread, as well as timestamps
uniquely identifying each barrier interval. We instrument the kernel
to track this information as follows.

First, we introduce a special local variable timestamp
(initialized to 0) which holds a logical timestamp for the
current barrier interval. We instrument each barrier-wait
assume(count = blockDim) to become

assume(count = blockDim);

timestamp = timestamp + 1

We introduce a global array log, that maps T id, to subsets of

N× {Rd,Wr} ×G× N
That is, each tuple consists of a barrier timestamp, access type,
global array name, and array index, respectively. Next, we instru-
ment each read and write command to record the access inside log.
Global-reads y = g[x] become

y = g[x];

log[threadIdx] = log[threadIdx] ∪ (timestamp,Rd, “g”, x)

and global-writes g[x] = y become

log[threadIdx] = log[threadIdx] ∪ (timestamp,Wr, “g”, x);

g[x] = y

Property: Determinism Finally, to verify determinism we define
the following property ΦDet.

∀t, i, i′, g, n : (t, A, “g”, n) ∈ log[i] ∧ (t, A′, “g”, n) ∈ log[i′]

⇒ i = i′ ∨A = A′ = Rd

Intuitively, the property checks that within each barrier interval,
the set of writes in the log of thread tid is disjoint from the set
of accesses contained in the log of another thread tid ′. As the

instrumentation ensures that log contains all accesses, if the above
sets are disjoint, then the sets of accesses of every two threads are
disjoint, and the kernel is therefore deterministic [35].

Property and Configuration Variables The set of property vari-
ables is the singleton {log} comprising the only variable inspected
by ΦDet. The configuration variables are those that describe the
thread geometry of the given kernel, namely the number of threads
blockDim, the thread identifier threadIdx, and algorithm- and
architecture- specific parameters like the sizes of strides accumN
and the global arrays sizeN. In general, the set of configuration
variables depends heavily on the semantics of the kernel being an-
alyzed and must be chosen based on domain knowledge.

Static Information Flow Analysis The last piece of the puzzle
is the flow relation. Needless to say, the exact flows-to set for a
set of property variables is not computable. We solve this problem,
through a forwards taint-propagation based analysis that, given a
kernel, a set of property variables VΦ, and a set of configuration
variables Y , checks whether FlowsTo(P, VΦ) ⊆ Y . The analysis
implements a form of taint-based integrity checking [15, 27].

We formalize the analysis as procedure
StaticFlowsTo(P, VΦ, Y), which is implemented as follows.
All the input variables except those in Y are tainted. The taints
are propagated through assignments (data dependencies) and
dominating assumes (control dependencies). Finally, we check
whether any of the property variables VΦ are tainted. If not,
we can be sure that only the configuration variables flow to the
property variables. As the procedure is flow-insensitive, it is sound
in the face of multi-threading. Furthermore, as the kernels are
branch deterministic, we can conclude that the statically computed
flows-to relation is a conservative overapproximation of the actual
flows-to relation.

PROPOSITION 1. [Static Flows-To] For all branch-deterministic
kernels P and variables VΦ, Y , if StaticFlowsTo(P, VΦ, Y) then
FlowsTo(P, VΦ) ⊆ Y .

Access Invariance and Determinism We say that a kernel P is
access invariant with respect to Y if StaticFlowsTo(P, {log}, Y),
that is, if only the configuration variables Y flow to the property
variables. From the soundness of static flows-to, we get the follow-
ing as an immediate corollary of Theorem 1.

PROPOSITION 2. [CUDA Determinism] Let P be a CUDA ker-
nel with configuration variables Y . If

• P is access invariant with respect to Y
• τ ∈ Traces(P) is such that τ |= ΦDet

then forall τ ′ ∈ Traces(P), if τ(0) ≡Y τ ′(0) then τ ′ |= ΦDet.

Returning to the scalarProd example from Figure 1 we
see that log has a data dependence on the indices j, i, i and
stride + i which are used to access shared memory (at lines 7, 8,
12 and 12 respectively). The only inputs that flow to these expres-
sions (i.e., the set of property-integrity inputs) are the parameters
threadIdx, accumN, sizeN, and blockDim, which are a subset of
the configuration variables, so the kernel is access invariant. Thus,
a single trace that satisfies ΦDet suffices to show that the kernel
satisfies ΦDet for all executions over the same configuration.

4. Implementation
We have implemented the analyses described in the previous sec-
tion in the LLVM Compiler Infrastructure [22]. In particular, we
have implemented a static taint-based information flow analysis
that checks whether CUDA kernels are access invariant, and a dy-
namic instrumentation-based analysis that checks whether a kernel

satisfies the determinism property ΦDet for a particular execution.
Though the formalism in the previous section presented a simpli-
fied, two-level memory model and one-dimensional thread geom-
etry, our implementation handles the multi-dimensional thread ge-
ometries and three-layer memory hierarchy supported by CUDA.
Next, we describe the static and dynamic analyses in greater detail.

4.1 Static Analysis
The static analysis proceeds via three LLVM passes. The first
pass recursively inlines all function calls within a kernel, yielding
a single call-free kernel. The second pass is a flow-insensitive
intraprocedural pointer analysis based on Andersen’s algorithm [1]
that is used by the third pass, a static taint-based analysis that
determines whether data inputs (that is, non-configuration input
variables) flow to the property variables.

1. Kernel inlining For simplicity, our current implementation ex-
ploits the key restriction that CUDA kernels cannot be recursive or
contain indirect functions calls. In particular, we fully inline func-
tions called from kernels, so subsequent analyses can be intraproce-
dural without loss of precision, with one exception to deal with li-
brary functions – we analyze calls to CUDA library functions using
specially crafted transfer functions (i.e., summaries) as described
below. (Recent NVIDIA cards do support recursion and function
pointers. To handle such kernels we need only use interprocedural
variants of our current analyses.)

2. Pointer analysis We use a pointer analysis to soundly prop-
agate taints in the presence of aliasing. In particular, if a pointer
refers to a tainted heap location, then the taints must be propa-
gated to (dereferences of) all the aliases of the pointer. To this end
we have implemented a flow-insensitive, intraprocedural variant of
Andersen’s algorithm. The precision lost by flow-insensitivity is
mitigated by the fact that the LLVM intermediate representation is
based on SSA, so the may-point-to set of most variables contain
only a single element. In the CUDA setting, the following modi-
fications allow us to further improve the precision of the pointer
analysis.

• Our aggressive inlining step makes the analysis context sensi-
tive. We inline all function calls with the exception of calls to
CUDA library functions. To deal with those calls we include
special transfer functions which account for the function’s ef-
fects as specified in the documentation.

• Kernel formal parameters with pointer type are optimistically
assumed to be unique upon entry to the function. That is, there
are no other variables that refer to a block of memory pointed
to by a formal parameter. Although this assumption is unsound
in general, we have manually verified that it holds for all bench-
marks in our evaluation. This simplification allows us to avoid
making the conservative assumption that pointer function pa-
rameters may point to arbitrary memory locations.

3. Taint tracking The direct way to check the access invari-
ance property is to implement StaticFlowsTo(P, {log}, Y) inside
LLVM. Unfortunately, this would require us to rewrite the program
to add log which we avoid for the reasons described in Section 4.2.
Instead, we check that the access invariance property holds by stat-
ically verifying that the following two conditions hold. First, no
address operand of a memory instruction may be affected by a data
input. In other words the flows-to set of an address may contain only
configuration inputs. Second, no memory instruction is control de-
pendent on a tainted value. The latter is subtle and best explained
by a small example:

if(taintedVar) { A[i] = e; } else { B[i] = e; }

Whether array A or B is written depends on the value of
taintedVar, even though the array index i itself might not be
tainted at all. Thus, with a different data input, the program may
execute the other branch yielding a race (that does not occur on the
test being amplified.) This condition is conservative, as it would
flag a violation even when both sides of the branch perform identi-
cal accesses. (It is easy to check that these conditions are equivalent
to the “direct” approach of checking whether non-configuration in-
put variables flow-to the log.)

Our implementation verifies that both conditions are met using
a standard worklist algorithm to perform forward taint propagation.
We begin with an initial taint set consisting of the kernel’s data in-
puts, then track the propagation of these taints through instructions.
During propagation, if either condition is found to be violated, we
terminate with the conclusion that the kernel is not access invari-
ant. If instead we reach a fixpoint in which no new taints can be
propagated and have not yet found a violation, we conclude that
the kernel is access invariant.

There are two channels by which taint can propagate: explicit
flow resulting from data dependences, and implicit flow resulting
from control dependences. Explicit flow is handled in the straight-
forward way: we implement transfer functions for each class of
instruction or CUDA library function to assign taint to the appro-
priate variables. For instance, we assign taint to the result of any
arithmetic instruction with a tainted operand. We handle control
dependences very conservatively by immediately flagging a viola-
tion of the access invariance property whenever a branch condition
variable is tainted. This would flag an access invariance violation
even if neither side of the branch performed any memory access
at all, but is a straightforward and sound overapproximation. If no
such control dependences exist, we can conclude that the second
condition holds, and that no control dependences contribute to a
violation of the first condition.

Finally, we must verify the first condition — that no addresses
are tainted. LLVM programs calculate addresses with an explicit
instruction called getelementptr that takes a base pointer and
a variable number of operands representing offsets from the base.
This instruction is designed to express arbitrary address arithmetic
to compute the addresses of data structure elements. Whilst propa-
gating taints, if we ever encounter a getelementptr with tainted
operand, we conclude that the kernel is not access invariant.

4.2 Dynamic Analysis
The dynamic component of our analysis checks that a particular
test execution satisfies the given property ΦDet. Unfortunately, due
to the sheer number of threads and frequency of accesses, it is
impossible to hold the log in memory and check ΦDet in an online
manner. We get around this problem by logging all the accesses on
disk and then checking offline that the trace satisfies ΦDet.

Thus, our dynamic analysis consists of a single LLVM pass that
instruments all memory accesses with extra instructions to log ad-
dresses and thread identifiers on disk. In order to distinguish ac-
cesses to global and shared data structures, all allocations and static
array declarations for global and shared memory are instrumented
to record base address and size. Finally, full 3D thread identifiers
and 2D block identifiers are logged for each executing thread.

Barrier Interval Timestamps Recall that a problematic trace is
one where different threads access the same shared location dur-
ing the same barrier interval. Thus, in addition to the address and
thread identifiers, we record for each access, the barrier interval
number during which the access occurs, so that the offline check
only compares accesses within the same interval. Although ad-
dresses and thread identifiers are readily accessible as variables in
the uninstrumented code, barrier intervals are not explicitly labeled
and must be dealt with specially. We maintain a shared table that

contains one entry per thread to track the current barrier interval of
each thread. Each element of the table corresponds to one thread’s
timestamp local variable as described in Section 3.4. Every call to
syncthreads() is replaced with an augmented version that ad-

ditionally increments the thread’s corresponding table entry. Thus,
at any point during execution, the table contains a snapshot of the
barrier interval in which each thread is executing. We simply look
up the thread’s entry in this table to determine the current barrier
interval for logging. (The threads obey the barrier synchronization
semantics; the intervals are logged solely to facilitate offline trace
analysis.)

Determinism via Race Detection After generating a complete
log by executing the instrumented kernel, we check that the trace
satisfies the determinism property ΦDet. In the presence of the
three-level memory hierarchy, the property is satisfied if there are
no global- or shared- memory races.

A global memory race occurs when a global data structure is
written by one thread and accessed by another. Two threads in
the same thread block may race only if executing in the same
barrier interval. Two threads in different thread blocks cannot
synchronize, so may race regardless of barrier interval.

A shared memory race occurs when two threads within the same
thread block access a shared data structure within the same
barrier interval, and at least one of the accesses is a write.
Threads in different thread blocks cannot share the same shared
data structure, and thus cannot conflict.

Offline Trace Analysis The sheer magnitude of the logs required
that we devise non-trivial means for checking for races using a
small memory footprint. Our implementation performs this check
via a log postprocessing program that first translates raw addresses
into array-offset pairs, then performs a sweep of the resulting log
to check for conflicting accesses to each array. To perform the
race checks efficiently, we first separate global and shared memory
accesses into separate traces. Each trace is then externally sorted by
address and barrier interval, which are the primary and secondary
sort keys, respectively. Finally, a single linear sweep through the
sorted traces checks for the aforementioned race conditions.

The above process only stores in memory a small window of the
trace at any point: for global arrays, only those accesses to a single
address at a time, and for shared arrays, only those accesses to a
single address within a single barrier interval. These optimizations
were essential in practice. Our initial naı̈ve implementation, which
attempted to detect races in unsorted traces, immediately ran into
out-of-memory errors due to the size of the traces.

Limitations Our implementation does not currently handle sev-
eral aspects of CUDA. First, the dynamic analyses are incompatible
with programs using OpenGL because CUDA emulation does not
support compilation of such programs. We resort to using CUDA
emulation because we cannot perform logging when executing on
real GPU hardware. Second, our analyses do not support code that
uses the CUDA Driver API, a low-level framework above which
the CUDA language and runtime are built, nor code that contains
assembly instructions, atomic intrinsics, or warp voting functions.
Third, our dynamic analysis does not track accesses to texture or
constant memory, as they are strictly read-only during kernel ex-
ecution and thus are not subject to races within the kernel. A fi-
nal caveat is that we assume that conflicting accesses must be to
the same exact address – our implementation has no notion of con-
flict between unaligned accesses, though presumably a higher-level
type system could ensure the absence of such misaligned accesses.

5. Evaluation
Our goal is to evaluate the overall effectiveness of our approach in
the setting of CUDA programs. To this end, we evaluate the effec-
tiveness of our static invariance analysis (Section 5.2), the effective-
ness of our dynamic analysis (Section 5.3), and the running-time of
our approach (Section 5.4). Before presenting these results, we first
describe our experimental setup (Section 5.1).

5.1 Experimental Setup
To evaluate our approach, we started with the 68 benchmarks in the
NVIDIA CUDA SDK Version 3.0. Of these 68 benchmarks, 7 are
small tutorial-like benchmarks with trivial kernels, and so we leave
these out. Of the remaining benchmarks, 33 contain features which
our analysis cannot run on, due to the limitations previously men-
tioned. We therefore omitted these as well, which leaves us with
28 benchmarks, for which we report results. These 28 benchmarks
contain a total of 76 kernels.

The static analysis runs on one kernel at a time. We manually
examined each kernel to determine the correct set of data inputs
(non-configuration input variables) to supply the static analysis. We
tried to minimize the set of configuration variables by manually
examining code to determine the domain-specific interpretation
of each input. The separation of data and configuration variables
is usually quite immediate. As an example, for the scalarProd
benchmark, the set of data input variables is d C, d A, and d B
(since these are the input vectors). Since sizeN represents the size
of the data set, we consider it to be a configuration variable.

For the dynamic analysis, we run each benchmark containing
access invariant kernels with instrumentation turned on. Bench-
marks with multiple kernels will produce logs containing entries
from several kernels. A postprocessing step separates the entries
corresponding to each kernel. The logs can then be processed one
kernel at a time.

5.2 Static Invariance Analysis
The results of our static invariance analysis are shown in Figure 4.
Of the 76 kernels examined, 52 were shown to be access invariant
by our static information flow analysis. These kernels are spread
across a variety of benchmarks from different domains. Addition-
ally, even benchmarks that demonstrated variance in some kernels
often have at least one kernel that is in fact access invariant. For in-
stance, although histogram contains 2 kernels that are not access
invariant, it contains 2 that are. This aligns with the fact that CUDA
algorithms are often implemented as multiple distinct kernels, each
performing a different phase of the algorithm, some of which may
be access invariant while others are not.

We have found three distinct patterns that cause a kernel to be
access variant. For each pattern we provide an example from the
benchmark suite.

Direct Flow The first pattern is the most direct: a memory ac-
cess address is derived directly from an input value. This pattern is
demonstrated by the histogram benchmark, which bins each byte
of its input based on the value of its higher order bits. A straightfor-
ward sequential implementation of histogram is sketched in Figure
5. This implementation iterates over each element of data, uses the
higher order bits to index into the array bin whose elements rep-
resent bin counts, then increments the indexed element. Although
the parallel CUDA implementation is complicated by distribution
of computation across multiple threads, the fundamental calcula-
tion is the same: the higher order bits of each byte are used to ad-
dress into a shared array which contains the bin counts. The access
variance of this kernel is a result of the fact that the bin address is
derived directly from an input value.

Benchmark LOC #K %I
reduction 695 7 100%
sortingNetworks* 571 6 100%
convolutionFFT2D 384 3 100%
fastWalshTransform 243 3 100%
convolutionSeparable 318 2 100%
convolutionTexture 314 2 100%
cppIntegration 125 2 100%
simplePitchLinearTexture 138 2 100%
transpose 146 2 100%
binomialOptions* 354 1 100%
BlackScholes* 276 1 100%
dwtHaar1D 266 1 100%
FDTD3d 818 1 100%
matrixMul 216 1 100%
scalarProd 136 1 100%
simpleCUFFT 137 1 100%
simpleTexture 121 1 100%
vectorAdd 92 1 100%
dct8x8 1402 8 87%
histogram 431 4 50%
lineOfSight 180 2 50%
radixSort 1894 10 30%
MonteCarlo 836 4 25%
eigenvalues 1901 4 0%
MersenneTwister 287 2 0%
quasiRandomGenerator 637 2 0%
clock 69 1 0%
dxtc 829 1 0%
28 Benchmarks 13816 76 68%

Figure 4. Static Analysis Results: LOC=Lines of Code,
#K=Number of Kernels, %I=Percent Invariant Kernels, *modified
as detailed in Section 5.2

1: void histogram(char *data, int *bin, int size) {
2: for(int i = 0, i < size, i++)
3: bin[data[i] && 0x3FU]++;
4: }

Figure 5. Sequential Histogram

Indirect Flow The second pattern occurs in kernels in which
a critical control flow statement depends on a condition derived
from input. This is demonstrated by the eigenvalues benchmark.
This benchmark calculates the eigenvalues of a matrix with an
algorithm that subdivides intervals dependent on the values of the
input matrix. This dependence is fundamental to the algorithm and
cannot be removed.

Correctable Indirect Flow The sortingNetworks benchmark
performs a bitonic sort, which is a sorting algorithm with the
property that the comparisons it performs are independent of its
input values. Whether elements are swapped, however, depends
on the result of a comparison which ultimately derives from the
magnitude of input values. Intuitively, it would seem that the kernel
is almost access invariant, save for this conditional swap. It turns
out that we can perform a simple rewrite, as shown in Figure
6, which effectively converts the control dependence into a data
dependence. With this rewrite, sortingNetworks can be verified
access invariant because we have removed a control dependence
without introducing taint to the array indices. We have been able
to perform similar transformations to the binomialOptions and
BlackScholes kernels.

/** original version **/
if(A[i] > A[j]) {

t = A[i]; A[i] = A[j]; A[j] = t;
}

/** transformed version **/
bool cond = (A[i] > A[j]);
t = A[i];
A[i] = cond * A[j] + (!cond) * A[i];
A[j] = cond * t + (!cond) * A[j];

Figure 6. Removing a control dependence

Configuration Variable Selection The difference between a data
input and a configuration variable is a semantic distinction that
ultimately depends on the domain-specific meaning of each input
to the kernel – it cannot be fully automated. In our experiments, we
have manually examined kernels to extract this distinction.

However, the difference between a property-integrity input, and
one which is not, is based on which inputs influence the access in-
variance property and which do not. This classification can be auto-
mated with our invariance analysis. We simply run our invariance
analysis on each input in turn, and determine which inputs cause
our analysis to report a violation of the access invariance property.
The end result is that we have found a minimal set of property-
integrity inputs.

For all kernels we have classified as access invariant, we would
expect our set of manually chosen configuration variables to con-
tain the set of property-integrity inputs. In addition, we would ex-
pect that for all variant kernels, at least one data input is in fact a
property-integrity input. We have verified that both are true.

A final observation is that in cases where the set of property-
integrity inputs is smaller than the set of chosen configuration vari-
ables, we can amplify our guarantees to an even larger set of inputs.
We found this to be the case for convolutionSeparable, which
contains two kernels, one which performs an image transform on
the rows of the image, and another which acts on the columns.
Both kernels take parameters imageW and imageH which indicate
the height and width of the image being transformed, but the row-
and column- transforming kernels are only variant with respect to
the width and height parameters, respectively. Thus, although we
manually specified both parameters to be configuration inputs, in
fact we could have removed one and still maintained the access in-
variance property. In total, we have found that for 11 of the kernels
the set of property-integrity inputs is in fact a subset of the set of
configuration variables.

5.3 Dynamic Analysis
Our dynamic analysis found that most of the dynamic runs were
race-free and deterministic. However, our analysis detected a race
violation in the full implementation of scalarProd. The race
was determined to be a result of a missing syncthreads()
call after a complete dot product had been calculated and stored
into the output array, which corresponds to line 13 of Figure 1.
Without this barrier, thread 0 might still be reading values from
the accumResult array while its neighbors had already begun
calculation on the next pair of vectors, potentially performing a
destructive update before the previous result had been completed.

In practice, however, this race will not manifest itself due to
the warp-synchronous nature of CUDA’s execution model: neigh-
boring threads are logically grouped into warps of 32 threads that
execute synchronously on hardware. Thus, because threads 0 and 1
belong to the same warp, they will not exercise the race described.

Races were also detected in two other benchmarks, histogram
and reduction. In both cases, the benchmarks once again relied
on warp-synchronous execution to prevent races in the absence of
explicit barrier synchronization. It is important to note, however,
that warp-synchronous execution relies on the behavior of underly-
ing hardware, which may change for future generations of GPUs or
different target architectures, and cause these to become real errors.

5.4 Performance Evaluation
The running time of our static analysis was less than one second for
most benchmarks, with none taking more than 10 seconds with two
notable exceptions: radixSort which took 36m, and reduction
which took 3.5m. The reason is that these benchmarks makes heavy
use of C++-style templates. When compiled, each template special-
izes into multiple kernels, each of which is analyzed. radixSort
instantiates 271 kernels, and our analysis takes an average of 8 sec-
onds per instantiated kernel. Our analysis takes an average 1.6s on
each of the 132 kernels instantiated by reduction.

To evaluate the performance penalty of our dynamic instru-
mentation and race detection, we measured running times for each
benchmark with and without the analysis enabled. The geometric
mean and median slowdown were 18X and 12X, respectively, while
the total slowdown, measured by summing the running times of all
benchmarks, was 310X. There were two benchmarks, MonteCarlo
and convolutionSeparable, that had running times more than
an order of magnitude higher than the others, at 2093X and 1324X,
due to the size of their logs: convolutionSeparable in partic-
ular, produced a 508 GB log. We have found that slowdowns are
highly correlated with the size of the memory traces, leading us to
believe that the bottleneck in performance is disk I/O for writing
log entries. This could be alieviated through the use of more so-
phisticated buffering techniques, but we leave this for future work.

6. Related Work
In this section we discuss the literature related to our work, which
fall under two broad categories: race-freedom and determinism;
and test amplification. The literature on enforcing race-freedom and
determinism on shared memory multithreaded programs is enor-
mous: we limit ourselves to work that studies problems similar
to the domain of GPU programs, with massive, fine-grained data-
sharing. Because test amplification is such a broad concept, it has
appeared in many different forms in the literature. We present an
indicative, albeit necessarily incomplete selection of work repre-
sentative of the breadth of its application.

Race-Freedom and Determinism One closely related piece of
work by Boyer et al. presents a dynamic analysis for detecting
races in CUDA programs [4]. The work uses an instrumentation
much like our own, to generate logs that can be used to dynamically
detect races and barrier conflicts. Of course, without amplification,
the results only hold for one run at a time, which is not likely to be
very useful as the instrumentation imposes large overheads.

Our work is greatly inspired by PUG [23], a tool that analyzes
CUDA programs via the machinery of symbolic execution. PUG
logically encodes the program executions and uses an SMT solver
to check whether different threads can race within a barrier inter-
val. PUG has several optimizations that mitigate the explosion in
thread interleavings. One of these is that it is limited to checking
a program with just two threads. Similarly, Vechev et al. [35] use
numeric abstract interpretation to compute the sets of indices used
to access shared arrays. As both these techniques are fully static,
they are limited to programs for which it can infer suitable sim-
ple (linear) loop invariants, which precludes usage on many CUDA
kernels which often have complex, non-linear loop invariants com-
puted with modular arithmetic and bitwise operations.

There is an enormous literature on dynamic and static race
detection for general concurrent programs. Two classical examples
include work by Dinning and Schonberg [8], and Savage et al. [32]
that respectively pioneered the use of static and dynamic locksets
in order to check for the absence of races. Several authors have
built upon that line of work using types [11], dataflow analysis [10],
and even greatly extended it to checking for higher level properties
like atomicity [12, 13] and determinism [31]. Unfortunately, these
methods don’t apply in our setting as CUDA eschews lock-based
synchronization.

Several authors have proposed dynamic mechanisms for enforc-
ing determinism by constraining the scheduler. These include tech-
niques that modify the language run-time [3, 25] or the OS [2].
Due to the run-time overheads, these methods are unlikely to ap-
ply in the GPU setting, where programs exhibit a high degree of
fine-grained sharing, for example to maximize memory bandwidth.

The general idea of non-interference [18], in which static infor-
mation flow has it roots, has been proposed as a means of formal-
izing correctness properties of multithreaded programs [9]. Previ-
ous work has also studied the connection between information flow
and concurrency. In particular, Zdancewic and Myers [37] describe
the notion of observational determinism wherein a program is se-
cure iff its observable behaviors are independent of secure inputs
and scheduling, and Terauchi [34] describes a type system for ob-
servational determinism. Our novel contribution is to demonstrate
how of static information flow can be used to amplify the results
of a single execution across all runs over the same configuration,
thereby establishing the property for arbitrary thread interleavings
and data values, and to empirically demonstrate the effectiveness
of this technique for verifying CUDA programs.

Test Amplification Recent work on dynamic test generation has
employed test amplification with the aim of increasing code cov-
erage [5, 6, 16, 33]. Collectively dubbed concolic testing, these
techniques use dynamic symbolic execution to collect logical con-
straints representing input-dependent control flow conditions, then
solve the constraints to obtain inputs that steer execution along dif-
ferent paths. At a high level, all these techniques attempt to max-
imize code coverage by avoiding the generation of test inputs that
redundantly follow the same paths. In this context, the identifica-
tion of equivalence classes of inputs that exercise the same paths
may be viewed as an instance of test amplification: a single input is
amplified to represent its equivalence class of inputs.

Another form of test amplification has also been explored ex-
tensively in work on runtime fault monitoring [17, 19, 21]. By pig-
gybacking symbolic execution on top of a dynamic run, these tech-
niques are able to detect property violations across a much larger
space of inputs than those exercised by a particular concrete exe-
cution. This method has been used to find buffer overflows [21],
generalized to predict more generic property violations [19], and
adapted to generate concrete test inputs that exercise those viola-
tions [17]. Because these techniques only check properties along
the tested execution path, they rely on exhaustive path search to
verify properties across all executions.

The described dynamic test generation and runtime monitoring
techniques fall under what we call symbolic-execution-based test
amplification, an umbrella term for techniques that employ sym-
bolic execution to learn additional information from a concrete exe-
cution. Flow-based test amplification is potentially less precise than
symbolic execution, but is also much cheaper, and as demonstrated
by our evaluation, quite effective in the CUDA setting. Recent work
on verifying memory-safety of programs with floating-point com-
putation [15] has even combined dynamic symbolic execution with
a static flow analysis which establishes that floating-point values
do not interfere with non-floating point values, thereby allowing
amplification of symbolic execution guarantees over floating point

computations. The effectiveness of flow-based test amplification
stems from the fact that programs in the domain isolate the data val-
ues being operated on (e.g. input arrays or floating point numbers)
from those used to determine control-flow and memory accesses.

Finally, test amplification has also appeared in work on the anal-
ysis of general concurrent programs. Wang and Stoller [36] de-
scribe two dynamic analyses for detecting atomicity violations in
concurrent Java programs: one that employs Lipton’s theory of re-
duction [24] to reason about commutativity of concurrent events to
infer atomicity, and another that searches for unserializable permu-
tations of events to detect atomicity violations. Both analyses use
test amplification in the sense that they examine a single execution
but are capable of detecting violations occurring in other possible
interleavings. A different instance of test amplification appears in
work by Chen and Roşu [7], which proposes a relaxation of the
classical happen-before causality partial order [14, 20] to admit a
greater number of compatible interleavings. This relaxation ampli-
fies the partial order to a larger space of possible executions, thus
opening subsequent analyses to detect property violations in more
interleavings. A key contribution of our work is to demonstrate that
enumerating interleavings is simply unnecessary for many CUDA
kernels: we can apply static information flow analysis to generalize
our determinism guarantee to a massive space of interleavings from
a single execution.

Acknowledgements
We wish to thank Mingxun Wang for his part in many fruitful
discussions and his help on initial feasibility experiments. We are
grateful to our shepherd, Patrice Godefroid, and the anonymous
reviewers for their comments and feedback for improving the paper.

References
[1] L. Andersen. Program analysis and specialization for the C

programming language. PhD thesis, 1994.

[2] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient system-enforced
deterministic parallelism. In OSDI, pages 193–206, 2010.

[3] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman. Core-
Det: a compiler and runtime system for deterministic multithreaded
execution. In ASPLOS, pages 53–64, 2010.

[4] M. Boyer, K. Skadron, and W. Weimer. Automated dynamic analysis
of CUDA programs. In STMC, 2008.

[5] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
EXE: automatically generating inputs of death. In CCS, pages 322–
335, 2006.

[6] C. Cadar, P. Godefroid, S. Khurshid, C. S. Păsăreanu, K. Sen,
N. Tillmann, and W. Visser. Symbolic execution for software testing
in practice: preliminary assessment. In ICSE, pages 1066–1071,
2011.

[7] F. Chen and G. Roşu. Parametric and sliced causality. In CAV, pages
240–253, 2007.

[8] A. Dinning and E. Schonberg. Detecting access anomalies in
programs with critical sections. In Workshop on Parallel and
Distributed Debugging, pages 85–96, 1991.

[9] P. A. Emrath and D. A. Padua. Automatic detection of nondetermi-
nacy in parallel programs. In PADD, pages 89–99, 1988.

[10] D. Engler and K. Ashcraft. RacerX: Effective, static detection of race
conditions and deadlocks. In SOSP, pages 237–252, 2003.

[11] C. Flanagan and S. Freund. Type-based race detection for Java. In
PLDI, pages 219–232, 2000.

[12] C. Flanagan and S. N. Freund. Atomizer: a dynamic atomicity checker
for multithreaded programs. In POPL, pages 256–267, 2004.

[13] C. Flanagan and S. Qadeer. A type and effect system for atomicity.
In PLDI, pages 191–202, 2003.

[14] P. Godefroid. Partial-Order Methods for the Verification of
Concurrent Systems: An Approach to the State-Explosion Problem.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1996.

[15] P. Godefroid and J. Kinder. Proving memory safety of floating-point
computations by combining static and dynamic program analysis. In
ISSTA, pages 1–12, 2010.

[16] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated
random testing. In PLDI, pages 213–223, 2005.

[17] P. Godefroid, M. Y. Levin, and D. A. Molnar. Active property
checking. In EMSOFT, pages 207–216, 2008.

[18] J. A. Goguen and J. Meseguer. Security policies and security models.
IEEE Symposium on Security and Privacy, pages 11–20, 1982.

[19] P. Joshi, K. Sen, and M. Shlimovich. Predictive testing: amplifying
the effectiveness of software testing. In ESEC/FSE, pages 561–564,
2007.

[20] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, 1978.

[21] E. Larson and T. Austin. High coverage detection of input-related
security faults. In USENIX Security, 2003.

[22] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In CGO, 2004.

[23] G. Li and G. Gopalakrishnan. Scalable smt-based verification of gpu
kernel functions. In FSE, pages 187–196, 2010.

[24] R. J. Lipton. Reduction: a method of proving properties of parallel
programs. Commun. ACM, 18:717–721, December 1975.

[25] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: Efficient
deterministic multithreading. In SOSP, pages 327–336, 2011.

[26] F. Masdupuy. Semantic analysis of interval congruences. In Formal
Methods in Programming and Their Applications, LNCS 735. 1993.

[27] A. Myers. JFlow: Practical mostly-static information flow control. In
POPL, pages 228–241, 1999.

[28] NVIDIA. CUDA toolkit 3.0. http://developer.nvidia.com/
cuda-toolkit-30-downloads, 2010.

[29] NVIDIA. CUDA accelerated applications. http://www.nvidia.
com/object/cuda_app_tesla.html, 2011.

[30] M. Raza, C. Calcagno, and P. Gardner. Automatic parallelization with
separation logic. In ESOP, pages 348–362, 2009.

[31] C. Sadowski, S. N. Freund, and C. Flanagan. SingleTrack: A dynamic
determinism checker for multithreaded programs. In ESOP, pages
394–409, 2009.

[32] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A dynamic data race detector for multi-threaded programs.
ACM Transactions on Computer Systems, 15:391–411, 1997.

[33] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing
engine for c. In ESEC/FSE, pages 263–272, 2005.

[34] T. Terauchi. A type system for observational determinism. In CSF,
pages 287–300, 2008.

[35] M. T. Vechev, E. Yahav, R. Raman, and V. Sarkar. Automatic
verification of determinism for structured parallel programs. In
SAS, pages 455–471, 2010.

[36] L. Wang and S. D. Stoller. Runtime analysis of atomicity for
multithreaded programs. IEEE Trans. Softw. Eng., 32:93–110,
February 2006.

[37] S. Zdancewic and A. C. Myers. Observational determinism for
concurrent program security. In CSFW, pages 29–43, 2003.

http://developer.nvidia.com/cuda-toolkit-30-downloads
http://developer.nvidia.com/cuda-toolkit-30-downloads
http://www.nvidia.com/object/cuda_app_tesla.html
http://www.nvidia.com/object/cuda_app_tesla.html

	Introduction
	Overview
	CUDA Basics
	Scalar Dot Product
	Verification
	Our Approach

	Test Amplification via Information Flow
	Syntax
	Semantics
	Test Amplification
	CUDA Verification

	Implementation
	Static Analysis
	Dynamic Analysis

	Evaluation
	Experimental Setup
	Static Invariance Analysis
	Dynamic Analysis
	Performance Evaluation

	Related Work

