
Marble: Collaborative Scheduling of Batteryless Sensors with
Meta Reinforcement Learning

Francesco Fraternali
University of California, San Diego

frfrater@ucsd.edu

Bharathan Balaji∗
Amazon

bhabalaj@amazon.com

Dezhi Hong
University of California, San Diego

dehong@ucsd.edu

Yuvraj Agarwal
Carnegie Mellon University

yuvraj@cs.cmu.edu

Rajesh K. Gupta
University of California, San Diego

rgupta@ucsd.edu

ABSTRACT
Batteryless energy-harvesting sensing systems are attractive for
low maintenance but face challenges in real-world applications due
to low quality of service from sporadic and unpredictable energy
availability. To overcome this challenge, recent data-driven energy
management techniques optimize energy usage to maximize ap-
plication performance even in low harvested energy scenarios by
learning energy availability patterns in the environment. These
techniques require prior knowledge of the environment in which
the sensor nodes are deployed to work correctly. In the absence of
historical data, the application performance deteriorates.

To overcome this challenge, we describe here the use of meta
reinforcement learning to increase the application performance of
newly deployed batteryless sensor nodes without historical data.
Our system, called Marble, exploits information from other sensor
node locations to expedite the learning of newly deployed sensor
nodes, and improves application performance in the initial period of
deployment. Our evaluation using real-world data traces shows that
Marble detects up to 66% more events in low lighting conditions,
and up to 25.6% more events on average on the first 3 days of
deployment compared to the state-of-the-art.1

CCS CONCEPTS
• Computing methodologies→Multi-agent systems; • Com-
puter systems organization→ Sensor networks.

KEYWORDS
Batteryless, Wireless Sensor Network, Energy Harvesting, Smart
Buildings, Deep Reinforcement Learning, Collaborative Learning,
Perpetual Operations

∗work done outside of Amazon
1Code and data available at https://github.com/francescofraternali/MAML_on_ray.git

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
BuildSys ’21, November 17–18, 2021, Coimbra, Portugal
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9114-6/21/11. . . $15.00
https://doi.org/10.1145/3486611.3486670

ACM Reference Format:
Francesco Fraternali, Bharathan Balaji, Dezhi Hong, Yuvraj Agarwal, and Ra-
jesh K. Gupta. 2021. Marble: Collaborative Scheduling of Batteryless Sen-
sors with Meta Reinforcement Learning. In ACM International Conference
on Systems for Energy-Efficient Built Environments (BuildSys ’21), Novem-
ber 17–18, 2021, Coimbra, Portugal. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3486611.3486670

1 INTRODUCTION
Embedded sensing and actuation devices are used in many appli-
cations such as to monitor traffic conditions, structural health of
civil structures, environmental conditions in buildings, crops in
agriculture. These deployments often consist of thousands of de-
vices deployed in a distributed manner. For instance, in a typical
commercial building, there are hundreds of individual zones being
monitored [26]. To ease installation and reduce deployment cost,
these devices are often battery-powered, thus requiring manual
battery replacement to sustain their tasks over time. However, at
the scale of hundreds of sensor nodes, manual battery replacement
is a time-consuming and expensive maintenance task. To extend
the lifetime and avoid battery replacement, several past efforts
have sought to create immortal devices by a combination of energy
harvesting and batteryless design [2, 13, 39, 50].

Such energy-harvesting systems have to make a careful trade-off
in sensing, communication, and computation to maximize utility
with available energy [8, 20, 24, 35, 55]. These design trade-offs
change depending on the hardware, application requirements and
energy availability in the environment. Prior works either perform
manual configuration or use heuristics to identify the operating
points [9, 43, 54]. Manual configuration does not scale and heuristics
do not generalize well to every context. To this end, several recent
efforts have attempted machine learning for energy management
of batteryless energy-harvesting sensors: the system understands
environmental patterns, learns both energy and application needs,
and creates a policy to maximize both performance and sensor node
lifetime. Along these lines, many recent works [1, 3, 8, 16, 31, 56]
exploit reinforcement learning (RL) [48] to automatically optimize
the operation of sensor nodes under uncertain energy availability.

In RL, an agent interacts with an environment and learns to make
optimal decisions through experience. The domain expert identifies
the objective (i.e. reward function in RL terminology) and the inputs
(i.e. state) that affect the decisions (i.e. actions) of the agent. The
agent tries different actions, observes their corresponding rewards,
and learns a policy that maximizes the long-term cumulative re-
wards. In the case of energy harvesting, the agent duty-cycles the

https://orcid.org/1234-5678-9012-3456
https://doi.org/10.1145/3486611.3486670
https://doi.org/10.1145/3486611.3486670

BuildSys ’21, November 17–18, 2021, Coimbra, Portugal F. Fraternali et al.

energy harvesting sensors (action) based on the energy availability
and probability of a sensing event (state). The agent receives high
rewards when it detects all events without depleting its energy.
The RL policies are typically trained in simulation using historical
data because algorithms converge faster and exploratory actions in
simulations do not impact real-world performance [1, 14, 16, 31].

While these techniques have proven effective when historical
data is available (e.g. 95% event detection rate [16]), their perfor-
mance drops consistently whenever historical data are missing be-
cause the accuracy of simulations is predicated on representing the
energy and event patterns in the environment. Relying on historical
data makes the sensor scheduling susceptible to changes in environ-
mental patterns. To make these sensors effective in the real-world,
the deployed sensors should quickly adapt to any environmental
conditions even without historical data. This consideration is criti-
cal for both newly deployed sensors that do not have any previous
information about the environment and for sensors which environ-
ment can suddenly change (e.g., change in schedules, internal light
malfunction). Ideally, the system should intelligently explore the
environment to discover event patterns while preserving energy.
We envision a day in the future when the time for building man-
agers to get data feeds reduces to seconds. Waiting for 3-7 days
may deter adoption in such a connected world, our work aims to
push the state-of-the-art so that batteryless sensors send valuable
data from the first day of deployment.

We build on prior data-driven approaches and propose methods
to minimize reliance on historical data for duty-cycling energy-
harvesting sensors. Our key observation is that instead of relying on
collecting historical data for individual sensor nodes, we learn from
data across multiple sensors in the environment. Simple schemes
such as learning a single policy for all the sensor nodes deployment
cannot achieve good performance [15]. Thus, we need to learn a
separate policy for each sensor node, while still taking advantage
of the data collected across sensor nodes. We present Marble, an
approach that uses Meta Reinforcement Learning (Meta RL) for fast
adaptation to collaboratively learn a general “meta-policy” by using
data collected from sensor nodes deployed in the environment. The
meta-policy is used to learn a specific policy for each sensor node.
Marble also addresses the cold start problem: when a new sensor is
deployed in an existing sensor ecosystem, the learned meta-policy
is used to collect the location-specific data. After a few data samples
are collected, Marble re-trains the agent, and the meta-policy is
adapted to a specific policy for the newly deployed sensor.

To assess the effectiveness of our method, we deploy eleven sen-
sor nodes in four different indoor locations (middle of an office,
corridor, stairs and door) and collect real-world data such as tem-
perature, humidity, pressure, light intensity, and people occupancy
for two consecutive months. Using simulations with real-world
data traces, we show that Marble detects up to 25.6% more events
on average on the first 3 days of deployment and up to 10.6% after
a month of deployment when compared to state-of-the-art tech-
niques. In the staircase scenario where the energy availability is
lowest in our deployment, the use of Marble increases up to 66%
the number of environmental events detected in the first 3 days of
deployment compared with the state-of-the-art.

2 RELATEDWORK AND BACKGROUND
2.1 Related Work
Several energy-harvesting solutions have been proposed in the liter-
ature [2, 17, 18, 30, 47, 53]. Some methods deplete available energy
as soon as it becomes available, e.g., harvesting AC power lines for
energy metering [7, 57], RFID-based battery-free camera [40], ther-
moelectric harvesting-based flow sensor [33]. Backscatter sensors
are a special case that eliminates communication-based energy ex-
penditure by using existing RF signals for both communication and
harvesting [10, 25, 50]. Time separation of energy availability from
sensing activity improves quality of sensing [23, 27]. Several works
address intermittent operations of batteryless energy-harvesting
systems [18, 19, 30, 32]. Along these lines, this work addresses the
problem of combined optimization of computation, communication,
and energy use without having to stop operation of the node.

Minimizing manual configuration of sensor nodes is an impor-
tant task to scale deployments as underlined by many works [3,
4, 22, 35, 52]. Adaptive duty-cycling of energy-harvesting sensors
has been used to achieve energy-neutral operations [20, 24, 35, 55]
where sensor nodes adjust their duty-cycle parameters based on
the predicted energy availability to maximize lifetime and applica-
tion performance [47]. Moser et al. [35] adapt parameters of the
application itself to maximize the long-term utility based on future
energy availability prediction.

Energy availability and environment events are sporadic and
challenging to predict, which can reduce the quality of the appli-
cations running on these nodes. As an example, Campbell et al.
used opportunistic sensing, i.e. sense whenever energy is available,
to detect door events and only achieved 66% accuracy due to low
energy availability [2]. Similarly, Pible detects only 32% of the PIR
events in low energy conditions while using a rule-based approach
for energy prediction [13]. To increase the event detection accuracy,
a system should turn On the sensor right before an event happens
to detect the event while saving as much energy as possible for later
usage[16, 31]. To do this, a system has to learn to predict both en-
ergy availability and event occurrence patterns in the environment
to make decisions that maximize overall performance. With this
goal, many works [1, 3, 5, 16, 20, 35] use machine learning for duty-
cycling decisions, and they can increase event detection accuracy
to up to 95% while operating in an energy neutral manner [16].

Reinforcement Learning (RL) has been identified by several
prior works as a means to configure wireless sensors and shown
promising results [1, 8, 11, 31, 36–38, 58]. RL algorithms learn from
trial-and-error experience given a high-level objective rather than
labeled examples as in supervised learning. Therefore, with RL
trained policies we can learn sensor-specific duty-cycling schedules
that take into account the particular energy availability and event
patterns that the sensor is exposed to. RL has been successfully
demonstrated use in duty-cycling energy harvesting sensors in
both outdoor [11, 45] and indoor conditions [14, 16, 31]. However,
it is impractical to train RL policies using real-world interactions as
trial-and-error actions lead to poor performance and convergence
to a good policy can take months to years [14] of data. Therefore,
it is common to use simulations based on real-world data traces to
train the RL policy [1, 14, 16, 31].

Marble: Collaborative Scheduling of Batteryless Sensors with Meta Reinforcement Learning BuildSys ’21, November 17–18, 2021, Coimbra, Portugal

Reliance on historical data makes it challenging to adopt RL-
based scheduling policies in practice. The historical data needs to
be reliable, and therefore, requires data collection from a temporary
battery powered sensor. Use of temporary sensors increases deploy-
ment complexity considerably at scale (e.g. 1000s of sensors). If the
RL policy is trained using an energy-harvesting sensor instead, it
will miss events while collecting data because it is running a sub-
optimal duty-cycling policy. Ember [16] addresses this problem by
collecting data using a simple rule-based policy in conjunction with
an RL-based policy that is re-trained on a daily basis. Their evalu-
ation shows that RL policy performance gradually improves over
the course of deployment without requiring manual intervention.
However, performance suffers during the initial days of deployment.
We evaluated the Ember algorithm and show that event detection
accuracy is only 48.4% after 3 days of deployment in low energy
conditions. The key limitation of Ember is that it learns a separate
RL policy for each sensor that only relies on data collected by that
sensor for training. It is common for sensors to be deployed en
masse, and we can exploit the data collected by all the sensors to
train the RL policy.

Fraternali et al. [15] exploit the same idea to scale energy har-
vesting sensor node deployments. They show that learning a single
policy for all the sensors deployed leads to a degradation in per-
formance as the RL algorithm has to learn to predict the energy
and event patterns for all the situations accurately. Prediction of a
single sensor node’s event patterns is much easier as we need to
learn a much narrower distribution. To improve performance, Fra-
ternali et al. [15] cluster the sensor nodes that have similar energy
availability and show that learning a policy for each cluster results
in much better performance than the general policy. We build on
this idea, but instead propose using Meta RL to learn sensor-specific
policies. When we learn a cluster-specific algorithm, the data col-
lected across sensors need to be split per cluster, which reduces
the data available to train each policy. Therefore, large clusters will
have more historical data to train the policy, which also increases
the data distribution that the policy has to learn and thus degrades
performance. Smaller clusters, on the other hand, will reduce his-
torical data available and deteriorate performance. With the Meta
RL approach, we can achieve the best of both: we learn a sensor
specific policy that exploits all of the historical data available. In
Meta RL, we train a meta-policy using the entire dataset that learns
how to train a sensor-specific RL policy. We show that our Meta
RL based solution outperforms prior approaches.

The main differences between our work and current state-of-the-
art techniques are reported in Table 1.

2.2 Meta Reinforcement Learning
In RL, an agent interacts with an environment in a state s. The
agent takes an action a, transitions to its modified state s’, and
receives a reward r. The goal of the agent is to find a sequence of
actions that maximize the cumulative long-term reward. Typically,
the agent is trained to maximize rewards across a given number
of steps, called a horizon. The probability of taking action a given
state s as input is determined by the agent’s policy. The agent starts
from a random policy and collects data in tuples of s, a, s’, r. After a
number of interactions, the resulting dataset is used to update the

agent policy. The updated policy is used to collect more data and
this procedure is continued until convergence. Each policy update
is referred to as an iteration. As it can take many iterations be-
fore a working policy is developed, meta-learning techniques have
been proposed to speed up policy learning. With meta-learning,
a variety of learning tasks are used to train a model that can be
exploited to quickly learn new tasks using only a small number
of training samples. Meta-reinforcement learning combines both
meta-learning and RL so that an agent learns to solve unseen tasks
fast and efficiently. For our problem, we use the well established
Model-Agnostic Meta-Learning (MAML) algorithm [12] for few-
shot learning via meta-learning. Other meta-learning algorithms
are equally applicable to our problem. In MAML, different tasks are
used to build a meta-policy such that a small number of gradient
steps with a small amount of training data from a new task will
produce good generalization performance on that new task. In our
scenario, we consider a distribution over tasks 𝑝 (T) that we want
our model to be able to adapt to. The meta-policy is trained to learn
a new task specific policy \

′
𝑖
whose distribution is selected from

𝑝 (T). The meta-policy is represented by a function 𝑓\ with param-
eters \ . When adapting to a new task T𝑖 , the meta-policy trains
a task specific policy with parameters \𝑖 . The updated parameter
vector \

′
𝑖
is computed using gradient descent for a number of inner

adaptation steps updates on task T𝑖 :

\
′
𝑖 = \ − 𝛼▽\𝐿\𝑖 (𝑓\), (1)

where 𝛼 is the learning step size. The meta-policy parameters are
trained by optimizing for the performance of 𝑓

\
′
𝑖
with respect to

\ across all the tasks sampled from 𝑝 (T). The meta-optimization
across tasks is performed via stochastic gradient descent (SGD),
and the meta-policy parameters \ are updated as:

\ ← \ − 𝛽▽\
∑
T𝑖∼𝑝 (T)

𝐿T𝑖 (𝑓\ ′
𝑖
), (2)

where 𝛽 is the meta step size. Each RL task T𝑖 contains an initial
state distribution𝑞𝑖 (𝑥1) and a transition distribution𝑞𝑖 (𝑥𝑡+1 |𝑥𝑡 , 𝑎𝑡),
and the loss 𝐿T𝑖 corresponds to the (negative) reward function 𝑅.
The loss for task T𝑖 and meta-policy (𝑓\) has the following form:

𝐿T𝑖 (𝑓\) = −𝐸𝑥𝑡 ,𝑎𝑡∼𝑓\𝑞T𝑖

[
𝐻∑
𝑡=1

𝑅𝑖 (𝑥𝑡 , 𝑎𝑡)
]
, (3)

where 𝐻 is the horizon that defines the length of an episode.
We use the MAML algorithm [12] as-is in our work. MAML

has been used in many domains such as image recognition [46],
robotics [34], neural architecture search [29] and speech recogni-
tion [21]. Our main contributions is to formulate the problem of
duty-cycling energy harvesting sensors in the Meta RL framework.
The novelty of our approach is not to simply apply an updated
algorithm to an existing approach, our formulation alters prior
approaches altogether to take advantage of data collected by all
the sensors deployed in a system while training a sensor specific
policy to improve performance in the initial days of deployment.
The meta model can be created for as many sensors as are available,
there are no limitations with respect to sensor type or deployment
area. However, the effectiveness of the approach will decrease if

BuildSys ’21, November 17–18, 2021, Coimbra, Portugal F. Fraternali et al.

Table 1: State-of-the-art techniques vs Marble comparison.

Platform No Intermittent Hist Data Cold-Start Collaborative Event Det [%]
Operations Not Needed Supported Learning in Low Energy

Intermittent Comp [2, 10, 17, 41] ✓ NA
SpotOn [31] ✓ 38.7

Transfer Learning (TL) [14, 15] ✓ ✓ ✓ 68-2 - 69.2
Ember [16] ✓ ✓ ✓ 48.4 - 76.4
Marble ✓ ✓ ✓ ✓ 74.0 - 87.4

Table 2: Sensor Event Definition.

Sensor Measurement Change

Temperature ± 0.1C
Humidity ± 1 %
Pressure ± 100 Pa
Light ± 50 lux
PIR person moving

the sensors are too different from each other. This difference can
be measured with the change in distribution of the datasets. The
reduction in performance will degrade gracefully and still be bet-
ter than starting from scratch. Such performance degradation has
been extensively studied in other domains [51]. To the best of our
knowledge, we are the first to apply Meta RL for this problem and
evaluate it using real-world data traces.

3 DESIGN OF MARBLE
3.1 Objective and Problem Formulation
We target indoor event-driven applications for buildings using bat-
teryless energy-harvesting sensors powered with ambient light.
The system should detect (i) motion using PIR sensors and (ii) envi-
ronmental changes with regard to temperature, humidity, pressure,
and light (referred to as THPL events). Table 2 reports the threshold
values we use to define the events: when the PIR is powered, an
event is detected whenever a person moves in its working range;
When the temperature, humidity, pressure and light sensors are
powered, the CPU wakes up every minute, polls all the sensors,
and gets an event if any of the THPL measurements changes by the
listed threshold values. When an event is detected, all sensors’ data
are transmitted. This design decision is due to the PIR being an
event sensor whereas the THPL sensor data can be polled any time.
If we miss the PIR event, there is no way to recover it. Therefore,
we treat them separately. Another reason we combine THPL sen-
sors is that the energy consumption of reporting the sensor data is
dominated by BLE communication. Energy to transmit one sensor
measurement is roughly the same as transmitting all four.

The objective of the system is two-fold: (i) duty-cycle the sensors
to maximize the event detection rate while (ii) avoid energy storage
depletion. If the node dies due to energy depletion, it can take sev-
eral hours for the node to revive after recharging with harvested
energy. We select indoor sensing locations that are generally sub-
ject to low energy availability, so that there is not enough energy
for the sensors to stay always On. Therefore, the system is forced to
learn a policy to duty-cycle the sensors to catch events while saving

energy whenever possible. The locations that we target are Stairs,
Corridors, Middle of an Office, and Door cases. In the former two
cases, lighting is low in intensity but always On for security reasons.
For the latter two cases (Middle and Door), the sensors can be ex-
posed to both interior lighting and exterior natural lighting coming
through the windows. We do not deploy sensors at locations such
as Windows and Interior Rooms, because these do not present en-
ergy availability challenges: either we can leave the sensors always
On considering the abundance of available energy near a window,
while in the latter case there is no energy availability due to lack
of activity with the ongoing Covid-19 restrictions. The proposed
approach does not make any assumptions on specific activity or
human behavior patterns. The event detection performance hinges
on the predictability of the patterns. If the patterns are inherently
random, no machine learning approach will succeed in predicting
them. Furthermore, we do not make domain specific assumptions
in our experiments and the proposed algorithm should generalize
to other domains and deployment. We open sourced our code and
data to encourage further research in this direction.

3.2 Marble for Batteryless Sensors
The objective of Marble is two-fold: (a) maximize event detection
and (b) avoid energy depletion.

The State Space consists of information such as the state of
charge of the energy storage (continuous value), intensity of light
(continuous value), the current hour of the day (represented as one-
hot encoded bit vector) and whether the current day is a weekday
or weekend (one-hot encoded vector).

The Action Space consists two knobs controlled by the energy
policy: (a) PIR On-Off : a binary decision to turn on or off the PIR
sensor (i.e., sensor On or Off), THPL On-Off : a binary decision
to turn on, or off the temperature, humidity, pressure and light
sensors; if on the node polls all these sensors every minute.

The State Transition: Each action is taken after State Transition
period, which we set to 60 minutes. By using a large State Transition
time, the system can decrease the energy for communicating its
action, but if the sensor is left Off for too long it could miss events.
Ideally, to catch a PIR event, the system should turn On the sensor
right before the event happens and leave the sensor Off for the rest
of the time to save energy. We determine 60 minutes as a balance
between too much communication and granularity of intervention.

The Reward Function is +0.01 for each event detected, and -1
when a node depletes its energy storage. Our reward reflects the
two-fold objective of our system: if the system catches an event it
is positively rewarded; if the node dies it receives a large negative

Marble: Collaborative Scheduling of Batteryless Sensors with Meta Reinforcement Learning BuildSys ’21, November 17–18, 2021, Coimbra, Portugal

Table 3: Hyper-parameters and parameters used.

Hyper-Parameter Value

Algorithm MAML with Ray-RLlib [28]
State Transition 60 min
Discount Factor 0.99
Horizon (𝐻) 24h

Max. Training Iters (𝑁) 100
Inner Adaptation Steps 10
MAML Optimizer Steps 10
Inner Learning Rate (𝛼) 1e-4
SGD Learning Rate (𝛽) 1e-3

NN Model 2 hidden layers, 256 neurons each

Remaining hyper-parameters are left at default values in the Ray
library (RLlib) [28].

reward. We opted for a large negative penalty because if the super-
capacitor is depleted it can take several hours to charge, and no
data can be transmitted during that time. To maximize the reward,
the system has to find the best sequence of actions to catch as many
events as possible while avoiding energy depletion.

3.3 Hardware and System Architecture

PIR
Solar-Panel

Whole-Node

Super-Capacitor

Figure 1: Energy-harvesting sensor node used in our study.

3.3.1 Sensor Node. for our experiments, we used a general-purpose
energy-harvesting batteryless sensor node for indoor applications.
It harvests energy from ambient light with a solar panel (AM-
1454 [6]) and embeds the sensors: motion, temperature, humidity,
pressure, and light. Bluetooth Low Energy (BLE) is used to relay
data. The sensor node can store part of the harvested energy in a
supercapacitor for later usage. The supercapacitor is 1.5F with 5.5V
nominal voltage (Panasonic EEC-S5R5V155 [42]). When starting
from full capacity, it can last up to 8 days by sensing and sending
over BLE 1 data packet every 10 minutes without any lighting avail-
ability. The minimum usable voltage for all the sensors to correctly
take their measurements is 3V. Therefore, for our experiments, we
consider the energy storage to be depleted once it drops to 3V or
lower. Figure 1 depicts our sensor node.

3.3.2 Deployment Architecture. Our wireless sensor network ar-
chitecture includes three main parts: the sensors, the base stations,
and the local server.We only target one-hop sensor networks, where
a node sends the data to the closest base station via BLE. Each base
station sends the data to the local server for training usingWi-Fi. RL
training is performed on the local server, and the base stations are

Figure 2: System architecture and communication process
between the sensor node, the base station and local server.

only used to transmit the data. After the training is done, the local
server sends the calculated actions to the base station that further
relays them to the sensors. The sensor nodes remain in the sleep
mode until an event wakes up the sensors, or the next communica-
tion schedule (i.e., state transition) is reached. Every time a sensor
node communicates with the base station, the node sends its su-
percapacitor voltage level and the latest values from all the sensors
(motion, light intensity, temperature, humidity, pressure). Figure
2 illustrates the communication steps. Even if many components
in our architecture are wired (i.e. Base Stations), the importance
of using batteryless sensor nodes is crucial to ease deployment. In
our building, we have 60+ rooms on a single floor and we can get
complete coverage with 10 base stations. So we can save powered
sensors with a ratio of about 1:6 when we deploy one sensor per
room. We would like to further increase density to 1 sensor per
desk to detect fine-grained occupancy, and there are rooms with
up to 10 desks. Another issue is that the ideal location of motion
and temperature sensors need not be near a power source. Lack of
reliable batteryless sensors limits such deployments.

The proposed algorithm is agnostic to the network protocol and
architecture. It can be easily adapted to other settings.

4 METHODOLOGY
As a first experiment, we want to test if training a policy by using
historical data from different locations can speed up, and improve
the learning of a newly deployed node that does not have any infor-
mation about the environment. Following that, we move towards a
more challenging situation in which we simulate the deployment of
a whole set of sensor nodes without historical data, and test if the
learning of a node can be improved by exploiting the information
gathered from all the deployed nodes. We perform our evaluation
in simulations using real world data traces. We start with a brief
explanation of our simulation setup.

4.1 Simulations
The simulator uses real-world data traces such as lighting and event
data to simulate both the energy consumed due to sensing and com-
munication, and the energy gained from harvesting. Table 4 reports
the energy consumption breakdown of each of the components
used in the board. Therefore, our simulator includes all the node en-
ergy consumption parts (node sleeping, waking up, sensor reading,
BLE communication). The energy consumption information is ex-
tracted from the datasheet of each component in the platform. Not

BuildSys ’21, November 17–18, 2021, Coimbra, Portugal F. Fraternali et al.

Table 4: Current breakdown of the sensor node used. The
energy consumption information is extracted from the
datasheet of each component in the platform. For an accu-
rate representation, we consider all the current consumed
by the system to wake up, read all the sensors data, transmit
the data using BLE, and the BLE message acknowledgment.

Feature Current [µA]

Board Leakage 1
MCU in Sleep Mode 1

PIR On 1
Read THPL 1.2

PIR Detection 102
Read THPL + BLE Transmission 199

Solar Panel at 200 lux 35.2

surprisingly, transmitting data using BLE communication accounts
for the majority of energy used.

The historical data we use - lighting and events - does not change
with agent actions and is based on real-world data traces. Therefore,
it is possible for us to generate counterfactuals using the simulator,
i.e. we can compute the energy level of the sensor node and the
number of events captured based on the agent actions.

In a real world setup, simulations are used to train the RL policy
and deploy it to duty-cycle the sensors. In our evaluation setup,
we have two levels of simulations. The low level simulation is the
same as the simulator that is to train the RL policy. The high level
simulation evaluates the proposed algorithm if they were to be
deployed in the real-world. The two levels of simulations helps
us compare algorithms in a fair manner using historical datasets
without real-world deployment of sensors.

4.2 Cold-Start Learning
We train a meta-policy using all the historical data from known
locations, and use it to drive a newly deployed sensor node. By
doing so, we expect to have a better accuracy in event detection
w.r.t. to driving a node without any previous information of the
environment. Therefore, by cold start, we mean that the data for the
specific location is not available. When we bootstrap learning with
data from other locations, the performance is suboptimal and the
agent performance improves as it collects data from that location.

To keep updating its policy to changes in the environment, the
system uses a day-by-day learning approach as shown in Algorithm
1 where the the meta-policy and the RL policies are updated each
day. Given a historical dataset𝐷 , we train an RL policy usingMAML
in a simulator as described in Algorithm 2.

Once the policy is trained, we deploy it on the new sensor node
(line 5 of Algorithm 1). The policy duty-cycles the sensor node given
the environment state. We collect the interaction data in the form
of (state, action, reward, next state) to further update the policy
(line 6). At the end of each day, we use the data collected so far to
re-train the agent in the simulator using Algorithm 2. We fine-tune
the model with the new data, i.e., the re-training does not restart
with an empty policy but the previously learned policy is restored
and we backpropagate the gradients from the loss obtained with
the new data [49]. Such fine-tuning ensures the sensor node adapts

to changing environmental patterns. The process is repeated for the
duration of the experiment. Algorithm 2 shows the pseudo-code

Algorithm 1: Day-by-Day Algorithm

1: if Dataset 𝐷 is empty then
2: Collect data 𝐷 for one day using random policy
3: end if
4: while True do
5: Run the simulator with 𝐷 till convergence using Algorithm

2 and obtain a trained policy
6: Collect data 𝐷 ′ from one more day using trained policy, and

update 𝐷 = 𝐷 ∪ 𝐷 ′
7: end while

Algorithm 2:MAML Simulator Algorithm

1: Initialize \
2: for 𝑖 = 1, . . . , 𝑁 or till policy convergence do
3: Sample batch of tasks T𝑖 ∼ 𝑝 (T)
4: for All T𝑖 do
5: Sample K trajectories 𝐷 = (𝑥1, 𝑎1, ...𝑥𝐻) using 𝑓\ in T𝑖
6: Evaluate ▽\𝐿T𝑖 (𝑓\) in Eq 3
7: \

′
𝑖
= \ − 𝛼▽\𝐿\𝑖 (𝑓\)

8: Sample 𝐷
′
𝑖
= (𝑥1, 𝑎1, ...𝑥𝐻) using (𝑓\) in T𝑖

9: end for
10: Update \ ← \ − 𝛽▽\

∑
T𝑖∼𝑝 (T) 𝐿T𝑖 (𝑓\ ′

𝑖
)

11: end for

of the MAML algorithm used to generate our RL policy, details of
which are described in Section 2.2 and the hyper-parameters in
Table 3. The training ends once Algorithm 2 either converges or
until it reaches a maximum of 100 training iterations. We say the
training policy has converged when the episode reward changes by
< 3% compared to the previous iteration’s policy.With a day-by-day
learning approach, the agent starts training using data currently
available and runs till convergence (Figure 3).

Once converged, it uses the policy to detect events on the follow-
ing day, and the detection rate is evaluated for that day. The new
data is added to the training dataset, and the agent re-trains the
policy. This process is repeated throughout the experiment. Thus,
testing is always executed on data unknown to the agent.

4.3 Collaborative Learning
Historical data might not be always available, especially if a set
of sensors are deployed in a new building or if the environment
changes suddenly (e.g. office re-allocation). For these cases, we
propose a collaborative learning algorithm whose pseudo-code is
reported in Algorithm 3. On day zero, as no previous data are
available, Marble collects data using a randompolicy (line 1). As new
data are gathered from the different locations it trains a meta-policy
using all the available data using Algorithm 2 (line 3). After the
training is complete, the system fine-tunes the policy by using only
the data collected in a specific location (line 4) and once the training
is done it uses the learned policy to collect the data (line 5). We

Marble: Collaborative Scheduling of Batteryless Sensors with Meta Reinforcement Learning BuildSys ’21, November 17–18, 2021, Coimbra, Portugal

0 10 20 30 40 50 60 70 80 90
Iteration number [num]

0.3

0.4

0.5

0.6

0.7

0.8

Re
wa

rd
[n

um
]

Figure 3: Convergence example: We deem the training pol-
icy has converged when the episode reward does not change
by ± 3% compared to the previous day’s policy or if it reaches
a maximum of 100 training iterations. In this example, the
policy converges at around 80 iterations.

fine-tune the meta-learned model with local data [49]. Both transfer
learning and meta learning follow the same fine-tuning process.
The improvement in performance is due to meta-learning from
all sensors. Similar gains with meta-learning have been observed
in several domains when compared to transfer learning [51]. We
measured the overall training process to be ∼30 mins wall-clock
time using a standard i-7 CPU with 3.2GHz frequency. 15 mins are
spent to train the meta-learning policy and 15 mins to fine-tune it.

Algorithm 3: Collaborative Learning Algorithm

1: On Day 0, collects data using a random policy
2: while True do
3: Trains a meta-policy using the data collected from all the

deployed nodes using Algorithm 2
4: Fine-tunes the meta-policy using the data collected from a

specific location
5: Deploys the policy and collect data for 1 day
6: end while

The key component ofMarble that boosts performance compared
to prior methods [15, 16] is Algorithm 2. The MAML algorithm
trains a ‘meta-policy’ that is optimized for quickly adapting to a
new task with few data points using fine-tuning. MAML trains
task specific policy on a set of tasks using a common ‘meta-policy’,
and computes the loss on test data with the trained policy. It then
updates the ‘meta-policy’ based on this test loss using second order
gradient updates. Therefore, unlike prior methods, the pre-trained
network is optimized for fine-tuning with few data points.

5 EXPERIMENTAL RESULTS
5.1 Cold-Start Learning Results
To test if Marble can learn more effectively from multiple data
sources, and correctly drive newly deployed nodes, we compare
our system against (i) Ember[16] and (ii) Transfer Learning (TL)[14].
Ember uses a deep RL algorithm called proximal policy optimiza-
tion [44] to learn a policy, and for a fair comparison we use the same
input and actions spaces as our agent. To discover new events over

time, Ember opportunistically keeps the sensors on with a simple
round-robin schedule. MAML does not rely on such a heuristic, the
exploration incentive is baked into the algorithm for fast adaptation.
We use Ember as a baseline as it starts without any historical data.
TL uses the same Ember algorithm, but it uses data from different
locations to first learn a general policy, and then deploys it in the
newly deployed sensor node. Both Marble and TL use historical
data gathered from 5 sensor nodes deployed for a month to train a
general policy. Each of the nodes is deployed at a different location
(near a door, in the middle of an office, near a window, in a stair
access and conference room).

Fraternali et al. [15] address a very similar problem, but we could
not directly compare against their work because they synthetically
created 1000 sensors while we only used real data from 5 sensors. If
we did cluster, each of the 5 sensors are taken from distinct locations
and would form their own cluster. Therefore, [15] would reduce to
either Ember or transfer learning, the baselines we considered in
the paper. Further, the algorithm in [15] shows benefits of clustering
similar sensors together, but this clustering is done manually. We
do not need to perform any manual steps with Marble.

When the policy converges, it is deployed to collect data for a
sensor node deployed in a new location. All the systems use Day-
by-Day learning (Algorithm 1), and the experiment is performed
for 30 days after deployment. We repeat each experiment 5 times.
Results are shown in Figure 4 and Figure 5. Figure 4-left reports the
results obtained by deploying a new node in the middle of an office
while collecting THPL events while Figure 4-right reports results
of a node collecting PIR events in a different room. Note that the
node on the left is subject to both internal and external lighting
coming from a window, while the node on the right receives only
internal lighting. Therefore, the energy patterns of the nodes on the
left are more predictable. Figure 5 reports data while simulating a
node deployed in stair access collecting both THPL and PIR events.
All the results are reported with a rolling mean window of 3 days.
From the figures we make the following observations:

(1) Marble outperforms both Ember and TL as it better exploits
historical data from the other 5 locations and increases the
event detection rate from the first day of deployment.

(2) In many cases, TL achieves even lower results than Ember.
After carefully checking the data, we noticed that the general
policy learned by TL before deployment is too conservative
in turning-On the sensors to detect events as it prefers to
avoid energy storage depletion.

(3) On Figure 4-left, after about 2 weeks, the event detection
rate is similar for all the systems as the THPL events are
easily predictable due to strong window lighting patterns.

(4) Whenever event patterns have higher stochasticity (e.g. THPL
and PIR events in a stair access Figure 5), Marble increases
the event detection accuracy as it makes better predictions.

We observe similar trends in Table 5 that reports the event de-
tection average after 3 days, one week and one month of the exper-
iment. Marble outperforms previous techniques in each conditions
and detects up to 25.6% more events w.r.t. Ember in the stair access
case (i.e. 74% vs 48.4%) which has particularly low level of lighting.

BuildSys ’21, November 17–18, 2021, Coimbra, Portugal F. Fraternali et al.

Figure 4: Cold-Start Learning Experiment. Left: results of a node deployed in the middle of an office while collecting THPL
events while on theRight results of a node collecting data of PIR events. BothMarble and TL use 30 days of historical data from
5 locations to learn a meta-policy and then deploy to a new node. Results shows that Marble achieves better event detection
rate w.r.t. the other methods especially in the first days of deployment.

5 10 15 20 25
Days

50

60

70

80

90

100

Ev
en

t D
et

ec
tio

n
Av

er
ag

e
[%

]

Both THPL & PIR - Stairs

Ember
TL
Marble

Figure 5: Cold-start learning results while collecting both
THPL and PIR events in a Stair Access: Marble outperforms
the other methods as it better exploits historical data from
other locations to make better predictions.

Table 5: Cold-Start Learning Comparison (5 Runs Average).

Event Det Event Det Event Det
3 Days [%] 1 Week [%] 1 Month[%]
Em | TL | Ma Em | TL | Ma Em | TL | Ma

Middle/
Window 76.4 | 68.2 | 87.4 81.4 | 79.3 | 88.6 91.6 | 90.3 | 93.7
(THPL)
Middle 81.7 | 79.0 | 92.2 89.0 | 84.2 | 96.5 92.5 | 91.3 | 98.1
(PIR)
Stairs
(PIR 48.4 | 69.2 | 74.0 60.8 | 72.4 | 78.9 78.7 | 82.3 | 89.3

&THPL)

Legend: Em = Ember, TL = Transfer Learning, Ma = Marble

5.2 Collaborative Learning Results
For this experiment, we simulate the deployment of a set of 6
sensor nodes in 6 different locations without any historical data. The
objective is to improve the performance of an arbitrarily chosen 6th
sensor node. Marble exploits data collected from all the 6 nodes to
first learn a meta-policy, and once converged it fine-tunes the policy
with only the data collected by the 6th deployed node. We compare
the results obtained against Ember that does not use any historical
data. Both the system use a day-by-day learning approach and we

Table 6: Collaborative Learning Comparison (5 Runs Avg).

Event Det Event Det Event Det
3 Days [%] 1 Week [%] 1 Month[%]

Ember | Marb Ember | Marb Ember | Marb

Middle/Win 76.4 | 75.9 81.4 | 92.6 91.6 | 94.2
(THPL)
Middle 81.7 | 84.1 89.0 | 94.7 92.5 | 93.9
(PIR)

Stairs (PIR 48.4 | 73.0 60.8 | 78.9 78.7 | 86.1
&THPL)

conducted the experiment for 30 days. Results of the experiment
are shown in Figure 6 and Figure 7 using a rolling mean window of
3 days. We make the following observations:

(1) Exploiting collected data from multiple sensor nodes in-
creases the event detection accuracy in all the three con-
ditions from the first day of deployment.

(2) From Figure 6-left, as THPL events are more predictable (i.e.
lighting coming from a window), after 4 days Marble in-
creases the event detection up to 99.4% w.r.t. 81.3% of Ember.

(3) In Figure 6-right and Figure 7 Marble result decreases after
about a week w.r.t. Ember. After careful analysis, we noticed
that Marble uses a lot of the energy storage available in the
initial days to increase the event detection rate (∼100% on
Figure 6-right) at the cost of turning-Off the sensors more
frequently later on to avoid energy depletion, and causing a
drop in the event detection rate compared to Ember.

Similar observations can be made from Table 6 that shows the
event detection average achieved by the two methods at different
moments. On the stairs access case, event detection is improved
up to 18.1% after 7 days of deployment as using data from other
locations helps the policy in discovering more events.

5.3 Limitations and Future Work
We report the main limitations we encountered while executing
our experiments and possible future improvements:
Same and Mulitple Sensors-Nodes Required: For the system to increase
the event detection of a newly deployed sensor node, information
from multiple locations are required. Furthermore, for the policy

Marble: Collaborative Scheduling of Batteryless Sensors with Meta Reinforcement Learning BuildSys ’21, November 17–18, 2021, Coimbra, Portugal

Figure 6: Collaborative learning results: Left: Results of a node deployed in the middle of an office while collecting THPL
events while on the Right results of a node collecting data of PIR events. By avoiding the use of historical data and by using
only the data collected from 5 different locations, Marble detects more event w.r.t Ember in the first days of deployment.

5 10 15 20 25
Days

50

60

70

80

90

100

Ev
en

t D
et

ec
tio

n
Av

er
ag

e
[%

]

Both THPL & PIR - Stairs

Ember
Marble

Figure 7: Collaborative learning results while collecting
both THPL and PIR events in a Stair Access: Marble outper-
forms Ember for almost the whole duration of the experi-
ment as it exploits data collected from the other locations
to make better predictions.

to be effective, the nodes have to share similar features such as
similar hardware platform, energy consumption, goals, etc. The use
of information from platforms/systems that are incompatible with
the newly deployed nodes, could be inefficient and even degrade
the performance achieved.
Malfunctions/Adversary Attacks: If one or more sensor nodes trans-
mit incorrect data values due to hardwaremalfunctions or adversary-
manipulation, the policy learned for newly deployed senor nodes
will be affected causing the damage to be propagated to more nodes.
One solution could be to only use data collected from other nodes
whenever local data are missing and rely on the local data once
available.
Using all the Energy: In Figure 6-right, results decrease after 8 days
of the experiment as the policy first uses almost all the energy
available and then turns Off the sensor more after to recharge
the energy storage. Such situation does not happen on Figure 4-
right as the system uses historical data to catch the majority of the
events while saving energy whenever possible. Reaching the energy
voltage limit can lead to poor performance when there is a sudden
change in the environment (e.g. light broken, people pattern change)
that depletes the energy storage and stops operations. A solution
is to increase the minimum voltage before the policy receives a
negative reward giving the supercapacitor a margin of safety.
Energy Harvesting Range Limits: If a node is subject to either very
low energy conditions or to an abundance of it, the node will sys-
tematically either deplete its energy storage by using the minimum

operations or have the energy storage never depleted even by using
the maximum operations allowed. In both cases, Marble will be
useless. However, during our deployment, we found many strategic
locations (i.e. corridors, doors) in which the amount of energy (i.e.
light) availability was in between these two extreme conditions and
the use of a learned policy to exploit the limited energy availability
was still crucial to sustain reliable operations.

6 CONCLUSION
We present Marble, a meta-reinforcement learning-based system
for duty-cycling batteryless energy-harvesting sensors for envi-
ronmental monitoring. By exploiting data collected from other
locations, Marble learns how to duty-cycle newly deployed nodes
and increase the event detection accuracy of the sensors from the
first days of deployment. We have implemented and deployed sens-
ing nodes. Results and simulations show that Marble outperforms
state-of-the-art techniques even without historical collected data
from other sensors. Our evaluation using real-world data traces
shows that Marble detects on average up to 25.6% more events on
the first 3 days of deployment w.r.t. state-of-the-art techniques.

ACKNOWLEDGMENTS
The research reported in this paper was sponsored by the CONIX
Research Center, one of six centers in JUMP, a Semiconductor Re-
search Corporation (SRC) program sponsored by DARPA.

REFERENCES
[1] Fayçal Ait Aoudia at al. 2018. RLMan: An Energy Manager Based on Rein-

forcement Learning for Energy Harvesting Wireless Sensor Networks. IEEE
Transactions on Green Communications and Networking (2018).

[2] Bradford Campbell and Prabal Dutta. 2014. An Energy-Harvesting Sensor Archi-
tecture and Toolkit for Building Monitoring and Event Detection. In Proceedings
of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings
(BuildSys ’14). Association for Computing Machinery.

[3] Roy Chaoming Hsu, Cheng-Ting Liu, and Wei-Ming Lee. 2009. Reinforcement
Learning-Based Dynamic Power Management for Energy Harvesting Wireless
Sensor Network. In Next-Generation Applied Intelligence, Been-Chian Chien,
Tzung-Pei Hong, Shyi-Ming Chen, and Moonis Ali (Eds.).

[4] Qingping Chi, Hairong Yan, Chuan Zhang, Zhibo Pang, and Li Da Xu. 2014. A
Reconfigurable Smart Sensor Interface for Industrial WSN in IoT Environment.
IEEE Transactions on Industrial Informatics (2014).

[5] Man Chu, Hang Li, Xuewen Liao, and Shuguang Cui. 2018. Reinforcement
learning-based multiaccess control and battery prediction with energy harvesting
in IoT systems. IEEE Internet of Things Journal 6, 2 (2018), 2009–2020.

[6] Sanio Semiconductor CO. 2007. https://media.digikey.com/pdf/Data%20Sheets/
Sanyo%20Energy/Amorphous_Br.pdf.

[7] Samuel DeBruin, Bradford Campbell, and Prabal Dutta. 2013. Monjolo: An Energy-
harvesting Energy Meter Architecture. In Proceedings of the 11th ACM Conference

https://media.digikey.com/pdf/Data%20Sheets/Sanyo%20Energy/Amorphous_Br.pdf
https://media.digikey.com/pdf/Data%20Sheets/Sanyo%20Energy/Amorphous_Br.pdf

BuildSys ’21, November 17–18, 2021, Coimbra, Portugal F. Fraternali et al.

on Embedded Networked Sensor Systems (Roma, Italy) (SenSys ’13). ACM, New
York, NY, USA, Article 18, 14 pages. https://doi.org/10.1145/2517351.2517363

[8] Gabriel Martins Dias, Maddalena Nurchis, and Boris Bellalta. 2016. Adapting
sampling interval of sensor networks using on-line reinforcement learning. In
2016 IEEE 3rd World Forum on Internet of Things (WF-IoT).

[9] echelon.com. 2018. https://www.echelon.com/.
[10] Joshua F Ensworth and Matthew S Reynolds. 2017. Ble-backscatter: ultralow-

power IoT nodes compatible with bluetooth 4.0 low energy (BLE) smartphones
and tablets. IEEE Transactions on Microwave Theory and Techniques 65, 9 (2017).

[11] R. C. Hsu et al. 2014. A Reinforcement Learning-Based ToD Provisioning Dynamic
Power Management for Sustainable Operation of Energy Harvesting Wireless
Sensor Node. IEEE Transactions on Emerging Topics in Computing (2014).

[12] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks. arXiv:1703.03400 [cs.LG]

[13] Francesco Fraternali, Bharathan Balaji, Yuvraj Agarwal, Luca Benini, and Rajesh K.
Gupta. 2018. Pible: Battery-Free Mote for Perpetual Indoor BLE Applications. In
Proceedings of the 5th ACM Workshop on Embedded Sensing Systems for Energy-
Efficiency in Building (BuildSys ’18). ACM.

[14] Francesco Fraternali, Bharathan Balaji, Yuvraj Agarwal, and Rajesh K. Gupta.
2020. ACES: Automatic Configuration of Energy Harvesting Sensors with Rein-
forcement Learning. ACM Trans. Sen. Netw. 16, 4, Article 36 (July 2020), 31 pages.
https://doi.org/10.1145/3404191

[15] Francesco Fraternali, Bharathan Balaji, and Rajesh Gupta. 2018. Scaling Configu-
ration of Energy Harvesting Sensors with Reinforcement Learning. In Proceedings
of the 6th International Workshop on Energy Harvesting & Energy-Neutral Sensing
Systems (ENSsys ’18). https://doi.org/10.1145/3279755.3279760

[16] Francesco Fraternali, Bharathan Balaji, Dhiman Sengupta, Dezhi Hong, and
Rajesh K. Gupta. 2020. Ember: Energy Management of Batteryless Event Detec-
tion Sensors with Deep Reinforcement Learning (SenSys ’20). Association for
Computing Machinery, New York, NY, USA.

[17] Josiah Hester, Lanny Sitanayah, and Jacob Sorber. 2015. Tragedy of the Coulombs:
Federating Energy Storage for Tiny, Intermittently-Powered Sensors (SenSys ’15).

[18] Josiah Hester and Jacob Sorber. 2017. Flicker: Rapid Prototyping for the Battery-
less Internet-of-Things (SenSys ’17). Association for Computing Machinery.

[19] Josiah Hester, Kevin Storer, and Jacob Sorber. 2017. Timely Execution on Inter-
mittently Powered Batteryless Sensors. In Proceedings of the 15th ACM Conference
on Embedded Network Sensor Systems (SenSys ’17).

[20] Jason Hsu, Sadaf Zahedi, Aman Kansal, Mani Srivastava, and Vijay Raghunathan.
2006. Adaptive Duty Cycling for Energy Harvesting Systems. In ISLPED’06
Proceedings of the 2006 Int Symposium on Low Power Electronics and Design.

[21] Jui-Yang Hsu, Yuan-Jui Chen, and Hung-yi Lee. 2020. Meta learning for end-
to-end low-resource speech recognition. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 7844–7848.

[22] R. C. Hsu, C. T. Liu, K. C. Wang, and W. M. Lee. 2009. QoS-Aware Power Manage-
ment for Energy Harvesting Wireless Sensor Network Utilizing Reinforcement
Learning. In 2009 International Conference on Computational Science and Engi-
neering, Vol. 2. 537–542. https://doi.org/10.1109/CSE.2009.83

[23] Hrishikesh Jayakumar, Kangwoo Lee, Woo Suk Lee, Arnab Raha, Younghyun Kim,
and Vijay Raghunathan. 2014. Powering the internet of things. In Proceedings of
the 2014 international symposium on Low power electronics and design. ACM.

[24] Aman Kansal, Jason Hsu, Sadaf Zahedi, and Mani B. Srivastava. 2007. Power
Management in EnergyHarvesting Sensor Networks. ACMTrans. Embed. Comput.
Syst. 6, 4, Article 32 (Sept. 2007). https://doi.org/10.1145/1274858.1274870

[25] Bryce Kellogg, Aaron Parks, Shyamnath Gollakota, Joshua R Smith, and David
Wetherall. 2014. Wi-Fi backscatter: Internet connectivity for RF-powered devices.
In ACM SIGCOMM Computer Communication Review, Vol. 44. ACM, 607–618.

[26] Azam Khan and Kasper Hornbæk. 2011. Big Data from the Built Environment. In
Proceedings of the 2nd InternationalWorkshop on Research in the Large. Association
for Computing Machinery.

[27] Victor Lawson and Lakshmish Ramaswamy. 2015. Data Quality and Energy
Management Tradeoffs in Sensor Service Clouds. In Big Data (BigData Congress),
2015 IEEE International Congress on. IEEE, 749–752.

[28] Eric Liang, Richard Liaw, Philipp Moritz, Robert Nishihara, Roy Fox, Ken Gold-
berg, Joseph E. Gonzalez, Michael I. Jordan, and Ion Stoica. 2018. RLlib: Abstrac-
tions for Distributed Reinforcement Learning. arXiv:1712.09381 [cs.AI]

[29] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055 (2018).

[30] Brandon Lucia, Vignesh Balaji, Alexei Colin, Kiwan Maeng, and Emily Ruppel.
2017. Intermittent computing: Challenges and opportunities. In 2nd Summit on
Advances in Programming Languages (SNAPL 2017). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

[31] Yubo Luo et al. 2019. Spoton: Just-in-time active event detection on energy
autonomous sensing systems. Brief Presentations Proceedings (RTAS 2019) (2019).

[32] Kiwan Maeng, Alexei Colin, and Brandon Lucia. 2017. Alpaca: Intermittent exe-
cution without checkpoints. Proceedings of the ACM on Programming Languages
1, OOPSLA (2017), 1–30.

[33] Paul Martin, Zainul Charbiwala, and Mani Srivastava. 2012. DoubleDip: Lever-
aging Thermoelectric Harvesting for Low Power Monitoring of Sporadic Water

Use. In 10th ACM Conference on Embedded Network Sensor Systems (SenSys ’12).
[34] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. 2017. A simple

neural attentive meta-learner. arXiv preprint arXiv:1707.03141 (2017).
[35] C. Moser, L. Thiele, D. Brunelli, and L. Benini. 2010. Adaptive Power Management

for Environmentally Powered Systems. IEEE Trans. Comput. (2010).
[36] Abdulmajid Murad, Kerstin Bach, Frank Alexander Kraemer, and Gavin Taylor.

2019. IoT Sensor Gym: Training Autonomous IoT Devices with Deep Reinforce-
ment Learning. In Proceedings of the 9th International Conference on the Internet
of Things. Association for Computing Machinery.

[37] Abdulmajid Murad, Frank Alexander Kraemer, Kerstin Bach, and Gavin Taylor.
2019. Autonomous Management of Energy-Harvesting IoT Nodes Using Deep
Reinforcement Learning. arXiv preprint arXiv:1905.04181 (2019).

[38] Abdulmajid Murad, Frank Alexander Kraemer, Kerstin Bach, and Gavin Tay-
lor. 2020. Information-Driven Adaptive Sensing Based on Deep Reinforcement
Learning. In 10th International Conference on the Internet of Things (IoT ’20).

[39] Saman Naderiparizi and et al. 2015. Self-localizing Battery-free Cameras. In
Proceedings of the 2015 ACM International Joint Conference on Pervasive and
Ubiquitous Computing (UbiComp ’15).

[40] Saman Naderiparizi, Aaron N Parks, Zerina Kapetanovic, Benjamin Ransford,
and Joshua R Smith. 2015. WISPCam: A battery-free RFID camera. In RFID (RFID),
2015 IEEE International Conference on. IEEE, 166–173.

[41] Matteo Nardello, Harsh Desai, Davide Brunelli, and Brandon Lucia. 2019. Ca-
maroptera: A Batteryless Long-Range Remote Visual Sensing System (ENSsys’19).

[42] Panasonic. 2018. https://media.digikey.com/pdf/Data%20Sheets/Panasonic%
20Electronic%20Components/SG_Series_LowTemp.pdf.

[43] products.currentbyge.com. 2017. https://products.currentbyge.com/sites/
products.currentbyge.com/files/documents/document_file/DT106-GE-
Wireless-Occupancy-Sensor-Wall-Mount-Installation-Guide.pdf.

[44] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. (2017).

[45] Shaswot Shresthamali and et al. 2017. Adaptive Power Management in Solar En-
ergy Harvesting Sensor Node Using Reinforcement Learning. ACM Transactions
on Embedded Computing Systems (TECS) (2017).

[46] Jake Snell, Kevin Swersky, and Richard S Zemel. 2017. Prototypical networks for
few-shot learning. arXiv preprint arXiv:1703.05175 (2017).

[47] Sujesha Sudevalayam and Purushottam Kulkarni. 2011. Energy harvesting sensor
nodes: Survey and implications. IEEE Communications Surveys & Tutorials (2011).

[48] Richard S Sutton, Andrew G Barto, Francis Bach, et al. 1998. Reinforcement
learning: An introduction. MIT press.

[49] Nima Tajbakhsh, Jae Y Shin, Suryakanth R Gurudu, R Todd Hurst, Christopher B
Kendall, Michael B Gotway, and Jianming Liang. 2016. Convolutional neural net-
works for medical image analysis: Full training or fine tuning? IEEE transactions
on medical imaging 35, 5 (2016), 1299–1312.

[50] Vamsi Talla, Bryce Kellogg, Shyamnath Gollakota, and Joshua R Smith. 2017.
Battery-free cellphone. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies 1, 2 (2017), 25.

[51] Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci,
Kelvin Xu, Ross Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Man-
zagol, et al. 2019. Meta-dataset: A dataset of datasets for learning to learn from
few examples. arXiv preprint arXiv:1903.03096 (2019).

[52] Adrian Udenze and Klaus McDonald-Maier. 2009. Direct reinforcement learn-
ing for autonomous power configuration and control in wireless networks. In
Adaptive Hardware and Systems, 2009. AHS 2009. NASA/ESA Conference on. IEEE.

[53] Sennur Ulukus, Aylin Yener, Elza Erkip, Osvaldo Simeone, Michele Zorzi, Pulkit
Grover, and Kaibin Huang. 2015. Energy harvesting wireless communications: A
review of recent advances. IEEE Journal on Selected Areas in Communicat (2015).

[54] utc.com. 2018. https://www.utc.com/.
[55] Christopher M Vigorito, Deepak Ganesan, and Andrew G Barto. 2007. Adaptive

control of duty cycling in energy-harvesting wireless sensor networks. In 2007
4th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc
Communications and Networks. IEEE, 21–30.

[56] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8, 3-4 (1992), 279–292.

[57] Thomas Weng, Bharathan Balaji, Seemanta Dutta, Rajesh Gupta, and Yuvraj
Agarwal. 2011. Managing plug-loads for demand response within buildings.
In Proceedings of the Third ACM Workshop on Embedded Sensing Systems for
Energy-Efficiency in Buildings. 13–18.

[58] Kok-Lim Alvin Yau and et al. 2012. Reinforcement learning for context awareness
and intelligence in wireless networks: Review, new features and open issues.
Journal of Network and Computer Applications (2012).

https://doi.org/10.1145/2517351.2517363
https://www.echelon.com/
https://arxiv.org/abs/1703.03400
https://doi.org/10.1145/3404191
https://doi.org/10.1145/3279755.3279760
https://doi.org/10.1109/CSE.2009.83
https://doi.org/10.1145/1274858.1274870
https://arxiv.org/abs/1712.09381
https://media.digikey.com/pdf/Data%20Sheets/Panasonic%20Electronic%20Components/SG_Series_LowTemp.pdf
https://media.digikey.com/pdf/Data%20Sheets/Panasonic%20Electronic%20Components/SG_Series_LowTemp.pdf
https://products.currentbyge.com/sites/products.currentbyge.com/files/documents/document_file/DT106-GE-Wireless-Occupancy-Sensor-Wall-Mount-Installation-Guide.pdf
https://products.currentbyge.com/sites/products.currentbyge.com/files/documents/document_file/DT106-GE-Wireless-Occupancy-Sensor-Wall-Mount-Installation-Guide.pdf
https://products.currentbyge.com/sites/products.currentbyge.com/files/documents/document_file/DT106-GE-Wireless-Occupancy-Sensor-Wall-Mount-Installation-Guide.pdf
https://www.utc.com/

	Abstract
	1 Introduction
	2 Related Work and Background
	2.1 Related Work
	2.2 Meta Reinforcement Learning

	3 Design of Marble
	3.1 Objective and Problem Formulation
	3.2 Marble for Batteryless Sensors
	3.3 Hardware and System Architecture

	4 Methodology
	4.1 Simulations
	4.2 Cold-Start Learning
	4.3 Collaborative Learning

	5 Experimental Results
	5.1 Cold-Start Learning Results
	5.2 Collaborative Learning Results
	5.3 Limitations and Future Work

	6 Conclusion
	Acknowledgments
	References

