
Available

VMCAI
Evaluation
Artifact

VMCAI
Evaluation
Artifact

Functional

Netter: Probabilistic, Stateful Network Models

Han Zhang, Chi Zhang, Arthur Azevedo de Amorim, Yuvraj Agarwal,
Matt Fredrikson, and Limin Jia

Carnegie Mellon University, Pittsburgh PA, USA
{hzhang3,yuvraj,mfredrik}@cs.cmu.edu

{chiz5,liminjia}@andrew.cmu.edu, arthur.aa@gmail.com

Abstract. We study the problem of using probabilistic network models
to formally analyze their quantitative properties, such as the effect of
different load-balancing strategies on the long-term traffic on a server
farm. Compared to prior work, we explore a different design space in
terms of tradeoffs between model expressiveness and analysis scalability,
which we realize in a language we call Netter. Netter code is compiled
to probabilistic automata, undergoing optimization passes to reduce the
state space of the generated models, thus helping verification scale. We
evaluate Netter on several case studies, including a probabilistic load
balancer, a routing scheme reminiscent of MPLS, and a network defense
mechanism against link-flooding attacks. Our results show that Netter
can analyze quantitative properties of interesting routing schemes that
prior work hadn’t addressed, for networks of small size (4–9 nodes and
a few different types of flows). Moreover, when specialized to simpler,
stateless networks, Netter can parallel the performance of previous state-
of-the-art tools, scaling up to millions of nodes.

Keywords: Stateful networks, Probabilistic model checking, Discrete-
time Markov chains

1 Introduction

Recent years have seen a surge of interest in automated tools for verifying net-
works [6,27,36], in particular for analyzing their quantitative properties—“What
is average latency for this type of traffic?”; “What percentage of packets are
dropped on this link?”. Such formal verification tools complement other analysis
approaches, such as simulations, which are often guaranteed to yield accurate
results, but might require a large number of samples to do so.

In contrast to qualitative properties, such as reachability or the absence of
routing loops, quantitative properties are often probabilistic, and thus more
challenging, due to the complexity of computing over probabilistic models in
the presence of the explosion in the number of possible executions. Consider
Bayonet [6] for instance, a state-of-the-art language in this domain. Bayonet
can express complex models that account for router state, queue lengths, ran-
domness, and even different packet orderings. Though useful, this expressiveness
limits the scalability of the analysis: currently, Bayonet can handle networks of

about 30 nodes and small traffic volumes, on the order of 20 packets [6]. Other
proposals achieve better scalability by sacrificing expressiveness to varying de-
grees. McNetKAT [5, 27], for instance, does not model network state or packet
interaction, but in return scales to networks with thousands of nodes [27].

The goal of this paper is to seek a different middle ground between expressive-
ness and scalability. In particular, we aim to analyze the performance of stateful
networks in the long run, without a priori bounds on the volume of traffic that
traverses them. Moreover, we would like to do so while modeling some interaction
between different sources of traffic. Potential applications include the analysis
of load balancers, traffic engineering schemes, and other components that use
states to improve performance. Given the challenges faced by prior work, it is
natural to expect that some compromises will have to be made to handle in-
teresting applications. Our hypothesis is that the behavior of many networks
should not be too sensitive to the exact ordering of packet arrivals, but rather
to how the traffic is distributed among different classes of flows over sizable time
intervals—or, put differently, the main interactions between different types of
traffic in these networks happen at a large scale. For example, certain traffic en-
gineering schemes (cf. Section 4.2) avoid congestion by periodically reallocating
flows on alternative paths based on the volume of data transmitted since the last
checkpoint, with typical sampling intervals staying on the order of a few min-
utes. Based on this insight, we have designed Netter, a probabilistic language for
modeling and verifying stateful networks. Unlike previous proposals [6,27], Net-
ter can express interactions between different kinds of traffic while avoiding the
combinatorial explosion of having to reason explicitly about all possible packet
orderings. Netter programs are compiled to finite-state Markov chains, which
can be analyzed by various model checkers, such as PRISM [16] or Storm [8].

We evaluate Netter on a series of case studies: (1) computing failure probabil-
ities on a simple stateless network; (2) a traffic engineering scheme reminiscent of
MPLS-TE; (3) a stateful, probabilistic load balancer; and (4) a mitigation strat-
egy for link-flooding attacks from prior work [18]. Our experiments show that
Netter can scale to networks of 4–9 nodes, while providing insight into challeng-
ing routing questions that prior work had left unaddressed, such as examining
the cost of deploying a cheap balancing strategy compared to the optimal one.
While these sizes are modest compared to practical networks, we note that Net-
ter can scale to similar orders of magnitude as state-of-the-art tools [27] on the
more constrained stateless setting.1 We expect that Netter’s flexibility will allow
users to tune between complexity and performance as suits their application.

To summarize, our paper makes the following technical contributions:

– Netter, a domain-specific probabilistic language for modeling and verifying
network programs (Sections 2 and 3). By focusing on flow-level modeling

1 Due to dependency issues, we only managed to run part of the experiment of Smolka
et al. [27], so our comparison is mostly based on the numbers reported by the authors.
While this prevents us from making a precise comparison, their setup was similar to
ours, and we do not expect the performance of their code to change substantially.

and abstracting away from event orderings, Netter can verify asymptotic
properties of stateful networks that were previously out of reach [6, 27].

– Optimizations for reducing the size of the automata generated by Netter
(Section 3). To be confident in their correctness, these optimizations were
verified in the Coq proof assistant [30].

– A series of case studies evaluating the expressiveness and scalability of Net-
ter (Section 4), including a comparative benchmark, a traffic engineering
scheme, a stateful load balancer, and a defense against link-flooding attacks.
Our results show that Netter scales similarly to state-of-the-art tools on
stateless networks, while enabling the automated quantitative analysis of
some stateful routing schemes that prior work could not handle.

– Netter is open-source, and available at https://github.com/arthuraa/netter.
Our artifacts including case study code and Coq formalization are public
available [39] and can be used with the VMCAI virtual machine [7].

The rest of the paper is organized as follows. In Section 2, we give a brief
overview of the Netter workflow with a simple, but detailed, model of a stateful
network, showing how we can reason about its performance characteristics au-
tomatically. In Section 3, we delve into the Netter language, covering its main
functionality and how it departs from prior work. We describe its Haskell im-
plementation and the optimization passes used to improve model checking time.
In Section 4, we present our case studies. Finally, we discuss related work in
Section 5 and conclude in Section 6.

2 Overview

The workflow of using Netter for analyzing probabilistic quantitative network
properties is depicted in Figure 1. Users provide a Haskell file with a model writ-
ten in an embedded probabilistic imperative language. The model contains the
code of the network, as well as declarations of key performance metrics that the
users want to analyze, such as the drop rate of the network. The Netter compiler
transforms this model into a probabilistic automaton that encodes a finite-state,
discrete-time Markov chain. This automaton is encoded in the language of the
PRISM model checker [16], but back-ends to similar tools could be added easily.
This Markov chain is then fed to Storm [8], a high-performance probabilistic
model checker, along with a set of properties to analyze, such as the expected
value of a performance metric in the stationary distribution of the chain.

To illustrate this workflow, consider the network depicted in Figure 2. Two
servers, S1 and S2, sit behind a load balancer LB. When a new flow of traffic
arrives, the load balancer simply picks one of the servers at random and routes
the traffic through the corresponding link. Any traffic that exceeds the link’s
capacity is dropped, and we are interested in computing the long-term average
drop rate of this load-balancing scheme under certain traffic assumptions.

Figure 3 shows a model of this network in Netter. Unlike other network
modeling languages [6], Netter does not represent different network nodes as
separate entities. Rather, the model presents a global view of the network, where

Netter program

model = do ...

Performance metrics

latency = · · ·
Properties

E[latency],P[fail], . . .

Netter
compiler

Markov
chain

Storm
checker

Results

E[latency] = · · ·
P[fail] = · · ·

Fig. 1. Netter workflow. Rounded corners denote user-provided inputs, rectangles de-
note outputs, and circles denote components.

LB

S1

S2

12 Mbps

8 Mbps

Fig. 2. Example network with two servers, S1 and S2, and a load balancer LB. LB
has randomly forward incoming flows to either server. If the new flow traffic size is 10
Mbps, it will experience losses if forwarded to S2.

all the state is manipulated by a single program. In our example, this state
comprises just the two allocated variables dest and newFlow (lines 10–11), which
represent the state of the load balancer and the state of the current flow. Later
examples will show models where other nodes also use state (Section 4).

Since Netter programs are compiled to finite-state automata, variables must
be bounded, and their bounds are specified in the parameters of the var func-
tion. The dest variable represents the router chosen by the load balancer, while
newFlow tracks whether a new flow of traffic has just arrived. For now, we as-
sume that there can be only one flow at a time in this network, which transmits
data at a rate of 10 Mbps. The rewards call (lines 13–15) specifies that we are
interested in analyzing the average drop rate of the network. Note that to avoid
confusion with standard Haskell functions, many Netter operators are primed
(e.g. when’) or prefixed with a dot (e.g. ./). The .?: form is the Netter
equivalent of the ternary operator in C-like languages.

Figure 3 shows the code representing the execution of one step of the Markov
chain. On the first time step, the state variables are set to their lower bound.
Then, the program enters a loop, executing its code once per step. More precisely,
the behavior of the network is defined in lines 17–19. Line 17 says that on
every step there is a 10% probability that a flow ends and a new one starts.
The .<-$ operator samples from a probability distribution specified as a list of

1 trafficSize = 10

2 bandwidth1 = 12

3 bandwidth2 = 8

4
5 dropRate bw = int dropped ./ int trafficSize

6 where dropped = max 0 (trafficSize - bw)

7
8 model :: Prog ()

9 model = do

10 dest <- var 1 2

11 newFlow <- var 0 1

12
13 rewards "dropRate"

14 (dest .== 1 .? dropRate bandwidth1

15 .: dropRate bandwidth2)

16
17 newFlow .<-$ [(0.1 , 1), (0.9, 0)]

18 when ’ (newFlow .== 1) $ do

19 dest .<-$ [(0.5, 1), (0.5, 2)]

Fig. 3. Netter implementation of model in Figure 2.

probability/value pairs. By changing this distribution, or by adding more state
variables, we can model richer traffic patterns (Section 4.3). Lines 18–19 say that,
whenever a new flow appears, the load balancer chooses its server uniformly at
random. The selected server remains stored in dest for the next few time steps,
until newFlow becomes 1 again.

Figure 4 shows the probabilistic automaton produced by Netter for this net-
work. Though the execution of the original program happens conceptually in one
step, representing this directly as a probabilistic automaton is challenging. It is
easier to decompose the code into a series of more elementary steps, where we
use the auxiliary program counter variable pc_0 to choose which command of the
program needs to be executed next. The point pc_0 = 0 marks the beginning of
the execution at the source level. (Using a small number of PC values is crucial
for keeping the generated model small, an issue that prior work on Probabilistic
NetKAT also faced [27]; cf. Section 3.) We set the dropRate reward to zero at
other PCs to ensure that it is counted only once per source-level step.

To calculate the long-term average drop rate for the incoming flow, we feed
Storm the PCTL query R{"dropRate"}=? [LRA] / LRA=? [pc 0=0], to which
it replies 0.1. (The adjusting factor LRA=? [pc 0=0] is included to compensate
for intermediate steps in the automaton that have no source-level counterpart.)

1 module m0 // load -balance new flow to server

2 dest_0 : [1..2];

3 [step] (pc_0 !=1) -> true;

4 [step] ((pc_0 =1)&(newFlow_0 =1)) -> 0.5:(dest_0 ’=1) \

5 + 0.5:(dest_0 ’=2);

6 [step] ((pc_0 =1)&(newFlow_0 !=1)) -> (dest_0 ’= dest_0);

7 endmodule

8
9 module m1 // randomly decide if flow becomes active

10 newFlow_0 : [0..1];

11 [step] (pc_0 !=2) -> true;

12 [step] (pc_0 =2) -> 0.1:(newFlow_0 ’=1) \

13 + 0.9:(newFlow_0 ’=0);

14 endmodule

15
16 module m2 // manage pc counter

17 pc_0 : [0..2];

18 [step] (pc_0 =0) -> (pc_0 ’=2);

19 [step] (pc_0 =1) -> (pc_0 ’=0);

20 [step] (pc_0 =2) -> (pc_0 ’=1);

21 endmodule

22
23 rewards "dropRate"

24 (pc_0 =0) : ((dest_0 =1)?0.0:0.2);

25 (pc_0 !=0) : 0;

26 endrewards

Fig. 4. Compiled DTMC model from Netter implementation in Figure 3.

3 The Netter Language

Operations Figure 5 enumerates some of the main operations in Netter. The
Expr type represents integer and boolean values in the network program. The
type Prog is used for commands and program declarations. It carries the struc-
ture of a monad [22], allowing us to easily compose subprograms. Commands
have a return type of (), the unit type, which means that they yield no values,
and are run solely for building the program. Other declarations, however, may
produce useful results, such as the variable declaration command var, which
returns an Expr (cf. Figure 3).

The API highlights important distinctions with respect to prior work. First,
unlike Probabilistic NetKAT [5] or Bayonet [6], there are no specialized com-
mands for manipulating packets (though this functionality can be encoded with
regular state variables, as we do in Section 4.1). Indeed, since Netter is tailored
to analyze flow-level behavior, we focus on commands that manipulate the high-
level routing decisions (e.g. the dest variable in Figure 3), and assume that these
can be implemented in terms of lower-level packet-manipulating primitives. Sec-

Function Type Description

var Int -> Int -> Prog Expr Declare a state variable
.+, .-, .&& Expr -> Expr -> Expr Arithmetic and logic
.<- Expr -> Expr -> Prog () Deterministic assignment
.<-$ Expr -> [(Double, Expr)] -> Prog () Probabilistic assignment
if’ Expr -> Prog () -> Prog () -> Prog () Conditional
block Prog () -> Prog () Block for local variables
.!! [Expr] -> Expr -> Expr List indexing

Fig. 5. Select Netter primitives.

data RouterState = RouterState { reservedBandwidth :: Expr

, sampledBandwidth :: Expr }

makeRouter :: Prog RouterState

makeRouter = do

rb <- var 0 maxBandwidth

sb <- var 0 maxBandwidth

return (RouterState { reservedBandwidth = rb, sampledBandwidth = sb })

Fig. 6. Netter programs can use Haskell abstractions such as functions and data types.

ond, unlike Probabilistic NetKAT, Netter programs can use arbitrary expressions
in assignments and in the guards of if statements, making it easy to encode typ-
ical imperative programs—indeed, most of the case studies in Section 4 use this
functionality.2 On the other hand, Probabilistic NetKAT allows programs to per-
form unbounded iteration, while Netter does not have an analogous construct.
This simplifies the semantics of Netter programs, which can be easily described
as a stochastic matrix on the finite space of all program states. An entry Mij

of this matrix describes the probability of transitioning from state i to state j
after running the code. The semantics is similar to that of McNetKAT [27], but
includes a semantics for arithmetic expressions, and omits a clause for iteration.
(In practice, we have not found the absence of loops to be a limitation, since we
could partly emulate iteration by wrapping Netter commands in Haskell loops.)

Netter has a phase distinction between model code, which is analyzed by the
model checker, and compiler code, which is responsible for generating the former.
The Expr type produces expressions that are consumed by the model checker,
and thus does not have a well-defined “value” when the model is being generated.
This prevents us from operating on expressions as if they were regular values
in Haskell; for instance, we cannot test if two model variables hold the same
value by writing x == y, since the equality operator returns a fixed boolean
rather than a symbolic expression. This is why many basic Haskell operators
have counterparts for Netter expressions, as we have seen with the ./ and .==

2 In principle, since variables are bounded, it would be possible to do away with
expressions by evaluating them at every possible state. However, this would result
in much larger compiled models, making the analysis more costly.

operators of Figure 3. Despite this phase distinction, the compiler code is free
to use other Haskell types and operations to generate a model, which makes up
for the minimalist set of basic constructs available in Netter. For instance, we
can represent a stateful router with a record that contains Netter variables (cf.
Figure 6), a functionality that is useful when defining complex network models,
as we will see in Section 4.
Implementation The compilation process that takes a network algorithm im-
plemented in Netter and generates an optimized PRISM model was implemented
in about 2k lines of Haskell. First, user-level commands are processed to build an
internal representation of a model in a simple imperative language called Imp.
As depicted in Figure 7, the program then undergoes a series of compilation
passes to produce a Markov-chain model. An important part of this process is
the translation of the program to a control-flow graph (CFG), which can be
more directly represented as an automaton. The size of the resulting automaton
is linear in the size of the CFG, which must be kept to a minimum to avoid
blowing up the state space. This is the job of two optimization passes of the
pipeline: one that inlines as many assignments as possible, and one that re-
moves stores and variables that are not used to compute the rewards declared
by the user. The inlining pass is particularly challenging. Indeed, in an earlier
version of the compiler, we tried to symbolically execute the Netter program to
remove the need for any intermediate assignments, probabilistic and determin-
istic alike. However, composing multiple symbolic probabilistic assignments can
quickly lead to bloated models: if an assignment with n probabilistic branches
is expanded in another probabilistic assignment with m branches the result is
generally a probabilistic assignment with n ·m branches.

To avoid this issue, we adopted a more conservative strategy where we only
inline deterministic assignments. This requires some care: if a variable x receives
the result of a random sample, we need to stop propagating any inlined expres-
sions that mention x, since they refer to its old value. To increase our confidence
in this step, we have formalized our main optimization passes using the Coq
proof assistant [30], and manually translated the algorithms to Haskell. To de-
fine the semantics of the language, we formalized a core of finite probability the-
ory in Coq, including infrastructure for reasoning about coupling arguments [10].
Probabilistic NetKAT relies on a similar optimization to compile to PRISM [27],
though its logic is considerably simpler, since only constants can be assigned in
the language (and thus almost no dependencies need to be considered).

Imp CFG PRISM

(1) Inline assignments
(2) Dead stores elimination
(3) Generate CFG Allocate PC variable

Fig. 7. Netter compilation pipeline.

4 Applications

Now that we have acquainted ourselves with the Netter basics, we discuss four
case studies that used the language to model and analyze stateful networks.
For all of the following cases, we evaluate Netter on a 12-core VM with 64 GB
memory. Unless specified otherwise, we use the Storm [8] model checker with
their Sparse backend engine. We set the max memory limit to be 40 GB for
Storm, reserving headroom for graceful shutdown in case of memory exhaustion.

4.1 Warming Up

As a first case study, we evaluate the performance of Netter on a simple stateless
benchmark. This benchmark exercises features that could already be handled in
prior work [6,27], and is a sanity check to ensure that Netter’s expressiveness does
not incur large performance penalties when it is not needed. Figure 8 presents
a network that connects two hosts, H1 and H2, via a chain of 4k intermediate
switches. Each switch Si,1 forwards traffic to either Si,2 or Si,3 with equal prob-
ability. Both Si,2 and Si,3 forward to Si,4, but the link Si,3 → Si,4 can fail with
probability p = 10−3. Finally, Si,4 forwards to Si+1,1. We are interested in the
probability that a packet is successfully delivered from H1 to H2.

S1,2 Sk,2

H1 S1,1 S1,4 · · · Sk,1 Sk,4 H2

S1,3 Sk,3

p p

Fig. 8. Chain topology with failures.

We compare the time taken to check the Netter model in Storm against
the time taken by PRISM and Storm to check a handwritten model of this
network. The handwritten model was taken from an analogous experiment in
the McNetKAT paper [27]. We set a timeout of 5 minutes. Figure 9 presents
the results. We observe that Storm takes about the same time to check the
Netter and the handwritten models, with the latter being slightly cheaper to
process. We checked networks of at most 4M switches. PRISM timed out at 32k
switches. For comparison, the authors of McNetKAT [27] reported that their
custom solver could analyze 65k switches in 2.5 minutes running on a cluster with
24 machines, while Bayonet could analyze 32 switches in 25 minutes. Moreover,
their performance figures for checking the handwritten model with PRISM are

similar to ours. We did not manage to run the McNetKAT code in our setting,
due to dependency issues.

The gap between Bayonet and the other tools is to be expected, as it is based
on a much more general solver and accounts for traffic details that the others
don’t, such as asynchronous event scheduling. (Note that these features should
not fundamentally change the analysis, since this experiment considers only one
packet.) As for McNetKAT, we believe that the difference in performance can be
mostly explained by the use of the Storm back-end; nevertheless, since Storm is
compatible with the PRISM language, which can also be targeted by McNetKAT,
McNetKAT could readily benefit from advances in other model checkers as well.

100 101 102 103 104 105 106 107
10−2

10−1

100

101

102

Switches

T
im

e
to

ch
ec

k
(m

s)

Handwritten – PRISM

Netter

Handwritten – Storm

Fig. 9. Checking performance of chain example.

The case for using Netter on an example like this is not so strong, as the
handwritten automaton for PRISM is about the same size as our model, and
can be checked slightly faster. With the next case studies, we will see examples
with non-trivial control flow that would be difficult to encode directly in PRISM.

4.2 Traffic Engineering with MPLS

Traditional IP routing can be too inflexible for traffic-engineering purposes, as
every packet is sent through the shortest path between its source and destina-
tion. If a link on this path becomes congested, the performance of the network
degrades. In modern networks, a popular solution is to manage sections of a path
using Multiprotocol Label Switching (MPLS) instead of pure IP.

Originally, MPLS was introduced to speed up the handling of addresses in
switches. When packets from other protocols enter an MPLS network, they are
encapsulated with a label determined by their header and routed through a path
in the network until they reach an exit node, when the labels are removed. (In
reality, the labels change as packets traverse the network, but this detail is not
relevant for our purposes.) Labels are processed in a way that resembles IP

addresses, in that the next hop of a packet along a path is determined by its
labels. However, labels are much shorter than IP addresses, and thus faster to
process in hardware.

As MPLS was extended over the years, it gained the ability to manage labels
with more flexibility than IP, making it attractive for traffic engineering. To avoid
congestion, for example, MPLS can reserve some bandwidth for each label, and
assign them to paths so that the total reserved bandwidth on each link does not
exceed its capacity. Moreover, this reserved bandwidth can change dynamically
based on traffic demands, causing labels to be reallocated on different paths.

Prior work [24] observed that bad MPLS configurations can allocate labels
on sub-optimal paths, leading to latency inflation. In the network analyzed by
the authors, the weighted latency was 10%–22% higher than the optimal, and
some labels could remain on sub-optimal paths for as long as 10 days!

To investigate the causes of latency inflation, we devised an experiment that
models the bandwidth adjustment logic used by the main network vendors—the
so-called “auto-bandwidth” feature. In this experiment, each flow corresponds
to the traffic assigned to one MPLS label; thus, each flow is routed through
a particular path in the network, and has a certain bandwidth reserved for
it along this path. Our adjustment logic is governed by two parameters: the
sample interval and the adjustment interval. Every sample interval, the network
samples the volume of traffic on each flow. When the adjustment interval is
completed, the largest sample since the beginning of the interval is compared
against the current reserved bandwidth for each flow. If the sample is larger than
the reserved bandwidth, the network reallocates the flow on a new path with
enough bandwidth, potentially evicting lower-priority flows allocated there. We
set the sample interval to 3 time steps, and the adjustment interval to 9 time
steps. (Real MPLS deployments expose other configuration options as well, such
as the adjustment threshold. For simplicity, we omit those.)

1 2

3 4

100 ms, 5 Mbps

100 ms, 3 Mbps

100 ms, 10 Mbps

100 ms, 10 Mbps

10 ms
10 Mbps

Fig. 10. MPLS network topology.

Figure 10 shows the topology used in our experiment. The link between 2
and 3 is a local link with high bandwidth, whereas the other four are long links
with higher latency. There are two flows in this network: f2,3, a high-volume
flow of 9 Mbps between 2 and 3, and f1,3 between 1 and 3. The volume of traffic

in f1,3 varies between 2 and 4 Mbps according to a random walk, moving up or
down if possible with a probability of 25%.

We use Storm to compare the long-term weighted latency of two configura-
tions for this network: one where f2,3 has a higher priority than f1,3, and the
other one where the priorities are reversed. We switch to the Hybrid engine
to avoid memory exhaustion for this model. Storm reports that the weighted
latency is 101ms for the first configuration 81ms for the second one, which corre-
sponds to an increase of about 24%. Intuitively, in the first configuration, when
f1,3 triggers an adjustment, it ends up evicting f2,3 to a much longer path,
because it has higher priority. Since f2,3 carries more traffic, the weighted la-
tency goes up. In the second configuration, instead, f1,3 is reassigned to the path
1→ 2→ 4→ 3, and the problem does not arise. These observations corroborate
the aforementioned empirical results.

As a side note, this case study was one of the original motivations for imple-
menting Netter. We attempted to encode an earlier version of this model directly
in the PRISM language, but felt that correctly expressing the control-flow of the
autobandwidth logic as an automaton was error prone, especially when trying
to express more complex topologies and flow configurations, since there is no
convenient way of abstracting the network topology in PRISM. By contrast, our
Netter model takes in a high-level description of the network topology as an
adjacency matrix, and automatically computes the lists of possible routes for
a flow ranked by latency, while ensuring that the available bandwidth on each
route is correctly updated.

4.3 Stateful Load Balancers

Load balancers are commonly used to improve web application performance by
sharing and distributing a pool of resources. They act as virtual servers to receive
incoming client requests and forward requests across different backend servers to
manage desirable loads between servers. Many load balancing algorithms require
storing internal state information. For example, a Round Robin algorithm needs
to remember which server it assigns the previous flows before allocating the next
one. Many other algorithms need to compare the current server loads before
finding a suitable candidate to allocate the new flow. Although previous works
have modeled randomized load balancers [5, 6], they do not support the case
for stateful load balancers or other complex algorithms. In our experiment, we
implement and analyze three different load balancing algorithms.

Max Free Capacity. The Max Free Capacity algorithm requires the load balancer
to forward new flows to the server with the largest available capacity, measured
as the difference between the server’s maximum capacity and the its current load.
Intuitively, this strategy should have a very low probability of flow loss because it
can find the best server to process all incoming flows. However, the disadvantage
is that the load balancer needs to collect information from all servers before
making any decisions. This method can be costly, generating too much internal
traffic and incurring high latency.

Round Robin. The Round Robin algorithm uses an internal counter to assign
new flows to servers. When a new flow arrives, the load balancer forwards it
to the server given by the current counter and updates the counter to the next
server in line. The advantage of this strategy is that the load balancer doesn’t
need to check the server load at all. The disadvantage is that it may cause
significant server imbalances and packet drops when a server receives too much
load while another one is mostly free.

Best of Random 2. In the Best of Random 2 algorithm, the load balancer ran-
domly picks two servers, compares their current load, and sends the new flow to
server with the largest available capacity. This simple but powerful algorithm is
proven to have a small maximum server load with high probability [21], making
it a popular option for many applications [29]. Compared to the previous two
algorithms, the Best of Random 2 algorithm is a compromise for avoiding flow
losses while reducing internal traffic queries, since it only needs to query two
servers instead of all of them.

We implement these three algorithms in Netter in a simple load balancing
use case—we put one load balancer in front of a group of servers, and the load
balancer forwards incoming flows to any one of the servers. We explore various
settings in terms of the number of servers, number of flows, and server capacity,
and compare these algorithms’ performance. We pick two metrics—average flow
loss rate and server load imbalance—to measure these algorithms’ performance.
Finally, we show the complexity of running Netter in these cases.

During our evaluation, we represent flow traffic with a Markov model. At
every timestamp, each inactive flow can be independently activated with a prob-
ability of 0.6. Upon activation, the flow randomly selects a volume between 1
and 3 Mbps. Active flows also have a 0.6 probability of deactivating and return
to the inactive state at every timestamp. In the following graph, the flow number
represents the maximum possible number of flows that could arrive at the load
balancer at the same timestamp.

Flow Loss Rates. Figure 11a shows the long-run flow loss percentage for different
algorithms in a group of 3 servers with different capacity. The percentage of
flow loss is calculated by the number of packet drops over total incoming loads.
From the figure, we can see that the Max Free Capacity algorithm always has
a strictly lower flow loss compared to the other two algorithms. The Round
Robin algorithm causes more flow losses than the Best of Random 2 algorithm.
This is because the Best of Random 2 will overload a server beyond its capacity
only if neither of the two randomly chosen servers has enough free capacity.
In comparison, the Round Robin algorithm is agnostic to the server’s current
load, and it assigns flows periodically in the long run. We can also see that the
difference in flow loss for these three strategies is getting smaller when the flow
load increases. This is because none of the strategies deal with the case where
the incoming flow load is larger than the total server capacity.

This result confirms our intuition that the Max Free Capacity is the best
solution among the three algorithms in reliable flow allocation if we ignore its

2 3 4 5
0

10

20

30

Number of flows

E
x
p

ec
te

d
fl
ow

lo
ss

(%
) MaxFreeCapacity RoundRobin

BestOfRandom2

(a) Different capacity, number of servers=3.

2 3 4 5
0

5

10

15

20

Number of flows

E
x
p

ec
te

d
fl
ow

lo
ss

(%
) MaxFreeCapacity RoundRobin

BestOfRandom2

(b) Equal capacity, number of servers=3.

Fig. 11. Model checking results on flow loss rates for the load balancer using different
algorithms to allocate flows to 3 servers.

costly nature of querying every server for their load during runtime. Moreover,
we can see that the Round Robin algorithm has a larger flow loss rate than the
other two algorithms when the servers have different capacity.

Figure 11b shows the long-run flow loss percentage for every algorithm with
servers of the same capacity. Comparing to the previous figure, we can see the dif-
ference in the flow loss rate across all three algorithms. Each algorithm observes
less flow loss comparing to the previous case. Similarly, the Max Free Capacity
algorithm has the lowest flow loss rate. An interesting observation for this case is
that the Round Robin algorithm causes less flow loss than the Best of Random 2
algorithm. This is because, given the parameters set for the Markov flow model,
the server is less likely to have an active flow when selected by the Round Robin
algorithm (i.e., previous flows must remain active for many rounds) than with
the Best of Random 2 algorithm (i.e., server can be picked at any time).

Server Load Imbalances. Figure 12a shows an imbalance among servers by plot-
ting the absolute value of servers’ capacity and load. In this case, all servers with
the same 3 Mbps capacity are represented as white bars, and the grey bars show
the long-run load on the servers. We can see that the Round Robin algorithm
and the Best of Random algorithm have the same load allocation among the
servers. Yet, the Max Free Capacity algorithm’s imbalance is caused by a prior-

MaxFreeCapacity RoundRobin BestOfRandom2
0

1

2

3

2.12
1.85

1.66
1.39

1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75

S
er

v
er

lo
a
d

(M
b
p
s)

(a) Equal capacity (3 Mbps each).

MaxFreeCapacity RoundRobin BestOfRandom2
0

2

4

0.31

3.29

1.83 1.6 1.75 1.75 1.75 1.75
1.1

2.44

1.74 1.74

S
er

v
er

lo
a
d

(M
b
p
s)

(b) Differnet capacity (1, 5, 3, 3 Mbps).

Fig. 12. Model checking results on server load imbalance from the three load balancing
algorithms to allocate 5 flows to 4 servers. For each algorithm, the four bars represents
the four individual servers. White bar indicates server capacity, light grey for average
loads, and dark grey for overloads.

ity among servers when breaking a tie. By default, this algorithm allocates the
flow to the server with a smaller index when servers have the same free capacity.

Figure 12b shows the imbalances between servers with unequal capacity. We
assign each server with 1 Mbps, 5 Mbps, 3 Mbps, and 3 Mbps maximum capac-
ity, respectively. The dark grey bars in the figure represent overloading servers
beyond their maximum capacity. For example, the Round Robin algorithm al-
locates 1.78 Mbps traffic to server 1, where over 40% will be dropped due to
server overload. The root cause of the massive server overload is that the Round
Robin algorithm is agnostic to individual server loads when allocating new flows.
For simplicity, the load balancer only keeps one next counter to decide where
to send the next flow. As a result, the load balancer forwards the incoming flow
to the chosen destination, even if the server is busy while others have ample
free capacity. In comparison, the Best of Random 2 significantly reduces server
utilization imbalance. Instead of deterministically assigning one server for new
flows, the load balancer randomly picks two candidates and checks their utiliza-
tion. Server overload can still happen—when the load balancer picks two busy
servers by chance, and neither one can fulfill the new flow without loss. However,
the probability of server overload (and imbalance flow allocation) is much smaller
than the Round Robin algorithm. On the other hand, the Max Free Capacity
algorithm is the optimal strategy in avoiding server overload. This is because

2 3 4 5
102

104

106

Number of flows

N
u
m

b
er

o
f

st
a
te

s

MaxFreeCapacity RoundRobin

BestOfRandom2

100

102

R
u
n
ti

m
e

(s
)

Fig. 13. Model checking complexity in Markov chain state number and runtime for
load balancer using each of the three algorithm to allocate flows among 4 servers with
same capacity. The runtime is marked as red point scaled on the right side.

the load balancer has a global view of server loads before allocating new flows.
It can always pick the capable server to process the new flow if such one exists.
Therefore, we observe that no server experiences high or near-max loads.

Analysis Runtime. Figure 13 shows the complexity and runtime of using Net-
ter to analyze different algorithms. In the figure, we show that the runtime of
model checking is proportional to the number of states the Markov chain needs
to calculate. Since different algorithms have different numbers of variables in
the model, they vary significantly in model complexity. The Best of Random 2
algorithm uses random choice in picking the servers, which leads to more states
for the model checker to explore, especially when comparing against the Max
Free Capacity algorithm. The Round Robin algorithm requires a global variable
in the model to keep track of the next server to allocate new flow. In addition to
the complexity in the algorithm, we must keep auxiliary variables such as flow
assignment and flow volume to calculate flow loss rate and server loads at every
timestamp. These variables increase the state space exponentially, and thus pose
a scalability challenge for exhaustive model checking.

We empirically evaluate different model-checking engines of Storm. We com-
pared their Sparse and Hybrid engines and found out the Sparse engine is uni-
versally faster in solving the load balancer models. The Hybrid engine, on the
other hand, sacrifices runtime speed for smaller memory usages. Therefore, for
problems with larger state space that Sparse engine runs out of memory, we use
the hybrid engine. One example is the case study of MPLS in Section 4.2.

4.4 Defending against Link-Flooding Attacks

Link-flooding attacks have become a serious threat to Internet security [34]. As a
distributed denial-of-service attack, link-flooding aims to disrupt the availability
of specific links between routers (e.g., data centers, Internet exchange points,
Autonomous Systems). All services and connections sharing the same victim
links in their paths will be affected, regardless of their sources and destinations.

To defend against link-flooding attacks, several prior methods propose routing-
based mechanisms to divert the victim’s network traffic during attacks [18, 25].

S1 S2 S3 S4 S5 S6

R7 R8

R9

D10

Primary Backup

500 Mbps 500 Mbps

100 Mbps

Fig. 14. Topology for DDoS case study in Section 4.4. S3 uses R7 as its primary link,
but maintains an alternative path through R8 as a backup.

They propose different rate-limiting and routing algorithms to be applied at
intermediate routers to coordinate defenses. When hosts detect links in their
routing path are under attack, they proactively switch to other alternative rout-
ing paths to avoid such links. Although such approaches are intuitive, many
practical challenges affect the feasibility of re-routing to alternative paths [31].
For example, before switching, the victim host needs to analyze what latency and
bandwidth availability the secondary path can provide. Therefore, it is impor-
tant to verify the effectiveness and applicability of re-routing techniques based
on the specific routing algorithms and global topology.

To illustrate, we present a network topology vulnerable to such attacks (cf.
Figure 14). This topology is adapted from the evaluation in the CoDef paper [18],
where they implement a simulation network to measure the effectiveness of CoDef
rate-limiting and routing algorithm. Node S1-S6 are clients sending traffic to D10
as the final destination, R7-R9 are intermediate routers. S1 and S2 are malicious
attackers sending a massive amount of traffic. Both of them send a median of 300
Mbps of traffic following a Pareto distribution. S3 is the victim of the example.
It shares the same link as attackers S1 and S2. However, it can switch to its
backup link to avoid attackers. S3 and S4 are file transfer applications, greedily
expecting to utilize as much bandwidth as possible. S5 and S6 consume 10 Mbps
consistently, representing fixed bandwidth flows such as streaming. Meanwhile,
S3 maintains a secondary backup link with router R8, but it does not utilize that
link under normal circumstances. Using multiple routers from different providers,
as S3 does, is commonly known as multihoming [1].

We implement three routing algorithms in Netter using the same topology
and check the average bandwidth allocated for each flow as properties. To switch
between different algorithms, we only need to change the code in the routing
module, keeping the rest of the model the same.

CoDef Collaborative Routing. CoDef proposes a collaborative routing algorithm
for routers R7-R9 to coordinate and defend against link-flooding attackers S1
and S2. All routers collaboratively label each destination-source pair as a unique

CoDef

Primary

CoDef

Backup

Uniform

Primary

Uniform

Backup

Type-aware

Primary

Type-aware

Backup

0

20

40

60

80

100

Router Algorithms

B
a
n
d
w

id
th

U
se

d
(%

)

S1 S2 S3 S4 S5 S6

Fig. 15. Model checking results for each flow’s portion at the destination (Node 10).
S1 and S2 are attacker flows. Each bar indicates a corresponding router algorithm and
which router link flow 3 connects to.

path and ensure fair bandwidth utilization on a per-path basis. The algorithm
allocates the bandwidth in two passes: first, the router assigns a fair share to
each flow, and then allocate additional free bandwidth in a second pass.

Uniformly Random. This algorithm allocates egress bandwidth uniform-randomly
based on the proportion of incoming bandwidth. It is a statistically simple alloca-
tion algorithm and requires minimal metadata communication between routers.
For example, suppose S1 and S2 send a large amount of traffic to router R7 and
S3 uses its primary link. The router will allocate a higher share of the available
500 Mbps outgoing bandwidth to these two flows, reducing flow 3’s portion.

Type-aware Priority. The type-aware routing algorithm considers the type of
flows. Motivated by the real-world example of classifying traffic into several
classes and provide different quality-of-service guarantees [3, 24], routers can
assign priorities and available bandwidth accordingly to a different type of traffic.
In our example, we enable the routers to prioritize consistent flow transmission;
specifically, the fixed bitrate flows 5 and 6. As for the remaining flows, the router
follows the same uniform strategy to allocate the available bandwidth.

Figure 15 compares the model checking results for different algorithms. CoDef
algorithm enforces fair allocations regardless of S3’s egress link. However, other
algorithms present pathological cases when S3 is under direct link-flooding at-
tacks from attackers S1 and S2. The Uniform algorithm equally splits bandwidth
between two incoming routers (7→ 9, 8→ 9). In the Primary case, flows 1-3 and
4-6 use an equal amount, while in Secondary flows 1-2 and 3-6 are the same. The
Type-aware algorithm reserves a high priority to flow 5 and 6, and uniformly
shares the rest bandwidth among flows 1-4.

We successfully used Netter to analyze a large topology of 10 nodes without
the need to scale all numbers by a common factor manually. Switching between
the router’s rate-limiting algorithms is also relatively easy. We can implement a

new rate-limiting algorithm and specify which router to use it. One limitation
of Netter model checking is that we cannot use continuous distributions for
traffic volumes. Because Netter compiles programs to finite-state models, we
use a discrete approximation of the Pareto distribution to represent attacker S1
and S2’s traffic model. We calculate the numerical value for every 5th percentile
along with their cumulative density function and use these numbers and their
percentiles to approximate the probabilistic distribution of flows 1 and 2.

5 Related Work

There is a rich body of work for testing and verifying forwarding behaviors such
as reachability and loop freedom, in stateless networks [9,13–15,19,20,32,33,35,
37, 38] and stateful networks [4, 23, 28, 36]. The aforementioned projects do not
concern quantitative properties of the network such as latency and throughput,
which our work focuses on. Moreover, we support probabilistic network models,
which differentiates our work from quantitative network analysis based on fixed
quantity and SAT solvers [11,12,17].

Next, we discuss related work that is closer to ours, on probabilistic languages
to model and analyze quantitative properties of networks [6, 27]. NetKAT [2, 5,
26, 27] is a family of network-modeling languages based on Kleene algebra with
tests. In the original NetKAT [2], a program denotes a set of packet histories,
which are traces of the states of a packet while it traverses the network. Prob-
abilistic NetKAT [5, 26, 27] adds in probabilistic choice, and has been used to
analyze interesting case studies, such as fault tolerance of a data center de-
sign [27]. The semantics of Probabilistic NetKAT is similar to Netter’s, though
the more sophisticated features of the language go beyond finite-state Markov
chains, and require continuous distributions. Language-wise, Netter and Proba-
bilistic NetKAT are built on similar primitives, with two main differences: (1)
NetKAT programs can only assign constants to variables, whereas Netter pro-
grams can assign arbitrary arithmetic and logical expressions, and (2) NetKAT
has unbounded iteration, which Netter does not (though Netter programs can
simulate iteration by metaprogramming; that is, by writing a Haskell loop that
repeatedly calls a code snippet). The restricted assignments are not too limiting
for NetKAT, since it is used to model stateless networks, and the assignments
encode a network node’s actions after matching on the headers of a packet (“if
the destination IP is 10.0.0.1, forward the packet to port 10”). Netter, on the
other hand, was primarily designed to model stateful networks, which perform
more assignments and would be awkward to encode without expressions. Be-
cause of its richer assignments, Netter’s optimizations are more challenging than
NetKAT’s [27], since they involve inlining expressions, tracking state depen-
dencies and eliminating dead stores. The McNetKAT dialect of Probabilistic
NetKAT can also be compiled to PRISM [27], though it also features a custom
solver that outperforms PRISM on large networks.

Bayonet [6] is another recent language for analyzing stateful networks. It is
more general than Netter, as even the ordering of network events is taken into ac-

count. Moreover, Bayonet programs can condition distribution parameters based
on the observations they make, and then run Bayesian inference to determine
those parameters. Unfortunately, the complexity of features modeled by the lan-
guage poses great challenges for scalability. Bayonet requires users to bound the
number of packets transmitted in the network and the number of network events
that can occur. In the case studies analyzed by the authors, these numbers go
to at most 20 packets and to a thousand network events (though in most case
studies only a few tens of events are allowed). By contrast, by aggregating traffic
at the level of flows, Netter analysis can scale to much larger time frames, since
we can compute performance metrics for a network’s long-term distribution. On
the simple network of Section 4.1, we have seen that Netter can scale up to thou-
sands of nodes, while prior work [6,27] showed that Bayonet’s analysis scales up
to about 30 nodes (though, admittedly, on a somewhat different setup). On the
other hand, Netter scalability degrades substantially when handling more com-
plex networks, such as those of Section 4.3, which where limited to four servers.
This issue seems challenging to address with Netter’s current back-end: if each
node in the network comprises 10 possible states, a modest size, the number of
states of the system will be proportional to 10#nodes in the worst case.

6 Conclusion and Future Work

We have presented a framework for formally analyzing the probabilistic quan-
titative properties of networks. We showed the design and implementation of
Netter, a language for verifying quantitative properties of stateful networks.
Netter compiles its programs down to PRISM automata, and applies several
optimizations to simplify their control flow, thus speeding up the analysis of the
generated models. We evaluated Netter on a series of case studies. We observed
that the tool scales up to sizable networks when reasoning about simple prop-
erties and routing schemes. We demonstrated how to use Netter to model more
complex networks as well. Though the scalability of the analysis quickly degrades
in these cases, we could still reason about important performance characteristics
and use them to compare different routing strategies. In future work, we would
like to address these scalability issues, potentially integrating symbolic analysis
techniques that do not require explicitly enumerating the network state space.

Acknowledgments The authors would like to thank Steffen Smolka, Justin
Hsu and Timon Gehr for useful discussions and clarifications. This work was
partially funded by ONR award N000141812618, NSF award 1513961 and NSF
award 1564009.

References

1. Abley, J., Lindqvist, K., Davies, E., Black, B., Gill, V.: IPv4 multihoming
practices and limitations. RFC 4116, RFC Editor (July 2005), http://www.rfc-
editor.org/rfc/rfc4116.txt

2. Anderson, C.J., Foster, N., Guha, A., Jeannin, J.B., Kozen, D., Schlesinger, C.,
Walker, D.: NetKAT: semantic foundations for networks. In: Jagannathan, S.,
Sewell, P. (eds.) The 41st Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21,
2014. pp. 113–126. ACM (2014), https://doi.org/10.1145/2535838.2535862

3. Braden, B., Zhang, L., Berson, S., Herzog, S., Jamin, S.: Resource reservation pro-
tocol (RSVP) – version 1 functional specification. RFC 2205, RFC Editor (Septem-
ber 1997), http://www.rfc-editor.org/rfc/rfc2205.txt

4. Fayaz, S.K., Yu, T., Tobioka, Y., Chaki, S., Sekar, V.: Buzz: Test-
ing context-dependent policies in stateful networks. In: 13th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
16). pp. 275–289. USENIX Association, Santa Clara, CA (2016),
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/fayaz

5. Foster, N., Kozen, D., Mamouras, K., Reitblatt, M., Silva, A.: Probabilistic
NetKAT. In: Thiemann, P. (ed.) Programming Languages and Systems - 25th Eu-
ropean Symposium on Programming, ESOP 2016, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven,
The Netherlands, April 2-8, 2016, Proceedings. Lecture Notes in Computer Science,
vol. 9632, pp. 282–309. Springer (2016), https://doi.org/10.1007/978-3-662-49498-
1 12

6. Gehr, T., Misailovic, S., Tsankov, P., Vanbever, L., Wiesmann, P., Vechev, M.T.:
Bayonet: probabilistic inference for networks. In: Foster, J.S., Grossman, D. (eds.)
Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018.
pp. 586–602. ACM (2018), https://doi.org/10.1145/3192366.3192400

7. Henriksen, T.: VMCAI 2021 virtual machine (Sep 2020),
https://doi.org/10.5281/zenodo.4017293

8. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The
probabilistic model checker storm. CoRR abs/2002.07080 (2020),
https://arxiv.org/abs/2002.07080

9. Horn, A., Kheradmand, A., Prasad, M.: Delta-net: Real-time Network Ver-
ification Using Atoms. In: 14th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 17). pp. 735–749. USENIX Associa-
tion, Boston, MA (2017), https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/horn-alex

10. Hsu, J.: Probabilistic couplings for probabilistic reasoning. CoRR
abs/1710.09951 (2017), http://arxiv.org/abs/1710.09951

11. Jensen, J.S., Krogh, T.B., Madsen, J.S., Schmid, S., Srba, J., Thorgersen, M.T.: P-
Rex: Fast verification of mpls networks with multiple link failures. In: Proceedings
of the 14th International Conference on Emerging Networking EXperiments and
Technologies. CoNEXT ’18 (2018)

12. Juniwal, G., Bjorner, N., Mahajan, R., Seshia, S.A., Varghese, G.: Quantitative
network analysis. Tech. rep. (2016), http://cseweb.ucsd.edu/ varghese/qna.pdf

13. Kazemian, P., Chang, M., Zeng, H., Varghese, G., McKeown, N., Whyte,
S.: Real Time Network Policy Checking Using Header Space Analysis.
In: Presented as part of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13). pp. 99–111. USENIX,
Lombard, IL (2013), https://www.usenix.org/conference/nsdi13/technical-
sessions/presentation/kazemian

14. Kazemian, P., Varghese, G., McKeown, N.: Header space analysis: Static check-
ing for networks. In: Presented as part of the 9th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 12). pp. 113–126. USENIX,
San Jose, CA (2012), https://www.usenix.org/conference/nsdi12/technical-
sessions/presentation/kazemian

15. Khurshid, A., Zou, X., Zhou, W., Caesar, M., Godfrey, P.B.: Ver-
iFlow: Verifying Network-Wide Invariants in Real Time. In: Pre-
sented as part of the 10th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 13). pp. 15–27. USENIX, Lom-
bard, IL (2013), https://www.usenix.org/conference/nsdi13/technical-
sessions/presentation/khurshid

16. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilis-
tic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided
Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July
14-20, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6806, pp. 585–
591. Springer (2011), https://doi.org/10.1007/978-3-642-22110-1 47

17. Larsen, K.G., Schmid, S., Xue, B.: WNetKAT: A weighted sdn programming
and verification language. In: 20th International Conference on Principles of Dis-
tributed Systems (OPODIS 2016) (2016)

18. Lee, S.B., Kang, M.S., Gligor, V.D.: CoDef: Collaborative defense against
large-scale link-flooding attacks. In: Proceedings of the Ninth ACM Con-
ference on Emerging Networking Experiments and Technologies. p. 417–428.
CoNEXT ’13, Association for Computing Machinery, New York, NY, USA (2013),
https://doi.org/10.1145/2535372.2535398

19. Lopes, N.P., Bjorner, N., Godefroid, P., Jayaraman, K., Varghese, G.: Check-
ing Beliefs in Dynamic Networks. In: 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15). pp. 499–512. USENIX Associa-
tion, Oakland, CA (2015), https://www.usenix.org/conference/nsdi15/technical-
sessions/presentation/lopes

20. Mai, H., Khurshid, A., Agarwal, R., Caesar, M., Godfrey, P.B., King, S.T.: De-
bugging the Data Plane with Anteater. In: Proceedings of the ACM SIGCOMM
2011 Conference. pp. 290–301. SIGCOMM ’11, ACM, New York, NY, USA (2011),
http://doi.acm.org/10.1145/2018436.2018470

21. Mitzenmacher, M., Upfal, E.: Probability and computing : randomized algorithms
and probabilistic analysis. Cambridge University Press, New York (2005)

22. Moggi, E.: Computational lambda-calculus and monads. In: Proceedings of the
Fourth Annual Symposium on Logic in Computer Science (LICS ’89), Pacific
Grove, California, USA, June 5-8, 1989. pp. 14–23. IEEE Computer Society (1989),
https://doi.org/10.1109/LICS.1989.39155

23. Panda, A., Lahav, O., Argyraki, K., Sagiv, M., Shenker, S.: Ver-
ifying reachability in networks with mutable datapaths. In: 14th
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 17). pp. 699–718. USENIX Association, Boston,
MA (Mar 2017), https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/panda-mutable-datapaths

24. Pathak, A., Zhang, M., Hu, Y.C., Mahajan, R., Maltz, D.A.: Latency infla-
tion with MPLS-based traffic engineering. In: Thiran, P., Willinger, W. (eds.)
Proceedings of the 11th ACM SIGCOMM Internet Measurement Conference,
IMC ’11, Berlin, Germany, November 2-, 2011. pp. 463–472. ACM (2011),
https://doi.org/10.1145/2068816.2068859

25. Smith, J.M., Schuchard, M.: Routing around congestion: Defeating DDoS attacks
and adverse network conditions via reactive BGP routing. In: 2018 IEEE Sympo-
sium on Security and Privacy (SP). pp. 599–617. IEEE (2018)

26. Smolka, S., Kumar, P., Foster, N., Kozen, D., Silva, A.: Cantor meets Scott: Se-
mantic foundations for probabilistic networks. In: Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages. p. 557–571.
POPL 2017, Association for Computing Machinery, New York, NY, USA (2017),
https://doi.org/10.1145/3009837.3009843

27. Smolka, S., Kumar, P., Kahn, D.M., Foster, N., Hsu, J., Kozen, D., Silva, A.:
Scalable verification of probabilistic networks. In: McKinley, K.S., Fisher, K. (eds.)
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019. pp.
190–203. ACM (2019), https://doi.org/10.1145/3314221.3314639

28. Stoenescu, R., Popovici, M., Negreanu, L., Raiciu, C.: SymNet: Scalable symbolic
execution for modern networks. In: Proceedings of the 2016 Conference on ACM
SIGCOMM 2016 Conference. pp. 314–327. SIGCOMM ’16, ACM, New York, NY,
USA (2016), http://doi.acm.org/10.1145/2934872.2934881

29. Tarreau, W.: Test driving ”power of two random choices” load balancing.
https://www.haproxy.com/blog/power-of-two-load-balancing/ (Apr 2019)

30. Team, T.C.D.: The Coq Proof Assistant, version 8.12.0 (Jul 2020),
https://doi.org/10.5281/zenodo.4021912

31. Tran, M., Kang, M.S., Hsiao, H.C., Chiang, W.H., Tung, S.P., Wang, Y.S.: On
the feasibility of rerouting-based DDoS defenses. In: 2019 IEEE Symposium on
Security and Privacy (SP). pp. 1169–1184. IEEE (2019)

32. Tschaen, B., Zhang, Y., Benson, T., Benerjee, S., Lee, J., Kang, J.M.: SFC-Checker:
Checking the Correct Forwarding Behavior of Service Function Chaining. In: IEEE
SDN-NFV Conference (2016)

33. Xie, G.G., Zhan, J., Maltz, D.A., Zhang, H., Greenberg, A., Hjalmtysson, G., Rex-
ford, J.: On Static Reachability Analysis of IP Networks. In: INFOCOM 2005. 24th
Annual Joint Conference of the IEEE Computer and Communications Societies.
Proceedings IEEE. vol. 3, pp. 2170–2183. IEEE (2005)

34. Xue, L., Luo, X., Chan, E.W., Zhan, X.: Towards detecting target link flooding
attack. In: 28th Large Installation System Administration Conference (LISA14).
pp. 90–105 (2014)

35. Yang, H., Lam, S.S.: Real-Time Verification of Network Properties Using Atomic
Predicates. IEEE/ACM Transactions on Networking 24(2), 887–900 (4 2016).
https://doi.org/10.1109/TNET.2015.2398197

36. Yuan, Y., Moon, S.J., Uppal, S., Jia, L., Sekar, V.: NetSMC: A cus-
tom symbolic model checker for stateful network verification. In: Bhag-
wan, R., Porter, G. (eds.) 17th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2020, Santa Clara, CA,
USA, February 25-27, 2020. pp. 181–200. USENIX Association (2020),
https://www.usenix.org/conference/nsdi20/presentation/yuan

37. Zeng, H., Kazemian, P., Varghese, G., McKeown, N.: Automatic test
packet generation. IEEE/ACM Trans. Netw. 22(2), 554–566 (4 2014),
http://dx.doi.org/10.1109/TNET.2013.2253121

38. Zeng, H., Zhang, S., Ye, F., Jeyakumar, V., Ju, M., Liu, J., McKeown, N., Vahdat,
A.: Libra: Divide and Conquer to Verify Forwarding Tables in Huge Networks. In:
NSDI. vol. 14, pp. 87–99 (2014)

39. Zhang, H., Zhang, C., Azevedo de Amorim, A., Agarwal, Y., Fredrik-
son, M., Jia, L.: Netter: Probabilistic, stateful network models (Oct 2020),
https://doi.org/10.5281/zenodo.4089060

