
BuildingDepot 2.0: An Integrated Management System for
Building Analysis and Control

Thomas Weng†, Anthony Nwokafor†, Yuvraj Agarwal‡

†University of California, San Diego ‡Carnegie Mellon University
†{tweng, aanwokafor}@cs.ucsd.edu, ‡yuvraj.agarwal@cs.cmu.edu

Abstract
Improving energy efficiency in buildings is a key objec-

tive for sensor researchers and promises significant reduc-
tions in energy usage across the world. The key technolog-
ical driver for these gains are the novel sensor network de-
ployments and the large amounts of data that they generate.
The challenge however is making sense of this data, and us-
ing it effectively to design smarter building control schemes.

Several recent research efforts have sought to address
the challenge of data access and building control. However,
while these systems have made progress in specific areas,
many unanswered questions still revolve around data man-
agement and what exactly it means to develop building ap-
plications. Critically, how would such a solution work in
a real building setting and how can applications be written
such that they can be re-used in other settings? To resolve
these issues we have developed BuildingDepot 2.0, a build-
ing management control platform that significantly updates
on our first iteration of the system for data analysis and high
level supervisory control.

Categories and Subject Descriptors
J.7 [Computers in Other Systems]: [Industrial control]

General Terms
Design, Management, Human Factors

Keywords
Building Energy Management

1 Introduction
Modern commercial buildings have become prime targets

for energy efficiency research. Commercial building energy
consumption already represents 35% of the total US electric-
ity consumption and is projected to rise even more[6]. Given
the costly nature of generating this electricity, finding ways

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Buildsys’13, November 6, 2013, Rome, Italy.
Copyright c© 2013 ACM 978-1-4503-1170-0 ...$10.00

to reduce energy usage is an important societal goal. Bet-
ter understanding of the building processes (which include
HVAC, occupancy behavior, and energy usage), and design-
ing smarter building control techniques that can both main-
tain occupant comfort while minimizing energy consump-
tion can lead to large improvements in building operation.

Building research has examined using wireless sensor
networks to monitor these building processes [8]. Combined
with existing building control systems (such as those that run
the HVAC), a significant amount of data is being generated.
Unfortunately, each of these systems are effectively closed
off from each other, and thus the potential for truly interest-
ing data analysis or control applications is lost. In fact, for
many industrial systems, the data is not only inaccessible,
many times it is simply thrown away.

Therefore, developing a platform to allow for applica-
tions that can span across the multiple systems that mon-
itor and control the building environment can potentially
lead to a much deeper understanding of building operations.
Several recent efforts have indeed sought to improve data
management and control in buildings. Our own effort on
BuildingDepot[1] was a sensor data storage system that al-
lowed flexibility and sharing. Such systems help push for-
ward the state of the art in building data management, but
there are still missing pieces in terms of how they can be
used to develop applications. Specifically, there were several
unaddressed issues about what it means to develop building
applications. What exactly are applications, and more im-
portantly, who writes them and who uses them? How does
any proposed system fit within the existing infrastructure of
buildings? There are also important secondary considera-
tions such as performance and scalability.

Based on the current state of research, as well as our
own experiences deploying building sensing networks and
our original BuildingDepot data storage system, we have de-
veloped BuildingDepot 2.0 (BD2), a significant update to our
original system that goes beyond a datastore and improves
on all aspects relating to developing building applications.
Chiefly, we introduce a template system that defines a com-
mon language for describing both sensors and buildings. We
also clarify how such a system can be deployed and used
in a real world setting (as opposed to just an experimental
research scenario). This paper describes our vision and the
overall architecture of BD2, and in particular we highlight
the architectural changes over the first iteration.

Campus

Facilities

BACNet and ION Network

Top Level Directory Server

(ob.au.edu/bd-dir)

A-B Directory Service

CS Data Service

(cs.au.edu/bd-data)

EE Data Service

(ee.au.edu/bd-data)

SoA Data Service

(soa.au.edu/bd-data)

OPC Server w/

Connector

Total Campus Data Service

(campus.au.edu/ds)

AU Dashboard Web App

(campus.au.edu/dashboard)

Art

Social Sciences

A B

DataService A

C D

DS B DS C DS D

C-D Directory Service

Top Level

Directory Service
Institution

User Service

Figure 1. The original BuildingDepot system. An insti-
tution could instantiate as many Directory Services and
Data Services as they wanted - there were no guidelines
on how to organize the system. In this case, a campus
with 4 buildings (A-D) each have their own DS, each con-
nected to a intermediate DirS. Confusion often arose in
how to deploy the services.

2 Background and Related Work
Buildings have attracted a significant amount of atten-

tion among researchers across many different domains. The
sensor networking community in particular has developed an
increasingly large array of interesting networked sensing and
actuation systems. Combined with the existing SCADA sys-
tems that modern commercial buildings employ, a significant
amount of data is generated.

Current existing building management systems however
greatly limit analysis and innovation potential. A commer-
cial building will likely have a BACNet network consisting
of equipment controlled by commercial building software
from companies such as Johnson Controls. These systems
do not usually prioritize storing this data, and thus most of
it is simply lost. These systems also tend to be indepen-
dent from one another. This limits the amount of innovation
that can be applied since each system only has information
from its own network, and thus control algorithms tend to be
simplistic. This can be seen with the common static HVAC
schedules, which are inherently wasteful since they do not
observe if the buildings are even occupied.

Several recent research efforts have sought to address this
issue. HomeOS[7] attempted to abstract an operating system
for residential homes as drivers on a computer, and built up
layers to capture common functionality. Another system is
BOSS[5], which describes a distributed control system for
buildings using different layers of services. A low layer of
sMAP systems[4] provide an interface to underlying sensors,
while higher layers provide an abstraction of sorts for ap-
plications. However, BOSS assumes complete freedom and
access to the existing building systems and makes implicit
assumptions on who is using the system - specifically re-
searchers who understand the system and have the technical
skills to utilize it. This might be at odds with how build-
ings are actually managed, and one that would possibly meet
resistance from building managers.

A B

DataService

C D

DS B DS C DS D

CentralService AppService

Figure 2. High-level view of the new BuildingDepot 2 sys-
tem. We have collapsed the Directory Service and User
Service into a single Central Service that acts as the gate-
way for the institution’s BD deployment. Also we have
clarified the role of a Data Service, and recommend one
unless administrative groups require their own DS, in
which case as many DSes as needed can be deployed.

Other efforts have examined the data management side.
SensorAct[2] utilizes multiple systems in order to maintain
privacy and controls over sensor data. Our own system tar-
geted data storage for buildings with an emphasis on sharing.
BuildingDepot (BD) was a system that consisted of three
separate components - a User Service that hosted all of an
institution’s users, a Data Service that stored the data values
from existing sensor networks, and a Directory Service that
essentially exposed what sensors existed in subordinate data
services. An institution could have multiple Data Services,
along with Directory Services, thus distributing both across
a campus. Figure 1 highlights our original system.

Our experiences with the initial deployment of BD led
us to realize that there were weaknesses in the design. First
of all, the only communication that the three services sup-
ported was through a REST API over HTTPS. For external
clients, RESTful APIs are sufficient, but for internal com-
munications between the services themselves, the REST API
had a significant overhead. The Directory Services were re-
dundant too, as we could not see a need for having more than
one in an institution. While the Data Services supported ac-
tuation, in reality there were issues with contention, latency,
and conflicts. Additionally, the Data Connectors required
manual mapping between the actual data source and the Data
Service, which caused maintenance issues.

Ultimately, the very general nature of the system meant
that each deployer was left to figure out how to design the ab-
stract sensor entities and how to connect the datastore with
their current infrastructure. It was not clear how to design
apps around the system since the entire context of the sen-
sors (how sensors are described in the environment) were
completely arbitrary. These lessons spurred us to develop a
better system, one that would better allow for reusable appli-
cations, and one that would clarify how our system should
be deployed. While the original BD worked as a data stor-
age for building data, BD2.0 is a more complete system that
addresses not just storage but application-development, con-
trol, and improved functionality.

DataService

SensorGroups

 BACNet Group

 WSN Group

BACnet

Network
Wireless Sensor

Network

Sensor Template

Type: Plug-load Energy Meter

Context –

 Location: room #

 Connected device: ---

 Additional tags: ---

Sensorpoint Types:

 Watts

 Volts

 Amps

 Power Factor

 Command (Actuation point)

A B Example Sensor Templates

 Plug-load Energy Meter

 - watts, volts amps, pf, cmd

 Mains Energy Meter

 - kwatts, volts, amps, pf

 Johnson Controls VAV box

 - zone temp, setpoints, cmd

 Binary Occupancy Sensor

 - occupied / unoccupied

C D Example DataService Portfolio

WSN Group

 - Energy Meter 13

 (room 2150)

 - Occ Sensor 15

 (room 2150)

BACNet Group

 - VAV box 1452

 (HVAC zone 2150)

Figure 3. Resources in the BD2 DataService. (A) highlights how the Sensor Group resource maps to a physical sensor
network. (B) shows an example of a Sensor Template (for a plug-load energy meter). (C) lists some of the Sensor
Templates that are included in the current BD2 ST library. (D) is an example of a DataService with some representative
sensor devices.

3 Vision and Architecture
In this section we describe the vision and overall architec-

ture of BuildingDepot 2.0 (BD2). BD2 is meant to serve all
parties that have a role or stake to play in building manage-
ment. This not only includes researchers (who would likely
have an engineering or computer programming background)
but also non-technical building managers, energy auditors,
and analysts. The central entity that installs and uses BD2 is
the institution. The institution is an organization that controls
a campus, which itself is a collection of related buildings. A
typical example would be a campus or a commercial park.
Alternatively, it might only control a single building.

An institution is an abstract concept, so the actual per-
son in charge of a commercial building or campus is likely
a building or facility manager. A large campus would typi-
cally have several people working in a facilities group, while
a smaller one might just have one person. The main responsi-
bilities often include overseeing normal building operations.
Building/facilities managers usually have some sort of tech-
nician training and utilize commercial software packages.
They do not have the expertise to write their own applica-
tions, and rather will use whatever is installed by their in-
frastructure provider. They in effect treat any such building
management system as an appliance. In addition, they often
are very conservative and protective of their equipment, and
are loathe to give up complete access.

Analysis researchers and auditors form another class of
users who are interested in the building data. These users
might be part of an energy management group (for the case
of a large institution and campus) or the building manager.
Their main goals revolve around monitoring energy perfor-
mance and ensuring that the overall building and campus
processes are being run efficiently. For these users, access
to the data is critical (especially archival and historical data).
The ability to run analysis and auditing applications that can
detect anomalies and do comparisons between buildings is
also extremely valuable.

Researchers and application writers form the third class
of users. These are building researchers who are interested
in developing innovative applications to control and analyze
buildings. They have a programming background and can
write applications provided that they have access to the nec-
essary data and actuation points that comprise the building.

These programs tend to be experimental. Application writ-
ers can also design their programs for broader release and
usage. In this scenario the applications will have polished
user interfaces so that non-programmers can use them.

Ensuring a data analysis and management plane that
could be useful to all these classes of users have driven the
design of BD2. To that end we have designed BD2 to act as a
management and supervisory control integration system over
existing campus building management systems (BMS)and
sensor network systems. In the following subsections we de-
scribe the overall architecture of BD2 and the changes we
have made over the original BD system, and how the design
benefits the different types of interested users.

3.1 Overall System Architecture
BD2 consists of two core software services - the Build-

ingDepot DataService (DS) and the CentralService (CS) and
an optional third service - the ApplicationService (AS). An
institution will have exactly one CS and one or more DSes
and ASes. The DS stores the data from underlying sensor
networks, and exposes it through several different interfaces.
The CS acts as both the directory for all of the institution’s
buildings and users. The AS is a server with BD libraries
installed to facilitate the development of applications. The
DS and CS are both independent systems, but are bound to
each other and communicate with each other to fulfill the
BD mission. The original BD system had three systems (the
Directory Service, User Service, and Data Service), with in-
stitutions having the option of deploying multiple Directory
Services and Data Services as needed. We realized that de-
ploying more than one DirectoryService wasn’t necessary,
and have simplified the system by allowing only a single CS.

Also, in the original BD work, we stated that Data Ser-
vices could be deployed according to what the institution
desired. Unfortunately, there was some confusion on what
would merit a new Data Service over using an existing one.
Did every building require a Data Service? What about if
multiple groups in the same building wanted one? For BD2,
we have clarified that a Data Service should belong to any
single administrative group that requires sole control over
who can access the underlying data and actuation points. In
many cases, an institution would only have one such group,
and thus only require one Data Service. Alternatively, a fa-
cilities group might require their own Data Service for all

of the HVAC related sensors while a research group might
require one for all of their WSN data points. Or different
buildings on a campus might desire their own DS. Thus it is
up to an institution to determine how many Data Services are
needed depending on the specific groups that exist and their
needs. Figure 2 shows the architecture of BD2.
3.2 Building DataService

The BuildingDepot DataService (DS) is the core service
of BD2 and manages the sensor data points that are assigned
to it. The DS consists of server software and databases that
retrieve and store the data from underlying sensor networks.
It also can send commands to actuate control points. The
original DS stored and exposed data solely through a REST
interface over HTTPS. The primary resource was a sensor,
which was arbitrarily defined by the DS admins to represent
whatever sensors were being stored there. Each sensor held
sensorpoints, which represented the actual datapoints for that
sensor. Sensor groups were defined as arbitrary collections
of sensors. In addition there were internal users that could
directly administer the site.

Our experiences with this setup revealed some issues in
the commissioning process, specifically with how arbitrary it
was. For example, an energy meter could be defined by two
different groups completely differently - this naturally lim-
its any sort of reusable app when a common language can-
not be agreed upon. This also causes problems in the con-
nection with the underlying sensor fabric - the original Data
Connectors had to be manually mapped between the actual
data sources and the sensor/sensorpoint resources on the DS.
These inherent weaknesses led us to completely redevelop
the meanings of the DS resources. Rather than allow for
arbitrary specifications, we have redefined the Sensor, Sen-
sorpoint, SensorGroup, and have introduced a new resource
called the Sensor Template. We explain the resources and
specifics of the DS as follows.

Sensor Group - Originally, a Sensor Group (SG) was
an arbitrary collection of sensors. In BD2, a SG actually
now maps directly to an underlying network. For example,
a building might have an energy meter WSN and a campus
HVAC BACNet network. Each of these are separate network
systems, and controlled by different groups. When a new DS
is being commissioned, the admins will create a SG for each
of the networks that will connect to the DS. SGs contain the
sensor resource that map to the physical sensor device under
the actual host sensor network. Figure 3A highlights how
SGs are directly associated with an underlying network.

Sensor Template - Sensor Templates (ST) are new to
BD2 and describe specifically what a sensor is. As a SG
represents the host network, a ST defines the sensor that ex-
ist in the underlying networks. A ST consists of the sensor
template type and the list of sensorpoint types that exist for
that sensor. These sensor templates are meant to reflect the
physical underlying sensor. For example, an energy meter
typically has data for watts, volts, and amps; therefore an
energy meter sensor template would contain the sensorpoint
types that an energy meter sensor would have (e.g. watts,
volts, amps, etc). Because these STs are standardized, ap-
plications can be written knowing how a sensor is defined
(in terms of what its datapoints are). One of the goals of

BD2 is to develop and release a large library of such STs.
So far we have cataloged sensors that exist in our own cam-
pus, including plug load energy meters, occupancy sensors,
and VAV boxes. As more existing sensors become cataloged,
the library becomes increasingly useful for application de-
velopment. In addition to the standard library that we are
maintaining, users can also design their own custom sensor
templates as well by specifying the type and what sensor-
points belong to the ST. Figure 3B and C give an example of
a Sensor Template and list some STs in the ST library.

Sensors - Sensors are the core resource of the DS. As the
SGs map to a physical sensor network, sensors represent the
actual physical sensors that exist in the sensor network. Sen-
sors consist of a sensor type that specifies what sensor tem-
plates it is, and a list of sensorpoints that reflect what sensor
type it is. Sensors also contain metadata which describe its
context, such as its location - these play a role in binding
with the Building Templates (which will be explained in the
next subsection). Figure 3D shows some representative sen-
sors that exist on a BD2 DS. Custom context tags can also be
added to a sensor if the institution so desires.

Virtual Sensors - This is a new sensor type introduced
in BD2, and allows for a virtualized sensor that exists as an
aggregation or calculation of other physical sensors. These
represent data sources that do not physically exist, but can
be calculated from existing sources. For example, a room
might not have a circuit meter measuring total room energy
consumption, but if each of the plug loads are measured, then
the total room energy can be calculated by summing the in-
dividual plug load meters. Another example might be a vir-
tual occupancy sensor that is based on indirect data, such as
through Wi-Fi tracking. A separate program can calculate
occupancy as a virtual sensor from this data, and act as the
data source (as opposed to a physical sensor network).

Sensor Points - Sensors consist of sensor points (SP),
which correspond to the actual data streams and actuation
points that comprise a physical device. The actual time-
series data (time-value pair) are associated with the SPs. For
example, a plug load energy meter would have SPs for watts,
volts, and amps. Unlike the first version, all SPs have a pre-
defined type that describes what exactly the SensorPoint is
and what data type it is. These SP types are used as part of
the Sensor Templates to exactly define a type of sensor.

Administrative Users - Admins are responsible for the
DS, and there are administrative functionalities that give the
DS admins fine-grained control over who has access to what.
There are three tiers of administrators, with the highest tier
having complete control over the DS, and the lowest tier be-
ing restricted to only instantiating new sensors in specified
SGs. This allows the main admins to give access to other
users for their own SGs - for example, an institution’s facility
manager can give the groups that manage the various sensor
networks their own lower-tier admin accounts to handle their
own sensorgroups. This design is meant to allow flexibility
in how the DSes get deployed in an institution. If differ-
ent groups (who control different networks) can exist on one
DS, then only one DS is needed for the institution. If how-
ever different groups require complete control over their own
DS, then each can have their own DS within the institution.

This design choice came from conversations we had with the
facilities group on our campus. Having ultimate control over
the HVAC control and HVAC data for the buildings was a
crucial feature that they required.

Normal Users and Permissions - Normal user accounts
are stored in the CentralService, and thus the DS does not
need to maintain the actual users who might use the system
on a normal basis. Instead the DS simply queries the CS to
authenticate any user access. The actual permissions to read
or write from the sensors are stored at the DS.

Actuation - Actuation is a critical function, and one that
the original BD allowed. The implementation however was
too simplistic and we ran into issues with contention over
the actuation resources. Thus we have completely revamped
it and learned from BACNet and other more recent research
efforts in how they handle this critical feature. In BD2, each
actuation point is a special sensorpoint that resides under a
sensor. These actuation points can be written into the DS,
which will then notify the Data Connector to actuate the un-
derlying control.

BD2 is geared more towards high level supervisory con-
trol. The reasoning behind this is that a great deal of work
has been done on low level direct control, and seeking to sup-
plant that (e.g. the PID control loop for cooling a room to a
targeted temperature) could cause issues if not done prop-
erly. For this reason (among many others), facilities man-
agers are loathe to give up unrestrained control to potentially
delicate building control systems. To make this acceptable
to the people in charge of building operations, BD2.0 al-
lows fine-grained control over the authorization over actu-
ation, ensuring that only certain actuation points are allowed
(such as turning off or on the HVAC in a specific zone).

Actuation points have a special ACL that is separate from
the permissions list of the parent sensor. By default, the only
users who can access an actuation point are admins. The
admins can let normal users access these if desired (for ex-
ample, the HVAC controls for their rooms). Potentially, mul-
tiple users might have access to a single actuator. For exam-
ple, a VAV unit could be controllable by the occupant as well
as the building manager. Because of this, we incorporate a
priority array similar to BACNet that determines which set-
ting ends up being sent as the command. Two defaults must
be set by the admin for every actuation point. The first is
a special low-priority default value in case no other actua-
tion request comes in. This can be any valid value for that
actuation point, or a release command (which essentially re-
linquishes all control from the DS to the underlying network)
for systems that support it (e.g. BACNet). The second is a
conflict-default value that will be set if two or more users
with the same priority level (which might be the case if two
users share an office for example and have access to the VAV
controls) conflict. This will be set as the command in that
situation, and usually will be the more conservative of the
options (for example, leaving the HVAC system on).

Data Connectors - As BD2 operates as a management
fabric on top of an existing sensing infrastructure, transfer-
ring the data from the underlying networks to the DSes is a
key operation. The original BD forced a manual mapping be-
tween the DS sensors/sensorpoints and the actual datapoint

residing on the sensor network. BD2 attempts to automate
this process. Many different types of networks exist, includ-
ing BACNet, Lonworks, ION, and custom proprietary net-
works. Many such networks have a central server that stores
all of the sensor metadata, and might even store the actual
sensor data. Others might have a series of nodes that indi-
vidually can be queried for data. A Data Connector (DC)is
the software that handles the connection between these dis-
parate networks and the BD2 DS.

Fundamentally, DCs have two roles to play - they need
to determine what sensors and sensorpoints actually exist in
the underlying network, and how to retrieve the respective
data and transmit it to the matching BD2 sensorpoint. We
have developed a framework for writing and reusing data
connector drivers to allow this. Physically speaking, they
can exist in one of two places - at the DS level, where they
are essentially pulling data from the underlying network, or
at the sensor network level, where they push out the data to
DS. The former generally can be installed when the sensor
network allows for retrieval, and has advantages in terms of
speed since the DC can insert the data directly into the sys-
tem. The latter is used when there is no way of easily access-
ing the network from the outside, and instead the DC must
be installed within the sensor network itself (e.g. a protected
BACNet network). In this case, the DC can POST the data
with proper authentication to the DS using the REST API.

In either case, the DCs first determine what sensors ex-
ist. The DC can be programmed to either retrieve this meta
information from the underlying network (for example, by
connecting directly to the sensor network) or through an
existing collection of the sensor meta-information (perhaps
through a database or a text file). The DC developer must
be able to make sense of this, so some amount of customiza-
tion needs to take place for a custom sensor network. Once
this data is parsed, the DC will create the matching set of
sensors/sensorpoints for each of the underlying physical sen-
sors and sensorpoints. When created, the sensors and sen-
sorpoints maintain information on the underlying identifier
and this information allows the DC to transmit the sensor
data using the host identifier directly. The DS will be able to
determine from the group ID and the identifier what sensor-
point’s datastream needs to be updated. This allows the DC
to automatically maintain the mapping and for the data to be
transmitted correctly to the proper Dataservice sensorpoint.
The DC can even periodically examine if there have been any
new additions or changes to the metadata, and automatically
make the appropriate adjustments (for example, by adding a
new sensor to the dataservice).

Seeing how certain networks have standardized inter-
faces, what this also affords us is a means to publish share-
able DCs. For example, our BACNet DC should work with
any existing network (although some customization might
need to be done given the use of proprietary tags which con-
tain the metadata). For custom networks that rely on a sim-
ilar infrastructure (such as data stored in a RDMS), we have
provided frameworks that can simplify the process. For ex-
ample, our RDMS DC will query the underlying database,
parse it to determine the relevant sensors and sensorpoints
(this must be customized based on the actual schema), and

Commercial Building with Central HVAC

(Building Template)

 Energy Domain

 Total Building Energy

 |---- HVAC Energy

 |---- Circuit Energy

 |---- Floor Energy

 |--- Room Total

 |--- Individual plug load devices

 HVAC Domain

 Building

 |---- Plant

 |---- Air Handlers

 |---- Floor

 |---- HVAC Zone

 |--- VAV Box

 Plumbing Domain

 Total Building Water Usage

 |---- Subsection Usage

 |---- Floor Usage

 |--- Room Usage

 |--- Individual water flow sensors

 Location Domain

 Building

 |---- Subsection

 |---- Floor

 |--- Room

 |--- Individual room-based sensors

Figure 4. The Building Template for the type Commer-
cial Building with Central HVAC (v1). This template
specifies four domains for the building, each with its own
hierarchy. Special predefined data points exist in some of
the entities that map to commonly requested data values.

retrieve or transmit the sensorpoint data. Our goal is to have
a library of DCs available for others to use.
3.3 Central Service

The Central Service (CS) acts as a gateway to the BD de-
ployment for an institution. It serves two functions - it stores
the building templates and models, acting as a directory for
all of the sensors that the BD system contains throughout an
institution, and it stores all of the user accounts across the in-
stitution. The user function is similar to the original BD User
Service. The directory function is a significant improvement
over the original Directory Service, which merely listed the
sensors that existed in the Data Services. The BD2 CS now
hosts the building models for the institution, each of which
are based on a building template. These building templates
define the structure of the building and provide a common
language for applications and users to query.

Once the building model is defined, it can be connected to
the institution’s DSes through binding. Binding connects the
CS to the DSes, and is the key to supporting reusable appli-
cations. As each building is defined by a building template,
applications can query for specific known values. Binding is
what maps the sensors that reside on the DS to the building
model for the target building. The CS admins are effectively
in charge of the entire BD deployment in an institution. They
however can work with building managers and other facili-
ties personnel to set the actual configuration of the system.
We detail the components of the CS as follows.

Building Template - The Building Template (BT) de-
fines the structure of a specific type of building. These
are similar to the Sensor Templates that we introduced for
the DS. Many commercial buildings are similar in terms of
how they are laid out (multi-floored, divided into zones and
rooms) and how they are provisioned for HVAC. For exam-
ple, in our own CSE building, we have a typical HVAC de-
ployment with air handlers feeding VAV boxes that provide
air to the end-spaces (rooms). Many buildings in our own
campus share a similar structure. Buildings that are similar
can fall under a specific BT type. We have developed BTs
for buildings that have a centrally managed HVAC system
feeding to VAV boxes, and are looking to develop additional
templates for other types of buildings (including residential
homes which typically have direct exchange A/C units). A

library of such templates can then be created, and applica-
tions that want to target a specific type of building can base
their code structure against the targeted BT.

Figure 4 outlines the structure of our above-mentioned
building template. We take cues from the Industry Foun-
dation Classes (IFC), an industry effort to develop a stan-
dard way of describing buildings during construction and
commissioning, and use their concept of domains. The BT
for the commercial building specifies four domains that pro-
duce sensing data - energy, HVAC, plumbing, and location.
Each of these domains maps an hierarchy from the top level
(which represents the total building measurements) down to
the end-spaces (which are generally rooms). The energy do-
main maps the overall energy consumption of the building,
from the total amount, down to the circuits and then to the
end-spaces (rooms), and would contain energy meter sensors
(both industrial and plug-load). The plumbing domain maps
the water usage of the building, from total water consump-
tion to per end-space (typically bathrooms and kitchens).
Water usage sensors are slotted in this domain. The HVAC
domain contains the HVAC related sensors, and maps an hi-
erarchy from the building (where the air-handlers are slotted)
down to the HVAC zones (which are where the VAV boxes
would reside).The location domain maps the location hier-
archy for the building, from the building subspaces to floors
down to the end-spaces (rooms). Room-based sensors can be
slotted in the rooms under the location domain, and thus this
forms a container for all other sensors that are physically lo-
cated there (such as occupancy sensors). These domains are
connected to each other - for example, the end-spaces un-
der the location domain would be tied to a specific HVAC
zone; a HVAC zone typically contains one or more rooms.
Thus to access a room’s HVAC values, you would query the
parent HVAC zone. From there, you could see what other
end-spaces that this HVAC zone is responsible for.

Each of the entries in the hierarchies for the domains con-
tain special predefined datapoints that describe commonly
sought-after attributes. For example, each end-space/room
contains datapoints that describe binary occupancy, quantita-
tive occupancy, and total energy consumption. If these sen-
sors or values exist in the DS, they can be bounded to these
points (see below for Data Service binding). These prede-
fined points simplify application development and usage as
they define specific points that applications can use to check
if the data exists, and if so, access the data directly. We note
that many buildings will likely not have sensors for many
of these defined points. In that case, they would simply be
empty, and any application that attempts to access the data-
point would simply see that there is no data there (and should
handle that case accordingly). Also, because the sensor de-
ployments of buildings continues to evolve, we version the
templates so that any future increases in the library of sen-
sors can result in a new version of that building template.
Thus apps should target a specific version of the template
that they are compatible with.

Building Model - The building model is the actual in-
stantiation of a BT (similar to how a sensor is an actual in-
stantiation of a sensor template), and describes the actual
structure of the building, such as how many floors there are

and what rooms exist. Once the building model has been cre-
ated based on its template, context information can be added,
such as the occupants of each room. The user accounts
(which are described next) can be mapped to the rooms that
they are occupants of.

User Accounts - User accounts are hosted on the CS, and
these represent all of the occupants of the targeted buildings,
as well as other interested users who would like access to the
data and system. One aspect that we carried over from the
original BD was the concept of using emails as user accounts
- this means that all of an institution’s users (who would have
email addresses with the institution’s domain) can automati-
cally be enrolled and specified as occupants for their rooms.
Users can be listed as occupant for a room/end-space, and
any sensors that are set as occupant-accessible that belong
to that location can be automatically accessed by the user.
This allows for the building managers in charge of the sensor
groups at the Data Service to pre-preemptively set permis-
sions over their managed sensors without having to actively
manage the ACLs. Otherwise, admins can set the permis-
sions directly with these user accounts.

DataService Binding - Binding is what connects the DS
to the CS. Each sensor represents data from a sensor net-
work, but without context to how it relates to the building,
application development can be difficult. Binding is the pro-
cess in which the sensors are attached to the end-points in
the building template models. As each sensor has location
context data specified in the DS, the CS can retrieve that and
use it to place the sensors under the domain entries where
they belong in the building model. For example, plug-load
meters hosted at the DS with a location to a specific end-
space would automatically be added under the energy do-
main. VAV sensors would be added to the HVAC zone. This
auto-population fills the building model with the sensors un-
der the appropriate places from the DSes.

Next, the predefined datapoints can be manually bound if
those sensors exist. If there is a sensor that measures overall
energy consumption of a room (this most likely would be a
virtual sensor that aggregates all of the individual plug load
sensors), then this can be manually specified as that room’s
total energy consumption. Likewise for occupancy and the
other predefined datapoints. A well-sensed building can po-
tentially have many of these datapoints filled, giving applica-
tion writers a very rich target to run interesting applications
on. Figure 5 demonstrates a databinding example.
3.4 Application Service

The Application Service (AS) is a new and optional third
system that allows for a tighter connection with the BD net-
work. Previously, users who wanted to write an application
against BD had to write against the REST API on another
server. We realized however that many applications could
benefit from accessing a faster interface. The AS provides a
server system with libraries that allow for more direct appli-
cations to be designed and programmed, and uses the same
internal RPC and messaging platforms that the DS, CS, and
Data Connectors communicate on.

Currently, the application development environment for
the AS utilizes Python libraries (and thus applications are
written in Python). The presence of the AS helps satisfy the

DataService

SensorGroups

 BACNet Group

 WSN Group

BACnet

Network
Wireless Sensor

Network

Sensor Template

Type: Plug-load Energy Meter

Context –

 Location: room #

 Owner: username

 Additional tags: ---

Sensorpoint Types:

 Watts

 Volts

 Amps

 Power Factor

 Command (Actuation point)

A B Example Sensor Templates

 Plug-load Energy Meter

 - watts, volts amps, pf, cmd

 Mains Energy Meter

 - kwatts, volts, amps, pf

 Johnson Controls VAV box

 - zone temp, setpoints, cmd

 Binary Occupancy Sensor

 - occupied / unoccupied

C D Example DataService Portfolio

WSN Group

 - Energy Meter 13

 (room 2150)

 - Occ Sensor 15

 (room 2150)

BACNet Group

 - VAV box 1452

 (HVAC zone 2150)

 Building A - Energy Domain

 - Room 2150

 - Energy Total (predefined)

 - Energy Meter 57

 - List of plug load meters

 - Energy Meter 13, Energy Meter 16

CentralService

WSN Group

 - Energy Meter 13

 (Building A - room 2150)

 - Energy Meter 16

 (Building A - room 2150)

 - Energy Meter 57 (Virtual Meter)

 (Building A - room 2150)

DataService

Figure 5. An example for Databinding. The DS lists three
sensors (all with attached location metainfo). The CS au-
tomatically can add the 2 energy meter sensors as part of
that location’s plug-load energy meters. The third virtual
meter, which represents an aggregate of that room’s plug-
load energy consumption, can be manually binded with
the special predefined value of total-energy consumption
for that room in the CS.

needs for the application writers and researchers. Combined
with the template model, application writers can design their
programs knowing how to access the relevant data that they
desire. We note that it is possible to develop applications en-
tirely through the REST API, and thus an app can be written
in any language running on any computer, but the AS does
provide a convenience and a central place where an institu-
tion’s apps can be hosted.
4 Implementation

Designing and implementing a building data analysis and
control system must address several key challenges. As the
system is designed to store and expose a large amount of
data, the choice of underlying system infrastructure and data-
store is important. Scalability is one issue - as the data grows,
being able to add additional units to compensate is neces-
sary. Another is latency and performance - users have certain
expectations on data access speeds, and taking a significant
amount of time to process data requests hinders the user ex-
perience. These requirements guided the technologies we
chose to use for BD2. The most critical component of BD2
is the dataservice, as this system is what houses the data and
responds to requests.

The DataService utilizes the Cassandra database to store
the timeseries values, a MySQL relational database to store
the metadata for the resources, and a Redis datastore to cache
all of the values for faster retrievals. We average the time-
series values at 1 minute and 1 hour intervals to provide ag-
gregate data when requested. The core software is a Python
application that provides an API for interacting with the core
DS resources. Interfaces can be built around this API that
ultimately are accessed by client users. The web API is pro-
vided by a Python Flask application, and this includes both
the webpage interface as well as the REST API interface.
The fast API utilizes RPCs and the RabbitMQ messaging
platform for faster access (relative to HTTPS). The deploy-
ment of the DS depends on the needs and IT infrastructure
of the institution - Cassandra is a distributed datastore and
thus a Cassandra cluster can be deployed if needed. The two
other databases and the core software can also exist on their
own VM/server. This type of separation is common in scal-
able web application development, and we take advantage of
the work that has been done in that space to improve scal-
ability for BD2. Alternatively, for a small deployment, all
of the components can reside on the same VM/server. The

Figure 6. Screen shot of BuildingViz, an application that
can display building data in a portable manner.

CentralService is similarly implemented, except without the
Cassandra datastore. The main software exposes the core
API for interacting with the resources, which are stored in
the MySQL database and cached in Redis. Scalability in the
constituent technologies is a core reason we opted to pur-
sue a more centralized approach, as there exists clear paths
for horizontally increasing the server assets to handle larger
loads. Providing a central point of control also allows both
building managers and researchers to better understand how
the system connects with the underlying infrastructure.

5 Application Development
The new template system that BD 2.0 provides is how we

approach the challenge of reusable application development.
In this section we briefly describe how such applications can
be written, and provide an example of some of the applica-
tions we have been developing for our own BD 2.0 deploy-
ment. An application can be written either on the AppServer
(if available), or through the REST API. In either case, the
steps are the same. As a simple example, if the application
writer wanted to write an app that would actuate all the end-
spaces/rooms based on occupancy, the steps would be as fol-
lows. The app would first ask for the user credentials that it
would pass along to the CS and DSes. Then it would obtain
a list of end-spaces, and look for the predefined occupancy
datapoint. For the end-spaces that exist, it would examine
the returned value from that resource. The app will go to the
HVAC zone that is the parent of this end-space and attempt
to actuate the VAV box (the actuation point is also a pre-
defined point), assuming that the HVAC zone contains only
one end-space. Similar applications can be designed for data
analysis - an app can examine the energy usage of a building
on a per room basis by examining all the sensors that match
the energy meter sensor template.

Thus for researchers and app writers, BD2 provides a
platform in which writing these types of applications is
greatly simplified. Ultimately, the applications themselves
can form a library that any BD2 deployments can use, in-
creasing the value for such a system greatly. Our own lab has
used BD to write some interesting applications - for instance
we have written a WiFi occupancy application that utilizes
WiFi traces to proxy for occupancy, and use that to command
the VAV boxes in the HVAC zones in our building[3].

Another example is our BuildingViz application, which
leverages the building templates and sensor templates in or-
der to be portable across different buildings. The BV app
is loaded with a map of the building and parses through the
building to discover all of the rooms. The app uses the de-
fined end-spaces (rooms) as the container for the sensors. As
there are defined sensor types, the app can display relevant
sensor data (such as energy meters or occupancy). These
sensor points are defined with known template types and thus
the BV app can determine how to populate the data points for
each room based on the existence of data. It can then query
the Data Service for the data points that are associated with
the sensors. This app can be used across any building that
conforms to a building template and uses sensors that map
to public sensor templates, and demonstrates how portable
applications can be developed. Figure 6 shows a screen shot
of the app.
6 Conclusions and Future Work

In this paper we presented BuildingDepot 2.0, a signifi-
cant upgrade over our first iteration of the system, which was
targeted as a data storage system for building sensor data.
BD 2.0 changes the structure of the system and takes a step
towards allowing reusable applications. The key novel in-
sight was the use of defined templates for both the sensors
and the buildings in order to define a common language that
applications (and users) can understand. We allow for ex-
pressiveness in both the sensor descriptions as well as the
the building model by binding the two together.

Our current and future work revolve around increasing
the number of standard templates in both the sensor template
library and the building template library. We also hope to
develop more automatic data connectors and useful standard
applications. Like our first version of BD, BD 2.0is open
source and available at buildingdepot.org, along with more
detailed documentation.
7 References
[1] Y. Agarwal, R. Gupta, D. Komaki, and T. Weng. Buildingdepot: an

extensible and distributed architecture for building data storage, access
and sharing. In BuildSys ’12.

[2] P. Arjunan, N. Batra, H. Choi, A. Singh, P. Singh, and M. B. Srivas-
tava. Sensoract: a privacy and security aware federated middleware for
building management. In BuildSys ’12.

[3] B. Balaji, R. Gupta, and Y. Agarwal. Sentinel: An Occupancy Based
HVAC Actuation System using WiFi Infrastructure in Commercial
Buildings. In Accepted at SenSys 2013.

[4] S. Dawson-Haggerty, X. Jiang, G. Tolle, J. Ortiz, and D. Culler. sMAP:
A Simple Measurement and Actuation Profile for Physical Information.
In ACM Conference on Embedded Networked Sensor Systems (SenSys),
2010.

[5] S. Dawson-Haggerty, A. Krioukov, J. Taneja, S. Karandikar, G. Fierro,
N. Kitaev, and D. Culler. BOSS: Building Operating System Services.
In NSDI ’13.

[6] Department of Energy (DOE). Buildings Energy Data Book, March
2009. http://buildingsdatabook.eren.doe.gov/.

[7] C. Dixon, R. Mahajan, S. Agarwal, A. J. Brush, B. Lee, S. Saroiu, and
P. Bahl. An operating system for the home. In NSDI ’12.

[8] X. Jiang, M. V. Ly, J. Taneja, P. Dutta, and D. Culler. Experiences with
a High-Fidelity Wireless Building Energy Auditing Network. In ACM
Conference on Embedded Networked Sensor Systems (SenSys), 2009.

