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Abstract

Increasing energy consumption of commercial buildings
has motivated numerous energy tracking and monitoring sys-
tems in the recent years. A particular area that is less
explored in this domain is that of energy apportionment
whereby total energy usage of a shared space such as a build-
ing is disaggregated to attribute it to an individual occupant.
This particular scenario of individual apportionment is im-
portant for increased transparency in the actual energy con-
sumption of shared living spaces in commercial buildings
e.g. hotels, student dormitories and hospitals amongst oth-
ers. Accurate energy accounting is a difficult problem to
solve using only a single smart meter. In this paper, we
present a novel, scalable and a low cost energy apportion-
ment system called WattShare that builds upon our Ener-
gyLens architecture, where data from a common electricity
meter and smartphones (carried by the occupants) is fused,
and then used for detailed energy disaggregation. This infor-
mation is then used to measure the room-level energy con-
sumption. We evaluate WattShare using a week long deploy-
ment conducted in a student dormitory in a campus in India.
We show that WattShare is able to disaggregate the total en-
ergy usage from a single smart meter to individual rooms
with an average precision of 96.42% and average recall of
94.96%. WattShare achieves 86.42% energy apportionment
accuracy which increases to 94.57% when an outlier room is
removed.
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H.4 [Information Systems Applications]: Miscella-
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1 Introduction

Increasing electricity consumption has been an ever-
growing concern for the past several decades. Buildings,
specifically commercial buildings, account for a significant
proportion of the overall energy use globally. Within com-
mercial buildings, shared living spaces e.g. dormitories, ho-
tels and hospitals have a peculiar feature. Occupants in these
shared living spaces typically occupy their own room but are
not billed for their actual energy consumption, resulting in
higher energy wastage. Even if the property owner would
want to do separate billing for each room, complex electri-
cal infrastructure together with high metering costs makes it
prohibitive.

Techniques for disaggregating meter level data into ap-
pliance level consumption, also referred to as Non-Intrusive
Load Monitoring (NILM), have been studied [3, 9, 12, 16].
However, any such approach by itself, is likely to fail in
the scenario of shared living spaces due to multiple ap-
pliances, typically of the same type, being simultaneously
operated across different rooms. Recently, personal en-
ergy apportionment i.e. moving from disaggregation at the
appliance level to the user level, has gained some trac-
tion [5, 10, 13, 17]. In this problem, the primary goal is
to distribute the total energy consumption to the individuals
based on their personal usage.

Measuring the energy usage of an individual, within a
multi-occupant home, is non-trivial as it requires monitor-
ing at a much fine grained level e.g. having the information
about what the user is doing, when is he doing it, where is he
doing it and so on. Shared living spaces are a special case,
whereby the problem of personal energy apportionment is
relaxed to an extent that the personnel typically occupy dif-
ferent rooms and hence room-level energy apportionment is
sufficient to achieve the desired results. Such room level en-
ergy apportionment will also then allow for billing each oc-
cupant for their own energy consumption, thus motivating
energy conservation behavior.

The usual layout in these shared living spaces are a clus-
ter of rooms (collectively referred to as a wing in this paper)
laid out in a sequential order. Total power consumption at
the wing level can be easily monitored as it is typically fed
through a separate electrical panel. Smart electricity meters,
allowing for sampling up to 1 Hz, are now becoming com-



mon and affordable. Concurrently, smartphones have also
become hugely popular over the past decade. We take the
advantage of wide availability and affordability of smart me-
ters and smartphones to propose WattShare - a system that
apportions the aggregate power consumption, measured at
the wing level using a smart meter, to individual rooms of
the wing, taking advantage of the sensory information pro-
vided by the smartphones carried by the room occupants.

WattShare utilizes signal strength values from WiFi scans
and audio signals from the microphone as input data sources
from the smartphone, per phase power consumption from the
3—phase smart meter and some metadata that can be easily
collected (e.g. type of appliances in each room and distri-
bution of the three electrical phases across different rooms)
to achieve room level energy apportionment. We use WiFi
signal strength to estimate the room occupancy while the au-
dio data is used to differentiate between the events occurring
across different rooms.

WattShare system design, uses a similar system archi-
tecture as EnergyLens [17] that was proposed for personal
energy apportionment in residential settings. However, the
set of inference algorithms used to process and combine the
multi-modal sensory information from both the phone and
the meter are largely different. By combining the differ-
ent sensor inputs, each being processed using simple tech-
niques, WattShare is able to accurately measure per room
energy usage, accounting for even the events caused by low
power consuming appliances such as lights and fans which
are otherwise hard to detect with other NILM techniques.

In summary, the primary contributions of this work are
outlined below:

e We introduce WattShare - an energy disaggregation and
apportionment system that provides room-level energy
usage together with the disaggregated appliance usage
within the room i.e. identifying and measuring the con-
tribution of each appliance that contributed towards the
room’s energy usage.

o We demonstrate our system’s effectiveness with a week
long deployment of our prototype system in a student
dormitory building in IIIT-Delhi, India.

2 Related work

Researchers have proposed several techniques for energy
disaggregation for monitoring energy usage, analyzing con-
sumption patterns and, motivating users to reduce their con-
sumption through regular feedback. In this section, we
specifically focus only on the studies done in the area of en-
ergy apportionment and discuss systems that have been de-
signed to target this problem since it is the closest problem
to the one we are trying to solve with WattShare.

Apportionment of energy to individuals is a challenging
task. Hay [10] investigated the problem of apportionment in
a shared office environment, illustrating policies that might
work and the role of sensor systems for apportionment. A
recent paper [8] that conducted two studies showed that pro-
viding information to users about their personal energy con-
sumption does help raise people’s awareness, change their
perception about energy consumption and eventually has an
impact on their usage behavior. They specify that factors

such as lack of appropriate information and low cost of utility
bills, leads to careless attitude towards energy usage. Even
though the study was done at a small scale (12 participants
in the first lab study and 4 shared households with a total 21
participants in the second two week field study), the results
are encouraging and warrant the need to develop a better un-
derstanding of this problem.

Very few systems exist in the field of personal energy
monitoring. Personalized Energy Auditor [13] is one such
system that estimates personal energy usage by tracking the
user’s movements (using Wifi scans from his/her smartphone
and the doorway sensors installed in the house) and correlat-
ing it with appliance usage that is monitored by the home
electricity meter. Another similar system is our prior work
on EnergyLens [17] that combines data from smartphone
sensors (WiFi signal strength and audio) and the smart elec-
tricity meters, to provide fine grained apportionment infor-
mation for each occupant in a home. It identifies four main
pieces of information required for energy apportionment i.e.
“who” did the activity, “what” was the activity, “where”
was it done and “when” did it occur. Both of these systems
were designed for residential settings. WattShare extends the
EnergyLens system architecture to a commercial setting and
provides room level energy usage from the common elec-
tricity meter. To the best of our knowledge, WattShare is the
first energy apportionment system designed for commercial
buildings, specifically the shared living spaces.

3 System Architecture

We now describe the design of our proposed WattShare
system that fuses sensory information from smartphones, ap-
pliance metadata, with energy usage from a central smart
meter for energy apportionment to individual rooms and oc-
cupants. We first describe the individual components of
WattShare (Figure 1), how they connect to each other, as well
as how they translate to different stages in our apportionment
algorithm.

3.1 WattShare Input Sources
3.1.1 Electricity Meter Data

We start by describing the different sensor sources that we
use for WattShare. The first sensor source is the total power
consumption data of the entire shared space using standard
networked three phase energy meters, collected at the rate of
1Hz. Our algorithm uses an edge detection strategy devel-
oped in our previous work [17] to detect rising and falling
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Figure 1: WattShare Algorithm Stages



Phase Room1 Room2 Room3 Room4 Room5 Room6
Phase I | Light, Fan, Plug | Light, Fan, Plug - - - -
Phase 2 - - | Fan, Plug | Fan, Plug | Fan, Plug | Fan, Plug
Phase 3 - - - - - -
Phase 1* - - - - - -
Phase 2* Plug, AC Plug, AC Light Light | Plug, AC | Plug, AC
Phase 3* - - | Plug, AC | Plug, AC Light Light

Table 1: MetaData - I : Appliance—Phase—Location Mapping. Two 3—phase meters, separately monitoring the light and the
power loads, were installed at the wing level. Phase 1-3 belong to Meter-1 and Phase 1*-3* belong to Meter-2.

edges, which correspond to changes in power levels as ap-
pliances turn ON/OFF.
3.1.2  Smartphone Sensors

Our WattShare smartphone application, running on an oc-
cupant’s smartphone, collects two sensor data streams pe-
riodically and sends them to our analysis server. The first
stream is a periodic scan of visible WiFi APs (BSSIDs)
and their Received Signal Strength (RSS) alongwith a time
stamp. This data is used by our localization algorithm to de-
tect the occupants’ location within the building.

The second sensor stream captured from the occupant’s
smartphone is the raw Pulse Code Modulated (PCM) sig-
nal (sampled at 8 KHz) from the microphone which is pro-
cessed by an audio processing pipeline. It involves 1) pre-
processing the raw signals and 2) generating consequent au-
dio features from them. For the first step, audio signal is
sampled with a duty cycle of 50% and divided into 500 ms
frames. Next, a Hamming window function is applied onto
each frame. Finally, 13 MFCC (Mel Frequency Cepstral Co-
efficient) [6] features are calculated from the processed audio
samples. The raw PCM data is discarded (ensuring the pri-
vacy of the user) and only the extracted features are sent to
the server at regular intervals. We use these features to differ-
entiate between electrical events in our WattShare algorithm.
3.1.3 Metadata

In addition to the sensory input from smart phones and
electricity meter, the third input to the system is a set of static
information about the shared environment called Meradata.
This information is collected at the training phase and is cur-
rently done manually. As we envision our system to be used
in commercial buildings, the facilities department and the oc-
cupants would ideally collect this data using our app itself.
We collect two kinds of static information about the appli-
ances present in the shared area. They are:

o Appliance—Phase—Location Mapping: It contains the
list of appliances tagged with their corresponding room.
They are tagged with the electrical phase they are on us-
ing the building electrical layouts.

o Appliance—Power Mapping: It contains the mapping of
each appliance with its power consumption.

Mustration of Appliance—Phase-Location Mapping
(Metadata - I) and Appliance-Power Mapping(Metadata -
II) are shown in Table 1 and Table 2. In modern buildings,
multiple electrical phases are pretty typical, which are often
uniformly distributed to provide some load balancing. In
fact at both UCSD and HIT-Delhi, the rooms had multiple
phases, in case one of the phases goes down (e.g. in India) or

Appliance | Magnitude
(Watts)

Light 35

Fan 35

Laptop 60

AC 630

Table 2: MetaData - 11 : Appliance—Power Mapping. Appli-
ances across all the rooms are same in terms of number as
well as their make and model.

to balance loads (e.g. in the US, each phase is on a 15A/20A
circuit breaker). Such a distribution makes the overall
room level disaggregation complex.  Appliance-Phase
mapping, even though complex, is appropriately used by the
WattShare algorithm, as explained in Section 3.3.

3.2 Training Stage

During the training stage, we collect the Metadata (as ex-
plained in the previous section) and calculate a set of thresh-
olds required by the WattShare algorithm, from the WiFi and
audio data streams. We use WiFi signal strength for localiz-
ing the user within his/her room. For each room, we observe
the range of signal strength values received from the visible
APs for 5 minutes (see Figure 2). Therefore, if there are k
visible APs in a room, then there would be & sets of signal
strength values associated with the room. For each of these
AP range sets, the values that lie within the 25th and 75th
percentile of the range set is defined as a threshold range.
The k threshold ranges associated with the room are then
used for localizing a user to his/her room (usage described in
Occupancy Detection step of Section 3.3.2). Note that other
WiFi based algorithms [2, 11] and more advanced indoor lo-
calization techniques [14, 18] can also be used in case of
more complicated building layouts, although we found our
simple technique to work well in practice for our testbed.

Audio information is used to differentiate between events
occurring across different rooms. In order to do so, we as-
sign each room a set of threshold values corresponding to
events such as switching ON/OFF an appliance (e.g. fan,
light, plug loads and AC) and locking/unlocking the room
door while turning ON/OFF the same appliances. We calcu-
late the threshold values by taking two windows of 60 sec-
onds each, one before (w,.) and one after (w5 ) the event
time. For all the frames in each window, we extract MFCC
feature vectors and take the Euclidean distance between the
two [15]. The calculated distance is termed as the event
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Figure 2: Range of signal strength values observed in each
room from one access point. This figure shows the plot of 5
minutes worth of WiFi data collected in each room.

threshold. This is repeated for each event and for each room.
At the end of the process, we have a threshold set containing
values corresponding to the events specified above for each
room. We now explain the various stages involved in the
WattShare algorithm.

3.3 WattShare Algorithm

The central component to our WattShare system is the ap-
portionment algorithm, which comprises of three stages as
shown in Figure 1 at a high level: (1) Electrical Event Detec-
tion (2) User Association (3) Activity Detection and Energy
Apportionment. Figure 3 describes each of the algorithm
stages in further detail.
3.3.1 Electrical Event Detection

The first stage, Electrical Event Detection, consists of de-
tecting all electrical events or edges (rising and falling) from
the raw power trace using the basic edge detection algorithm.
Before performing the edge detection process, we remove
noise that is observed on each of the electrical phases. Peri-
odic spikes with the magnitude similar to that of the appli-
ances on that phase (as shown in Figure 4) were observed and
filtered out. Once all such noise spikes are removed, we run
our edge detection algorithm. Each detected edge is marked
as a tuple ¢; = (t;,m;, p;) where f; is the time at which the
event occurred, m; is the power magnitude of the edge (in
Watts) and p; is the electrical phase on which the event is
observed. For more details on the edge detection algorithm,
please refer to [17].
3.3.2 User Association

In the second stage, User Association, we associate the
detected electrical events with the respective rooms. This is
the most important stage of the WattShare algorithm that in-
volves three steps, namely, Occupancy Detection followed
by Room Set Generation and Edge to Room Mapping. The
last two steps are together termed as ‘Room—Edge Associa-
tion’.
Occupancy Detection In this step, the WiFi data stream
from the phone is first summarized by taking the mean of sig-
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Figure 4: (1) Power Trace with noise (Left) (2) Filtered
Power Trace(Right)
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Figure 5: Occupancy Detection. This figure illustrates the
outcome of this step. It shows the presence/absence in the
room for each user.

nal strength samples (received from visible access points) for
a window of 20 seconds. Each record in the WiFi data stream
is of the form < time,rssy,rssy,...,rss; > where rssy - - - rssy
represent the signal strength values received from each of the
k access points.

Room level occupancy is detected by comparing the ob-
served signal strength from the visible access points with
corresponding threshold ranges for each AP. If the RSS value
lies within a room’s threshold range, occupancy status is set
to “present” or else is marked as “absent”. Figure 5 illus-
trates the outcome of this process. With this location infor-
mation, we now have the time intervals when the occupants
were present in their respective rooms. It is important to
note that other systems, e.g. a keycard based access control
system in a hotel, or a hybrid room occupancy system [1],
can also provide this occupancy status in a shared setting.
In such scenarios, WiFi RSSI can be used as an additional
sensor input to validate that the occupant is present.

Room Set Generation After determining room level occu-
pancy, in this step, we identify the overlapping and the non-
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Figure 3: WattShare Algorithm Flow. In this illustration, the three main stages are (1) Electrical Event Detection (2) User

Association (3) Activity Detection and Energy Apportionment.

The inputs for the algorithm are real power trace from the

electricity meter, WiFi and audio data from the smartphone and two types of Metadata (explained in Section 3.1.3). The output

of the algorithm is the room-level energy data.

overlapping time intervals and associate them with a set of
rooms and edges. Here, an overlapping time interval refers to
the time period when multiple occupants are present in their
respective rooms simultaneously. Thus, the corresponding
set of rooms in this interval is called as a ‘overlap room set’.
Conversely, the interval when only one occupant is present
in the wing is termed as a non-overlapping time interval and
the corresponding set of rooms in this interval is called as a
‘non-overlap room set’.

We identify these room sets based on the occupancy infor-
mation we obtain from the previous step. We then associate
all the detected edges that lie within each of these intervals
to these room sets by comparing the event time 7, that is as-
sociated with each edge. The intuition behind this step is
that room sets, when separated into the two categories, make
room to edge association easier as multiple edges (contained
in non-overlap room sets) are automatically associated with
the corresponding rooms. This idea is further elaborated be-
low.

Figure 6 shows an illustration of this step.  The
room sets are shown in curly braces over the
overlapping/non-overlapping time intervals. The over-
lap room set can be formalized as < (fsarr,fend) —
({room;,room;,room},{e1,...,e,}) > where, (tsari,tend)
is the overlapping time interval when rooms {room;, room;,
roomy} are occupied and the events (their associated
edges) that occurred within this interval are {ej,...,e,}.

Similarly, the non-overlap room set can be represented as
< (tgartstena) — ({roomy},{e1,...,em} >. Note, here only
a single room is occupied during (fsqst,enq ). Thus, all edges
are automatically associated to room,.

‘ — ‘Userl — Useré 000 Events‘
{1,2y {12}
1 2 1
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Figure 6: Room Set Generation. Identified overlap and non-
overlap room sets are marked within curly braces over the
time intervals. Additionally, the edges associated with those
time intervals are shown with hexagon shaped dots.



Filtering room sets using Metadata: Before moving to
the next stage, we filter the room sets to contain only those
edges/rooms that match with the stored Metadata (see Sec-
tion 3.1.3). In case of edges in non-overlap room sets, the
edge attributes i.e. its power magnitude and the phase it
is on, are matched against the stored room metadata (using
Metadata - I and Metadata - IT). If the metadata matches, the
edge-room association is retained or else this association is
discarded. Similarly, for edges in overlap room sets, meta-
data for each room in the overlap room set is matched against
the attributes of the edges contained in that set. In case of a
match, the room is retained in the overlap room set, else it is
discarded. This is repeated for all the rooms in each overlap
set. This helps in converting some overlap room sets into
non-overlap room sets wherein the number of rooms is re-
duced to 1 and consequently, room—edge association is done
at this step. The intuition behind this filtering stage is that
since the RSS based occupancy detection may not be very
accurate, some rooms may get incorrectly associated with
certain time intervals. This filtering step will remove some
of these incorrect room associations.

Edge to Room Mapping From the previous step, we have
already associated some edges (from the non-overlap room
sets) with the respective rooms that generated them. In this
step, we match the remaining edges that are in the overlap
room sets with the corresponding rooms using MFCC fea-
tures obtained from the occupant’s smartphones (see Sec-
tion 3.1.2).

For the process of room—edge association in overlap room
sets, we use the MFCC features to differentiate between
the rooms that generated those edges by calculating the Eu-
clidean distance for the event time using the same technique
used for calculating event threshold (see Section 3.2). The
calculated value is then matched with the threshold values
generated for all the events for every room. If there is a
unique match with one of the event threshold, then the cor-
responding room is associated with the edge. If there is a
non-unique match, then the edge is associated with all the
matched rooms. If no match is found, then the edge is dis-
carded.

The intuition behind this procedure is that a considerable
change in the audio signals is expected when these events,
that generate some noise, occur. Figure 7 clearly shows, for
some of the events mentioned above, a notable change ob-
served in sound frequency. This change is reflected when
the Eucledian distance is calculated between the pre- and the
post-event windows.

At the end of this stage, the detected edges are either as-
sociated with unique rooms or have been discarded. The out-
come can be represented as < room; — {ej,...,e,} > where
i represents the rooms from (1,...,k). With the room asso-
ciated edges, we can now generate event time slices for the
process of activity detection.

3.3.3 Activity Detection and Energy Apportionment
In this stage, we generate event time slices for the edges
associated with each room using a simple power magnitude
based edge matching algorithm. For each of these time
slices, we then identify the appliance that generated those
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Figure 7: Change in sound frequency during the events of
Light ON/OFF, Fan ON/OFF and AC ON/OFF

events in the room. A time slice annotated with the corre-
sponding appliance label is referred to as an activity. Finally,
we calculate the energy consumed by each of these activities
to determine the total energy consumption of the room.

Before generating time slices, we identify all the edges
corresponding to potential fan related events in the edge set
for each room. This reduces the error during the edge match-
ing process for similar events (in terms of their power mag-
nitude) like those generated by lights and fans. We use the
Euclidean distance based technique (described previously)
to identify fan events. The same approach can be extended
to other common electrical appliances that have a specific
audio signature. After filtering out the fan edges, we then
run the edge matching algorithm (described in [17]) on the
remaining edges. The algorithm matches rising and falling
edges based on similar power magnitude range. For each
rising/falling edge pair, a time slice #; = (t,,t7, mag;, room;,
phase j) is generated where, ¢, is the start time , 7 is the end
time, mag; is the power consumption of the event, room; is
the associated room and phase; is the phase on which the
event occurred.

For all the generated time slices, we annotate them with
the appliance that generated the corresponding event. For
appliance identification, we match power magnitude of each
time slice with the stored values in Metadata-1I. Note, we re-
quire appliance metadata to be accurate in order to perform
energy apportionment. As a result, if an occupant brings in
a new appliance and does not update the metadata our al-
gorithm will be inaccurate. One potential solution to this is
to detect when events are caused by an unknown appliance,
localize it to a room, and use that to notify the occupant to
update their appliance inventory. We associate the appliance
with a time slice if the power magnitude falls within p% of
the value stored in the metadata for that appliance, where the
value p is an empirically calculated. The value p depends
on the appliance in question. For example, we observed that
lights varied by 5% of the stored value of 35 Watts (in Meta-
data -II). Similarly, we determine the value of p for other



Model OS CPU RAM

Nexus S Android OS, 4.1.2 (Jelly Bean) 1 GHz Cortex-A8 | 512MB
Galaxy Chat B5330 | Android OS, v4.0 (Ice Cream Sandwich) 850 MHz 512MB
Galaxy Star S5280 Android OS, v4.1.2 (Jelly Bean) 1 GHz Cortex-AS5 | 512 MB

Table 3: Smartphones used by the participants in the one week deployment period
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appliances. At the end of this step, we have the time slices
annotated with the usage duration, identity of the appliance
and identified room, thus, generating the list of activities (and
hence the energy consumption) apportioned to each room.

4 Experimental Setup

In this section, we describe the setup used to validate our
system. The experiments were conducted in a student dormi-
tory building in the IIIT Delhi campus in India. Each floor in
the building is divided into 3 wings with six rooms each, that
are monitored by two 3—phase electricity meters. The lay-
out of the wing, where we conducted our week long study,
is shown in Figure 8. Each room has a fan, light, two plug
points and an AC. The 2 sets of 3 phases (from the two elec-
tricity meters) are distributed in such a way that each room is
served by at least 2 phases, from across both the meters (see
Table 1 for more details). Further, each wing has one wire-
less access point. The presence of multiple WiFi APs that
it is typical in the US and other places will only improve the
location accuracy given multiple visible APs at each location
providing higher fidelity.

Sensors We use Schneider Electric’s EM6400 3—phase elec-
tricity meters to monitor and collect energy usage informa-
tion at 1Hz, and store it on a local installation of SMAP [7].
We used power consumption from each of the three phases as
an input to the WattShare algorithm instead of the aggregate
power consumption of all phases. Smartphones carried by
the occupants include: Samsung Google Nexus S, Samsung
Galaxy Chat and Samsung Galaxy Star. Hardware specifi-
cations are listed in Table 3. All the phones had WattShare
data collection mobile app running in the background. The
app sampled data from the Wifi radio and the microphone
after every 20 seconds interval. Audio data was captured for
10 seconds in every interval and MFCC features were com-
puted over the collected data (more details see Section 3.1.2).
Both WiFi data and the audio features were periodically up-
loaded to the server every 5 minutes and the raw audio data
was discarded from the phone.

Ground truth For collecting the ground truth on occupancy
and appliance usage, we deployed a sensor mote in every
room. Each mote had a PIR Sensor (for capturing motion),
Light Sensor (for light events) and Temperature Sensor (for
fan and AC events). We also asked the occupants to man-
ually log the ON/OFF times for the activities such as lap-
top charging, use of fans, ACs and lights performed in their
respective rooms. The logged activities together with the
data from these sensors were accurate enough to be used as
ground truth.

Data Collection Process The data collection was conducted
for a week during the winter semester in the month of Febru-
ary. During this time interval, electrical activity that occurred
in the dorm rooms were mostly from lights and plug loads.
Very few AC and fan activities were observed. Users were
asked to carry the phone throughout the experiment week.
Plug events usually included charging laptops and phones.
We have considered only the laptop charging events as charg-
ing a phone was a very low power consuming activity. For
encouraging the occupants to carry their phones and to log
events, they were offered food coupons at the end of the week
as an incentive.

S Evaluation

We evaluate our system’s accuracy by analyzing two crit-
ical stages of the algorithm namely, User Association and
Activity Detection. Finally, we report the energy apportion-
ment accuracy by comparing the apportioned energy usage
with the actual usage for each of the rooms.

For reporting accuracy, we use the standard measures of
precision and recall. Precision is the ratio of correctly iden-
tified activities to the total number of detected activities. Re-
call is the ratio of correctly identified activities to the total
number of activities performed by an occupant.

5.1 User Association Accuracy

In this section, we evaluate the accuracy of the User As-
sociation stage where the detected electrical events (from the
first stage) are assigned to the room that generated them, and
therefore, consequently associating it with its corresponding
occupant. At the algorithm level, the user association accu-
racy depends on the performance of the Room—Edge Associ-
ation steps (refer Section 3.3.2) where event edges lying in
the overlap and non-overlap room sets are associated with
the corresponding rooms.

Figure 9 shows the precision and recall values for asso-
ciating all the detected events to the corresponding rooms
during the experiment week. The events are classified into
two types: events occuring in overlap room sets (shown
as ‘Overlap Events’) and non-overlap room sets (shown as
‘Non—Overlap Events’). We present the association accuracy
values for each of these event types. The average precision
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Figure 9: User Association Accuracy. The red bubbles repre-
sent the precision/recall values (associated with each room)
for each day of the experiment week. The box plots show the
maximum, minimum and the average accuracy values across
all the days.

and recall of WattShare for the non-overlap events is found
to be 98.62% and 99.27% respectively. The overlap events
included same appliances being used simultaneously across
one or more rooms that shared the same phase (e.g. lights on
the same phase being used by both the occupants at the same
time) or different appliances on the same phase with similar
power magnitude (e.g. AC with the internal fan turned ON
and laptop adapter having similar power consumption) being
used simultaneously. Even with these complex set of activ-
ities, our algorithm is able to differentiate and associate the
events with 94.22% average precision and 90.65% recall.

5.2 Activity Detection Accuracy

Figure 10 shows the accuracy for activity detection of
each room. The red bubbles represent the accuracy obtained
on each day of the experiment week. WattShare is able to
accurately detect activities with 93.7% average precision and
91.3% average recall taken across all the rooms.

Activity detection accuracy depends on the performance
of the user association component. The main factors that
influence its performance are inaccurate differentiation be-
tween events using the audio based technique described in
Section 3.3.2 and the inability of the current implementation
of WattShare to handle complex multi-state behavior exhib-
ited when charging laptops (see Section 6). Other causes
of inaccuracy include the occupant leaving his/her phone be-
hind and hence, events occurring during this interval by some
other room occupant getting mismatched. The lowest accu-
racy is observed when most of the event edges lie in the over-
lap room set. This is due to inaccurate event edge association
to a room when multiple occupants are present in the wing at
the same time and events overlap with respect to time, phase
and power consumption. Inspite of these inherent limitations
of the algorithm components, we are able to achieve a min-
imum average (across all the rooms) of 85% precision and
recall for detecting activities.

105

100 == > -
5 9 F -
(2]
.g 8
& 9 S

85

by
80
1 2 3 4 5 6 1 2 3 4 5 6
Room Room

Figure 10: Activity Detection Accuracy. Here, the red bub-
bles represent the accuracy in terms of precision and recall
observed for each day.

5.3 Energy Apportionment Accuracy

We now show the accuracy with which the energy is ap-
portioned to each room. We compare the apportioned energy
with the actual energy consumption (obtained from ground
truth data) and calculate the estimation error percentage. We
calculate the energy consumption by taking the product of
the power associated with each activity and the usage dura-
tion of the activity. We then calculate the estimation error
with the following formula:

__ Predicted Energy(Wh) — Actual Energy(Wh) “

E
rror(%) Actual Energy(Wh)

100 (1)

Table 4 shows the energy consumption and estimation er-
ror(%) for each room separately. We observe that the esti-
mated error for Room 4 is the highest and is the outlier in
this set. The reason for such high error percentage is due to
laptop’s variable power consuming behavior (see Figure 13)
— the falling edge with the same power magnitude was not
found for the corresponding rising edge when the laptop was
put on charge. Due to this, necessary edges were missing
in the edge set to perform the edge matching process. This
resulted in missing many laptop charging events causing the
accuracy to drop (see Section 6 for more details). Figure 11
also illustrates the drop in accuracy for Room 4. To further
validate that the accuracy drop was due to the laptop events,
we calculated Room 4’s accuracy after removing the lap-
top events. We found that the error reduced from -54.338%
to -2.941%, thus, confirming our hypothesis. When tak-
ing Room 4’s actual accuracy into account, WattShare’s en-
ergy apportionment component attributes energy usage with
86.42% accuracy on an average. The accuracy after remov-
ing the outlier becomes 94.57%.

Figure 11 shows the estimated and true power consump-
tion for the heavily used appliances during the experiment
week i.e. light and laptop adapters. ACs and fans weren’t
used extensively and consisted of less than 3% of all the
events and therefore, has not been shown. We found that the



Room# | Predicted (Wh) | True (Wh) | Error (%)
1 1148.40 1150.95 -0.221
2 415.70 413.68 0.488
3 3026.35 2843.18 6.442
4 1067.03 2336.34 -54.328
5 785.16 888.49 -11.629
6 2735.68 2983.69 -8.312

Table 4: Comparison of the estimated and actual energy con-
sumption for every room
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Figure 11: Energy Apportionment Accuracy (for lights and
laptop charging events). Usage of fans and ACs were negli-
gible during the experiment week.

energy consumption estimates for appliances like lights, fans
and ACs is comparable with the actual consumption. How-
ever, in case of laptop charging, the estimated consumption
varies with large error margin due to the reasons explained
above and in the previous section.

Figure 12 shows the distribution of the total energy con-
sumed amongst the wing occupants. From the pie chart, we
find that occupant 3 consumed the maximum energy and oc-
cupant 2 consumed the least. WattShare allowed us to obtain
some behavioral insights from the apportioned energy data
such as which occupants stayed most in their rooms, how of-
ten did they use appliances such as fans or lights, did they
keep their lights turned ON when they left their room and so
on. Such insights can be useful in settings such as offices
in commercial buildings where HVAC schedules can then be
adjusted based on the energy usage behavior of the occupants
in these buildings.

6 Discussion

In the previous sections, we saw the design of our
WattShare algorithm and its potential in accurately disag-
gregating and attributing the total energy usage to individual
rooms and consequently, to the occupants of those rooms.
We now describe some limitations, along with suggestions
on how to address them, in the current design of our system
that might prohibit its wide scale deployment.

The proposed WattShare approach works well for all the
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Figure 12: Energy usage distribution in the student wing
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Figure 13: Power Consumption Profile of a Laptop. Most
of the errors were caused due to the system’s limitation in
handling such complex multi-state behavior in appliances.
Here, events at #1,14,%9 and #1( are not caused by the laptop.

appliances that have a stable power consumption profile such
as lights, fans and ACs. However, it fails to determine the us-
age duration for events caused by appliances with multiple
states and dynamic power signature such as charging of lap-
tops. Figure 13 illustrates the laptop power profile as seen in
our deployment. When the laptop is put on charge, it draws
maximum power reaching its peak consumption of 60 £ 20
Watts until it is fully charged. Once charged, there is a grad-
ual fall in power consumption (#; to #3 and #; to tg) till the
laptop is either suspended (seen as a sharp drop at #3), or the
charger plugged out (observed at rg). This results in edges
(rising/falling) with unequal power magnitudes. Laptop us-
age events such as between 5 — t5 are detected accurately by
our edge matching algorithm. However, since it is crucial
to have edges with similar power magnitudes for generating
event time slices, we miss some laptop events with variable
power draw. Identifying and disaggregating multi-state ap-
pliances with variable power draw, including plasma televi-
sions, is a known problem in the NILM community as well.
Better NILM algorithms combined with smartphone sensors,
using the proposed WattShare system can potentially address
this limitation.

Another challenge that is of prime importance is dealing
with complex real world scenarios when associating electri-
cal events with rooms. Some examples of such scenarios



include - an event taking place in a room when occupants
from other rooms are present there; an occupant using an
appliance in a different room while the room’s occupant is
absent and so on. With the current design of the User Asso-
ciation stage (responsible for associating events to rooms),
some of these scenarios are not appropriately handled. Many
such scenarios will arise in large scale real world deploy-
ments. We need additional sensors from the smartphone as
input sources (or information from additional ambient sen-
sors from the room such as motion or light sensors) to im-
prove WattShare to handle such complex scenarios.

Lastly, the experiments were conducted in settings where
only a limited number of appliances were present. We would
like to extend and evaluate the efficiency of WattShare for
identifying and disaggregating more appliances, such as TV,
microwave, refrigerator and others, that are likely to be
present in shared living spaces. In addition, we would also
like to measure its performance in other complex commer-
cial shared spaces such as offices, where assumptions made
for disaggregation in residential settings, don’t always hold
true [4].

7 Conclusion

In this paper, we present a novel energy apportionment
algorithm (WattShare) that leverages the most commonly
available sensors on modern smartphones and the increas-
ingly common smart meter. We demonstrate a low cost and
scalable system that can be deployed for shared living spaces
in commercial buildings such as hotels, dormitories, hospi-
tals, offices and others, wherein a set of rooms are monitored
by a single meter. WattShare fuses the context information
such as location and audio from the smartphone with the
aggregate power from the smart meter to identify electrical
events and measure a room’s energy consumption. We show
that simple localization and audio based event differentia-
tion techniques can achieve highly accurate disaggregation
results. Even with the inherent limitations of the algorithm’s
individual components, WattShare achieves an accuracy of
86.42% for energy apportionment and increases to 94.57%
when an outlier room is removed. WattShare attributes the
total energy usage to individual rooms with an average pre-
cision of 96.42% and average recall of 94.96%.
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