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In-app privacy notices can help smartphone users make informed privacy decisions. However, they are rarely used in real-
world apps, since developers often lack the knowledge, time, and resources to design and implement them well. We present
Honeysuckle, a programming tool that helps Android developers build in-app privacy notices using an annotation-based
code generation approach facilitated by an IDE plugin, a build system plugin, and a library. We conducted a within-subjects
study with 12 Android developers to evaluate Honeysuckle. Each participant was asked to implement privacy notices for two
popular open-source apps using the Honeysuckle library as a baseline as well as the annotation-based approach. Our results
show that the annotation-based approach helps developers accomplish the task faster with significantly lower cognitive load.
Developers preferred the annotation-based approach over the library approach because it was much easier to learn and use
and allowed developers to achieve various types of privacy notices using a unified code format, which can enhance code
readability and benefit team collaboration.
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1 INTRODUCTION

Effective privacy notices are essential for helping users make informed privacy decisions. In the context of mobile
apps, usable privacy researchers have advocated various in-app privacy notices that are concise, informative,
and user-friendly [7, 47]. This body of work, along with increasing consumer concerns about privacy and an
encouraging trend in recent privacy laws (e.g., GDPR) and policies (e.g., Google Developer Policies), has led to
smartphone operating systems introducing many privacy features such as runtime permissions, background
location access alerts, and visible indicators of ongoing audio recording.
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Fig. 1. Honeysuckle consists of three components: an IDE plugin, a build system plugin, and a privacy notice library. As
illustrated by the flowchart, the three components each play a role at the programming time, the compile time, and the
execution time of an app’s life cycle to help developers implement in-app privacy notices. The IDE plugin facilitates developers
to annotate the code, and the annotation will later be used to generate privacy notice code. The generated code will be
inserted into the app during compile time by our build system plugin. Finally, the generated code calls APIs provided by our
library to show privacy notices during runtime.

However, while system features like these can increase data transparency to some extent, they are often
coarse-grained [56] and limited to data types predefined by the operating system [3, 4]. As such, this leaves
much of the responsibility of providing effective in-app privacy notices on app developers’ shoulders, which
is a difficult task for several reasons. First, it has been repeatedly found that developers tend to focus more on
security factors over aspects of privacy such as data transparency [23, 30, 48]. Second, developers’ incomplete
understanding of the concept of “privacy” may create inherent barriers to the adoption of techniques like in-app
privacy notices. Third, the design and implementation of effective in-app privacy notices can be a challenging
task even for developers who care about transparency issues. For instance, developers do not always know all
data practices of their apps, especially when the app behavior gets complicated and involves the use of third-party
libraries [12, 50], or when the data practices are not well documented [29]. Fourth, developers have limited
knowledge about design choices and best practices for privacy notices, which has led to uninformative or even
misleading ones in real-world apps [36, 42]. Lastly, there is little developer support to help developers keep pace
with ever-changing legal and policy requirements, and systematically improve their apps’ data transparency [30].

In this paper, we present Honeysuckle, a developer tool consisting of a plugin for the Android Studio IDE, a
plugin for the Gradle build system, and a privacy notice library (Figure 1). Combined, these components jointly
support a new approach of implementing in-app privacy notices, namely annotation-based generation of privacy
notices. Instead of treating each privacy notice as a separate feature to implement, Honeysuckle only requires
developers to (a) use Java’s existing annotation feature to annotate each data source and sink with descriptions of
data practices, e.g. declaring the purpose of data use; and (b) optionally modify a configuration file to fine-tune the
frequency and visibility of the privacy notices. Honeysuckle can then transparently generate code at compile time
that links to our privacy notice library, implementing the privacy notice Uls based on these privacy annotations,
the configuration file, and code analysis results. Figure 2 illustrates how annotations are used to generate privacy
notices and demonstrates a list of example privacy notices that can be generated using Honeysuckle.

Our novel annotation-based approach is grounded in three key design considerations that can benefit both
developers and users. First, it gives developers control over the generated Ul to provide context information and
configure the behaviors of privacy notices at a relatively fine granularity. Second, it reduces the implementation
and maintenance cost of in-app privacy notices by minimizing redundant information and providing alerts
for inconsistency. Third, our IDE plugin offers features that can help developers track and annotate all places
that collect, store, and transmit sensitive user data (i.e., data sources and sinks), which improves the accuracy
and comprehensiveness of information conveyed in the privacy notices. Overall, we believe Honeysuckle
demonstrates a viable path forward to reducing the barriers to adopting in-app privacy notices while also
improving the consistency of in-app privacy notices across apps by different developers.
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Fig. 2. The top row shows the annotations and Ul configuration XML that developers need to add or modify to generate
privacy notices. The bottom row shows the five privacy notice features supported by Honeysuckle (“a” through “e”). We use
the same number (1 through 5) to indicate which part of the annotation is used to populate which part of the generated
Ul, and how the configuration XML guides the presentation of the Ul. The design of all these features were inspired by
proposals from usable privacy research and privacy regulations. These examples demonstrate the breadth of privacy notices
that Honeysuckle can generate with one annotation for each data source and sink.

To evaluate Honeysuckle, we conducted a within-subjects programming study with 12 Android developers.
During the study, each participant was asked to implement and integrate in-app privacy notices (as demonstrated
in Figure 2) for two popular open-source apps, a notification manager app with over 1M installs and a note-taking
app with over 100K installs. A challenge, however, is that the current state of the art is to build these privacy
notices manually, which would not be a good baseline for comparison since it clearly takes a great deal of time
and energy to design and implement these notices. That is, we felt that we would not learn much against offering
no support. Instead, we decided to compare our annotation-based approach (a relatively unfamiliar approach
for participants) against simply using our own privacy notice library. We felt that this approach would be a
reasonable approximation of how developers or large organizations might provide reusable privacy notices.

Our results show that the annotation-based approach proposed by Honeysuckle significantly reduced the time
and the cognitive load of implementing fine-grained, contextualized privacy notices for the two open source
apps than using our library directly. Within the 40-minute allocated time, all 12 developers completed all the
required privacy notices using the annotation-based approach, while only 2 developers completed the same task
using the library. All participants considered the annotation-based approach much easier to use and learn than
the library-based approach because the clear step-by-step guidance provided by our Honeysuckle IDE plugin
effectively reduced the learning curve, the use of quick-fixes and code generation allowed developers to write
much less code, and the use of annotations reduced redundancies and made the code easier to comprehend.

This paper makes the following contributions:
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Fig. 3. An illustration of code changes required to implement the same in-app privacy notices for two location features using
the library and the annotation-based method. In the code, green highlights indicate lines that were added; red indicates lines
that are removed; grey indicates lines that are unchanged. Between the two conditions, the dashed lines connect code that
conceptually serves the same goal, and the solid line connects the same code. We can see that using annotations substantially
reduces the amount of code that developer needs to write. The annotation-based approach also supports a more uniform
format while the library-based approach requires developers to handle low-level implementation tasks using different APIs
and declare data practices in a different place from the actual sources and sinks (outside the control logic).

e We present the design and implementation of Honeysuckle, an Android developer tool that offers annotation-
based generation of privacy notices. Honeysuckle consists of an IDE (Android Studio) plugin, a build system
(Gradle) plugin, and a privacy notice library.

e We conducted a controlled, within-subjects programming study to evaluate these two approaches of
implementing in-app privacy notices supported by Honeysuckle. Our results show that the annotation-
based approach helped developers build in-app privacy notices faster with significantly lower cognitive
load than manually implementing and integrating them using a library.

1.1 Motivating example: Library vs. Annotation

Below, we offer two scenarios to help convey the intuition of how Honeysuckle’s two approaches for in-app
privacy notices work. Bao is an Android developer working on a social media app and has just finished two
features using location data. The first feature silently accesses the latest GPS location when the user refreshes the
news feed, to optimize the relevance of the results based on the current location (mainly implemented in the
function optimizelLocallyRelevantNews). The second feature allows users to view their current location in a
map and send the location to selected friends.

She aims to implement three types of in-app privacy notices to enhance data transparency, as recommended
by the usable privacy literature. First, she wants to show a dialog that explains both purposes before location
permission requests are made, to help users make informed decisions [33, 53, 56]. Second, she wants to show
just-in-time notifications when the app accesses location data to notify users about the data collection behavior
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and the corresponding purpose [47]. Lastly, she wants to implement a privacy notice center to provide an overview
of all data practices and the purposes of this app, and allow users to configure the notice visibility and frequency
based on their preferences [47]. Figure 2 shows the reference designs of these privacy notices.

One straightforward way to implement in-app privacy notices is to treat different types of privacy notices
as different features and handle them individually. Hence, in the first scenario, we demonstrate how Bao can
implement the three target features using the Honeysuckle library APIs. The “Library” column of Figure 3
illustrates the main code changes that Bao needs to make. She needs to manually track code that handles
location data collection and location permission requests and modify the code to implement the privacy notices.
She needs to declare information about the data practices such as the purpose in a separate file from the
actual data source or sink. She also needs to choose the proper APIs for different types of privacy notices (e.g.,
HSNotificationUtils.pushPrivacyNotification and PermissionNotice.showAllDialog in this example),
and to integrate the privacy notice center into the app. This entire process involves a lot of manual work. Informally,
we observe that while this library approach is feasible, there will be challenges in terms of implementation and
maintenance for apps with more data practices, especially if the types of required privacy notices change [1, 30].
We also re-iterate that currently for Android, there is no support for building these kinds of privacy notices.

The second scenario demonstrates an alternative approach, namely shifting from “implementing the features”
to “declaring the data practices”. This time Bao only needs to declare the data practices by adding annotations
to code that handles the collection of location data in different contexts and manually integrate the privacy
center so she can decide where to embed it. Honeysuckle can then automatically generate other code for in-app
privacy notices (which still uses our library under the hood) and insert it at the right place in the source code.
This method is a variation of the classic idea of “model-based user interface design” [41], which aimed to reduce
developers’ workload by having them focus on what rather than how. In addition, our Honeysuckle IDE plugin
runs an always-on code analysis to detect code signatures of APIs that may be related to the collection, storage,
and transmission of sensitive user data, so as to prompt developers to add these annotations in real time and
provide quick-fixes to streamline the task. This can further reduce the burden of manually tracking all data
practices and may improve the coverage and accuracy of the in-app privacy notices accordingly.

2 RELATED WORK

Studying and solving privacy issues in mobile apps is a longstanding topic in UbiComp research. Although most
work has been focused on building and studying user-facing systems to protect privacy [15, 28, 40, 54, 55], we also
noticed an emerging interest in studying developer’s experiences and building usable developer tools to improve
app privacy [29, 31]. Our work is focused on designing developer tools to facilitate the adoption of in-app privacy
notices, so we review the design space of in-app privacy notices, detail challenges facing developers regarding
in-app privacy notices and discuss other methods that help developers build privacy-friendly apps.

2.1 Design space of in-app privacy notices

Research in usable privacy has argued that effective privacy notices should be concise, contextualized, and
emphasize unexpected data practices [22, 33, 43, 47]. In this paper, we use the term in-app privacy notices to refer
to notices that are well-integrated into the app’s interaction flow and customized based on a deep understanding
of the app’s design and data practices.

However, designing effective in-app privacy notices is not a trivial task. Several common issues need to be taken
into account to achieve a usable and useful design. For example, designers need to reduce the notice complexity
by using concise description and plain language, mainly for two reasons. First, prior research has found that it
takes a great deal of time to read through lengthy privacy policies [38] and understand the data practices and
corresponding implications [20]. Second, the limited screen space constrains the amount of information that can be
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conveyed [47]. Furthermore, designers need to grapple with notice fatigue [46, 47] and habituation [27, 46, 47] by
finding a balance between increasing transparency and decreasing disruption. A common approach to addressing
these issues is to use multi-layered notices [47] that can first present data practices that are less expected by users
initially and further present more information on demand [33]. However, there is no one-size-fits-all definition
of unexpected data practices, and designers need to analyze their own app design and conduct user studies to
understand the perceptions of different audiences [32, 34].

Prior research has proposed many designs of in-app privacy notices such as just-in-time privacy notices [16]
and privacy dashboards that show the access frequency of specific data [7, 11]. By synthesizing privacy notice
designs in research proposals and real-world systems, Schaub et al. [47] presented a general framework to outline
the design space of effective privacy notices for multiple platforms, including mobile apps. Their framework
consists of four dimensions: timing, channel, modality, and control. For each dimension, they proposed multiple
design opportunities to achieve the key requirements of effective privacy notices, including making the notice
simple, using multi-layered notices, emphasizing unexpected data practices, and providing contextual information.

In our work, we present the Honeysuckle system that supports the implementation of a set of in-app privacy
notices that draw on design recommendations of prior research. Inspired by the issues and requirements mentioned
above, our key design goals include allowing developers to be able to adopt the best practices without becoming
an expert in designing in-app privacy notices and without having to add or modify a large amount of code.

2.2 Challenges facing developers regarding the adoption of in-app privacy notices

Currently, developers are responsible for implementing in-app privacy notices with proper content, in proper
formats, and with proper timing. However, prior research has found that developers often lack awareness,
knowledge, and motivation to comply with privacy requirements [23, 29, 30, 48], which leads to several challenges
to the adoption of in-app privacy notices.

The first challenge is developers’ lack of awareness and knowledge regarding the importance of data trans-
parency and how to use in-app privacy notices to improve transparency. Sheth et al. [48] conducted an online
survey with developers and found that they preferred technical measures like data anonymization to mitigate
privacy risks, perceiving privacy policies as less effective. Li et al. [29] interviewed Android developers and found
most of them do not know the best privacy practices listed in the official Android documentation. Liu et al. [36]
analyzed the custom rationale messages of permission requests in Android apps and found that a large portion of
these messages merely paraphrased the permission request, which corroborated the findings of the interview
study. Altogether, these findings suggest that many developers may not have enough awareness of the benefits
of in-app privacy notices nor knowledge of how to design them.

The second challenge is in having a comprehensive and precise understanding of data practices across the
entire app. Schaub et al. [47] clearly indicated that the first step in designing effective privacy notices is to
thoroughly understand the data practices of the app. However, this goal can be hard for developers, even for
apps that they participated in developing. One reason is that implementation details are not documented on
time [29, 35]. Another is that developers are not always aware of the behaviors of third-party libraries, which
might automatically collect user data [12, 50]. Overall, not addressing these issues may result in uninformative or
even misleading privacy notices that are harmful to users’ privacy.

The third challenge is that implementing in-app privacy notices increases implementation and maintenance
costs. Although the design of in-app privacy notices has been studied a lot, there is little research in the
implementation of these in-app privacy notices. There are also few developer tools to facilitate implementation,
other than libraries that help handle permission requests required by the operating system [2] or comply with
recent privacy laws such as requesting for consent before data collection [5]. Furthermore, the currently available
developer tools have narrow purposes, such as “providing the consent dialog required by GDPR for the Google
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Admob library”, which offers little help with maintaining an app if there are new privacy laws or app store
policies to comply with. In fact, recent research examining an Android developer subreddit found that developers
complained about this type of unnecessary cost and had negative attitudes towards complying with privacy
requirements [30].

In our work, we present Honeysuckle as a tool to help developers with the design and implementation of in-app
privacy notices. The design of Honeysuckle is largely driven by the goal to address the three challenges above. In
particular, our annotation-based code generation allows developers who are not experts in privacy to follow best
practices in privacy notice design because those best practices are already embodied in the generated interfaces.
Honeysuckle also saves on implementation and maintenance work because low-level implementation details are
hidden from developers, with some details that can be customized using annotations and a configuration file.
Furthermore, our IDE plugin can automatically scan all potential sources and sinks and prompt developers to
annotate them to ensure comprehensive coverage in the generated privacy notices.

2.3 Auto-generated in-app privacy notices in current mobile apps

An orthogonal approach to improving data transparency of mobile apps is to use auto-generated in-app privacy
notices, while developers are not involved in the creation of these privacy notices at all. The most widely available
auto-generated privacy notices are privacy features provided by the operating system. For example, in iOS, an icon
will show up on the notification bar when audio or location recording is ongoing. Another feature is to alert users
if an app just copied data from their clipboard. The system also occasionally reminds users of background location
access of a certain app [3]. Although these features do improve transparency, the lack of customization of what
information is displayed and when and how it is displayed makes them inherently insufficient to accommodate
the varying privacy preferences among different people [32] and under different contexts [33].

Researchers and practitioners have also explored building privacy managers as third-party apps. Examples
include monitoring data collection and push notifications to alert users about a data access [6, 15], and monitoring
network traffic to alert users about potential leaks of sensitive personal data [45, 49, 50]. Despite the benefits of
offering better privacy protection in a plug-and-play manner, these privacy manager apps also have limitations,
including 1) performance degradation caused by the overhead of dynamic program analysis or running an VPN
to intercept all network traffic, 2) imposing extra privacy risks when allowing a third-party app to monitor data
flows and intercept network traffic, 3) automated analysis has limited ability in inferring fine-grained data usage
information, and 4) potential false positives and false negatives due to app behavior inference.

We consider that Honeysuckle can offer complementary benefits and work in parallel with system-generated
privacy notices and third-party privacy managers. First, developers can have more control over Honeysuckle-
generated privacy notices than system-generated notices. Second, since Honeysuckle modifies the code at compile
time, Honeysuckle-generated privacy notices are integrated as a native part of the app, leading to a minimal
impact on performance and no additional privacy risks. Third, having developers annotate data practices can
provide more precise descriptions about the rationales than inferring them.

2.4 Using annotations to help developers enhance privacy

Annotations are a form of syntactic metadata supported in many programming languages, such as Java and Kotlin.
As part of our work we extended Java annotations specifically for privacy. Here, we review existing developer
tools and research that also use annotations for privacy, to highlight where our work differs.

Annotations, in general, are non-functional code which can help with tasks such as code generation and static
analysis [57]. Android developers have created libraries using annotation-based code generation to help handle
permissions, such as the popular open-source library PermissionsDispatcher [2]. However these projects do not
provide help beyond handling Android permission requests. Ernst et al. [19] studied how to use annotations
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to increase the accuracy of static analysis, though this work was more for finding malicious code rather than
improving transparency of app data practices for end users.

Annotations have also been used in IDEs to provide better privacy-related feedback to developers while
programming. Li et al. [29] presented Coconut, an IDE plugin which can detect sensitive API calls and request
developers to annotate these API calls. These annotations could be used by the IDE to provide suggestions to
improve privacy handling, e.g. suggesting alternative APIs, and to offer a privacy panel in the IDE that makes
it easy to see all uses of sensitive data in one place. The primary difference with Honeysuckle is that Coconut
does not offer any support for in-app privacy notices. There are also secondary differences, e.g. Honeysuckle’s
annotations are designed to capture more sophisticated data practices (e.g., data flows) and code patterns (e.g.,
handling sensitive API calls in helper functions that can be used for multiple purposes), and Honeysuckle has
a different system architecture to support its functions, including a UI configuration file that developers can
customize and a Gradle plugin for inserting generated code.

3 HONEYSUCKLE DESIGN AND IMPLEMENTATION

To help developers who are not privacy experts implement in-app privacy notices following the best practices,
we designed and implemented Honeysuckle. Our design is mainly driven by the three goals:

D1 Give developers control over the privacy notice UL
D2 Reduce the implementation and maintenance cost of privacy notices.
D3 Increase the accuracy and coverage of privacy notices regarding the actual app behavior.

D1 is a basic requirement as developers need to have sufficient flexibility to customize the generated interfaces
to tailor to the app behavior. In addition, this design goal is also crucial for leveraging developers’ knowledge
about their apps to generate in-app privacy notices that can accommodate different users’ privacy preferences
under different contexts as discussed in Section 2.3. D2 is motivated by the implementation and maintenance
cost challenge as explained in Section 2.2. Since developers usually treat privacy as a secondary concern [10, 29],
minimizing the workload of implementing privacy features is an important requirement for voluntary adoption.
D3 is motivated by the challenges of developers lacking awareness and knowledge about privacy and often not
having a precise and up-to-date understanding of their own apps’ data practices as discussed in Section 2.2.

Honeysuckle consists of three components: an Android Studio plugin, a Gradle plugin, and a privacy notice
library. Developers can use the Honeysuckle library alone to implement privacy notices in a conventional way,
which gives developers control (D1 V'), albeit at the cost of still significant implementation and maintenance
effort (D2 X). Developers may also not be able to keep track of all data practices due to challenges detailed in
Section 2.2, which can result in inaccurate or incomprehensive privacy notices (D3 X)

Alternatively, developers can use the entire Honeysuckle system to annotate the code and modify a configu-
ration file to generate code that calls the library to create in-app privacy notices. This method greatly reduces
the implementation and maintenance effort (D2 v) and provides the same control over the generated UL (D1
V). Furthermore, our Honeysuckle Android Studio plugin provides features that help increase the accuracy and
coverage of data practices declared in the annotations to improve the generated privacy notices (D3 V).

In the following, we first present the design of the in-app privacy notices supported by Honeysuckle. Then
we describe how we designed Honeysuckle to support the two approaches mentioned above to implement these
in-app privacy notices. We describe the implementation of the main modules of Honeysuckle at the end.

3.1 Privacy notice designs and rationales
We present the design of the in-app privacy notices supported by Honeysuckle and explain their relationship

with best practices advocated by prior literature. Our design decisions concern two aspects: timing and content.
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3.1.1 Timing. According to Schaub et al. [47], the timing of these notices is a key consideration. We designed
three types of privacy notices corresponding to three timing options described in that paper: at setup, just in time,
and on demand.

T1 at setup: A dialog shown before permission requests that proactively explains the purposes of the permis-
sion request and the related data egress and retention behavior (Figure 2 (a)).

T2 just in time: A just-in-time notification that appears immediately after the data is accessed or sent off the
device by the app (Figure 2 (b)).

T3 on demand: A privacy center that contain a hierarchical overview of all sensitive data practices in this app.
Unlike the previous two types, the privacy center shows up on demand, so it can contain more in-depth
information about the apps’ data practices (Figure 2 (c)(e)(f)).

3.1.2  Content. As discussed in Section 2.1, privacy notices should reduce potential notification fatigue and
habituation by highlighting unexpected and sensitive data practices. Our design is based on recommendations of
prior research, common practices of real-world systems, and requirements of privacy laws. We detail each design
and the supporting literature below.

I1 Data use purpose: Prior research has recommended apps to explicitly explain their purposes of data use
to users especially before permission requests to help them make informed decisions and also feel more
comfortable with sharing data with the app [33, 53, 56]. These recommendations were later adopted by the
Android official documentation about best practices regarding permission requests [18].

I2 Third-party data use: Research has showed that 3rd-party data use causes most privacy concerns because
they are unlikely to be expected by users and are often used for purposes such as targeted advertising
that do not provide direct benefits to users [15, 51]. Many privacy laws and app store policies now require
developers to explicitly specify data sharing with third parties in privacy policies.

I3 Data egress and retention: Data egress and retention can both lead to higher secondary data use and data
breach risks. Researchers have proposed program analysis techniques to automatically detect [21] and alert
users about these sensitive data practices [37].

I4 Background access: Background data access is likely unexpected by the user, and therefore deserves more
explicit alerts [43, 47] For example, both i0S and Android allow users to only grant permission to location
collection in foreground. iOS also occasionally alerts users about background location collection.

I5 Data access frequency and time: Prior research has demonstrated that showing the when and how frequently
an app has accessed sensitive data can nudge users to improve their awareness of sensitive data practices
and take more action to protect their privacy [7, 11].

3.2 Honeysuckle Library-Only Mode

We designed a library for implementing all the proposed features. Figure 3 shows an example of how to use the
library to implement in-app privacy notices for two location features in a social media app. Developers need to
use three different APIs to implement privacy notices shown at different times.

For T1, developers need to replace all permission requests with PermissionNotice.showAllDialog function
calls to show the permission explanation dialog.

For T2, developers call the function HSNotificationUtils.pushPrivacyNotification after all data sources
and sinks to show a just-in-time notification when the data is collected or sent off the device. A string identifier
of the current data usage needs to be passed as a parameter to retrieve the purpose of the current data usage and
configurations about how to show the privacy notice declared in a separate file (see the MyPrivacyInfoMap. java
in Figure 3 as an example; details will be provided later).

For T3, developers call the system API startActivity and pass PrivacyCenterActivity.class as a param-
eter to open the privacy center. PrivacyCenterActivity is an activity class defined by the Honeysuckle library.
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It can automatically load data practices declared in the configuration file and populate the privacy center with
these data practices at runtime. Note that developers need to manually call this API both when using the library
alone and when using annotations to generate privacy notices, because developers should be able to determine
where to embed the entry point of the privacy center in their apps.

In addition to the three APIs, developers also need to declare what information will be presented in the privacy
notices (based on information types listed in Section 3.1.2) and default configurations about how to show the
privacy notices for each source and sink using the putSourcePrivacyInfo and putSinkPrivacyInfo APIs. Each
API call creates and registers an instance in a global privacy information map that is used to populate privacy
notices at runtime, so the first parameter of the API call needs to be a unique identifier for retrieving the instance.
Developers need to pass five parameters to putSourcePrivacyInfo: the data type by choosing a predefined
option, the purpose of data use, whether the data is used by a third-party library, whether the data will be stored
or sent off the device, and whether it is a one-off, periodic, or continuous data collection. For each data sink,
developers need to provide all of the parameters above, as well as a list of the identifiers of all the sources of the
data flow to the sink, and a string that describes the type of data that will leave the sink node. Our Honeysuckle
library can automatically determine whether the app collects sensitive data in the background, hence developers
do not need to handle this themselves.

Regarding how and which type of privacy notices is shown, developers need to pass two parameters. One is
an enum parameter that determines how frequently the just-in-time notification will pop up (e.g., one possible
option is NOTIFICATION_ALWAYS_POP_OUT as demonstrated in Figure 3). The other is a boolean parameter that
indicates whether to record the timestamps of a data collection, data retention, or data egress activity and show
them in the privacy notice center (see Figure 2 (c) (d) and (e)).

3.3 Honeysuckle Annotation-Based Code Generation Mode

Although the Honeysuckle library can help generate in-app privacy notices, it comes at a significant development
cost due to all the repetitive code that has to be added. For instance, developers need to explicitly specify
information already encoded in the source and sink API such as the data type, whether it is a third-party API,
and whether it is a one-off or periodic data access. Furthermore, using the Honeysuckle library alone leads to
higher maintenance effort since the code that handles privacy Ul is scattered across the project. These limitations
suggest that the library approach may not effectively achieve design goal D2. In the meanwhile, using the the
Honeysuckle library alone may also not satisfy the design goal D3 because developers may not recall all the
data practices of their app and not keep up-to-date documentation [12, 29].

To address this problem, we propose annotation-based code generation. The key idea is to move from having
developers directly implement in-app privacy notices to having them declare relevant privacy-related information
using custom Java annotations and a Ul XML configuration. Our build system plugin can then automatically
generate code that implements in-app privacy notices based on that information at compile time.

To help developers add annotations that cover all sources and sinks and include accurate information (addressing
D3), we designed the Honeysuckle IDE plugin to give developers real-time feedback to help them identify missing
annotations or annotations with errors. Our IDE plugin also provides several automation features, such as quick-
fixes to annotation errors and automatically generating a default Ul XML configuration for each source and sink.
These features further streamline the actions developers need to do at programming time, thus helping with D2.

3.3.1 Annotation and Ul XML configuration. We put the information related to data practices in annotations
that are directly embedded in the control logic right next to the corresponding data sources and sinks and put
the information about the UI behavior in a separate Ul XML configuration file (see examples in Figure 2). The
annotations and the Ul XML configuration together serve the same goal of the privacy information map in
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the library mode (Section 3.2), while the new method leverages the software design principle of separation of
concerns to result in code that is easier to read, maintain, and analyze.

Table 1. @Source and @Sink annotation definition in Honeysuckle.

Annotation type Annotation fields

sourceData (DataType enum value)
purposeName (int, String resource ID)
sources (@Source list)

@Sink sinkData (int, String resource ID)
purposeName (int, String resource ID)

@Source

Table 1 demonstrates the definition of the two main annotations: @Source and @Sink. While programming,
developers need to annotate the sources and sinks of the sensitive data flows in their app using these two
annotations. The two annotations only need the purposes of data use and the connection between sources and
sinks from developers, because other information in privacy notices can be automatically inferred and inserted
into the generated code at compile time.

We design the Ul XML configuration to provide developers with some options to control how to show the
privacy notices at the granularity of <data type, purpose> pairs. Note that multiple API calls can be used
collectively to achieve the same purpose. In our terminology, they are considered as the same sources and sinks.

3.3.2 Honeysuckle IDE plugin. The two main design goals of the IDE plugin are to help improve the accuracy
and coverage of annotations and streamline the editing of annotations and the Ul XML configuration. To achieve
this goal, our IDE plugin provides developers with step-by-step guidance to walk through a usual workflow for
implementing in-app privacy notices using the annotation-based approach as demonstrated in Figure 4.

This workflow can be roughly divided into three steps (corresponding to A, B, C in Figure 4), although there is
no strict order restriction. In the first two steps, developers can see all the source and sink API calls that remain
to be annotated marked in code and listed in the “Privacy Ul Integration” panel (Figure 4 (1) and (4)). Then they
can use the quick-fixes to add a partially filled @Source (or @Sink) annotation to the source (or sink) code. There
are three design considerations for the quick-fixes that we want to highlight. First, for the purposeName field,
our quick-fix will generate a “for_” prefix to nudge developers to use expressions like “for labeling locations
in notes” that provide concrete explanations of the data use purpose rather than simply paraphrase generic
permission requests [36]. This consideration is also explained to developers in error messages for missing
annotations. Second, for each sink, we have multiple quick-fixes that each generate a @Sink annotation with an
existing @Source annotation filled in the sources field (Table 1). We also have quick-fixes to add more @Source
annotations to @Sink annotations. Third, since false positives are inevitable in automatically detected sources [26]
and sinks [8], we allow developers to use NoPersonalDataCollected to explicitly indicate that sensitive user
data is not collected at this point to suppress the alerts. However, there is a risk that developers may provide
false information and we discuss potential mitigating approaches in Section 5.4.1.

In the third step, developers can use the “Privacy UI Configuration” panel to examine the current Ul XML
configuration in the panel or in the original code. To minimize the code that developers need to write, our
IDE plugin automatically updates the configuration file if new sources and sinks have been added. Therefore,
developers only need to modify this file if they want to change certain options. Furthermore, code auto-completion
is provided when developers edit the configuration file (Figure 4 (8)).

In addition to the usual workflow, our IDE plugin also runs code inspection continuously to help developers
identify and fix invalid or outdated annotations and UI configuration entries (Figure 5). To raise developers’
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Fig. 4. This figure demonstrates the main features of the Honeysuckle IDE plugin via an example use case. First, the app
developer opens the Privacy UI Integration panel (A-1) to see what code accesses sensitive user data (i.e., data sources)
as detected by the plugin. Then she can use the quick-fix “Add Source annotation” (A-2) to add an annotation for each of
these sources and complete required fields in the annotation (e.g., purposeName) (A-3) to resolve the “(incomplete)” errors.
Similarly, she needs to annotate “sinks” that may store or send sensitive user data off device (B-4) with the help of quick-fixes
(B-5). To indicate how data flows, she also needs to explicitly specify all sources (represented by the source annotations) that
may reach this sink (B-6). Lastly, she can modify an XML configuration file automatically generated by the IDE plugin to
fine tune the Ul behavior (C-7). For example, she can adjust whether to show JIT notification for each source and sink to
avoid overwhelming users with unimportant notifications (C-8).

awareness, annotations that contain these errors will be both marked in the code and indicated in the two panels.
To achieve a balance between convenience and control, we only show the errors and provide some quick-fixes to
help resolve the errors, thus relying on developers to take the initiative to make the actual changes.

During the development of Honeysuckle, we observed that some developers may create helper functions that
are often called under different contexts for different purposes. In this situation, directly annotating the source or
sink in the helper function will have to conflate the different purposes and therefore fail to provide contextualized
privacy notices. In the following, we use an example of a writeToFile helper function (Figure 6) to demonstrate
how our Honeysuckle IDE plugin help handle this task using a new annotation: @oSpecificUseCase.

Our method is analogous to a Java method throwing an exception and require the caller to handle things.
When a developer chooses to use the @oSpecificUseCase annotation to indicate that the original sensitive sink
API can be used for multiple purposes in different situations, the IDE expands the sink API list to also include the
helper function itself. The IDE plugin then analyzes which parameter of the helper function can reach the initial
sink target variable (text), and identifies the second parameter as the new target variable of the helper function.
Then the developer can either use the quick-fixes to navigate to the helper function calls or refresh the “Privacy
Ul Integration” to reveal additional tasks due to the addition of the helper function as a new sink. This can be a
recursive process in which developers can keep adding multiple @oSpecificUseCase until a specific use case is
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a. Reminding dev to remove invalid Ul configuration entry

29 </hsSource>
30 = <hsSink purpose="for_debugging_shaking| based_control" data="motion_sensor_logs">
31 <hsAccessTracker enabled="true"/>
32 <hsJitNotification frequency="DO_NOT_SEND_NOTIFICATION"/>
33 hsSink . . . . L
. =/hssinkz This tag does not correspond to a valid data practice, please consider removing it.
34 <hsSource p
35 <hsAccessTracker enabled="true"/>
36 <hsJitNotification frequency="DO_NOT_SEND_NOTIFICATION"/>
b. Reminding dev to fix non-existing @Source referred in @Sink
@Sink(

sources = {@Source(sourceData = DataType.SystemLogs, purposeName = “For debugging motion_based control®)
+

sinkD
purpo

@Source(systemlogs, for_debugging_motion_based_control) do not match any existing
@Source annotation.

c. Reminding dev to fix source data type inconsistent with the API
@Source(

sourceData = DataType.Accessibility, purposeName = "For managing and displaying notifications")
StatusBarNotification[] an = service.getActiveNotifications();
if (an == null) return false;
NotificationPresenter np = Not
np.init(service, an);
return mInitialized = true; a. Add Source annotation More actions...

The source data type "Accessibility" specified in the annotation is inconsistent with the
inferred data type "Notification".

Fig. 5. This figure demonstrates three types of auto-checks that can be conducted by the Honeysuckle IDE plugin. The
general design principle is that the IDE plugin only aims to provide timely reminders to developers about annotations and Ul
configuration entries that may be invalid or outdated, and expects the developers to take the initiative to fix the issue.

available. For @Source annotations, the process is similar except that the return value of the helper function will
be treated as the new target variable.

3.3.3 Honeysuckle Build System Plugin. As alluded earlier, our build system plugin can generate code for pro-
viding in-app privacy notices using the Honeysuckle library based on the annotations, the Ul XML configuration,
and the code analysis results. A specific design goal of our build system plugin is that when generating the in-app
privacy notice code, there should be as little impact on the programming, debugging, and execution of other code
as possible. One related design choice is that the mapping between the line number and code should remain the
same after modification, so that developers can debug the app with the source code as usual. Towards this end,
Honeysuckle appends all the additional code for each source and sink in the same line.

3.4 Honeysuckle Implementation

Our system consists of three main modules: an IDE plugin (implemented for Android Studio), a build system
plugin (implemented for Gradle), and an Android library for creating in-app privacy notices. Figure 7 presents
four main functionalities of Honeysuckle and we introduce the implementation for each of them below.

3.4.1 IDE plugin: Code Analysis. The code analysis subsystem of Honeysuckle was built on top of the analysis
engine of Coconut [29], which supports real-time API call detection based on method signature matching. We
select 568 source APIs and 76 sink APIs using the same criteria as in Coconut and feed their method signatures
into the system. Source APIs are defined as APIs that directly trigger sensitive data collection and sink APIs
are APIs that store or send data out of the phone. First-party APIs were selected by reviewing the Android
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@NoSpecificUseCase informs the IDE plugin that @Sink will be

“n

deferred to where the helper function “”writeToFile is called

public static boolean writeToFile(@NonNull File file,
ence text) {
FileOutputStream fos = null;
OutputStreamWriter osw = null;
try {

=
=~

s = new FileOutputStream(file);
sw = new OutputStreamWriter(fos);

4 osw.append (text) ;

ST EL @ Navigate to FileUtils.writeToFile(file, log) »

} catch (IOEx © Navigate to FileUtils.writeToFile(file, sb) »

=)

Privacy Ul:  Privacy Ul Integration  Privacy Ul Configuration

Refresh

ol

< » Data accessed by the app (Source)
Data leaving the app (Sink)
writeToFile

No specific use case (helper function). Writer.append (2pp,

umpService java:197)

writeToFile (app/sre/ / ui

ISTODO 4 & Version Control = 6: Logcat Terminal 4 Build _ Privacy Ul

Utils.ja
y (send email) s / s Dial
ialog.java:369)

Honeysuckle IDE plugin can guide developers to find the new
potential “sinks” using quick-fixes and by refreshing the “Privacy
Ul integration” task list

-

@S

St

if_(log == null)
thro xceptio

boolean succe

ink(
sources = {@Source(
sourceData = DataType.SystemLogs,
purposeName = “For debugging app crash")
h
sinkData = R.string.system_logs,
purposeName = "For debugging app crash")
ring log = Logcat.capture();

e logcat.");
= FileUtils.writeToFile(file, log);

N

@Sink(

sources = {@Source(
sourceData = DataType.MotionSensor,
purposeName = "For debugging motion_based control")
+
sinkData = "Motion sensor logs",
purposeName = “For debugging motion_based control")

StringBuilder sb = new StringBuilder();
for (Event event :

mEventList) {

sb.append(event. timestamp) .append (DIVIDER) ;
sb.append(event.sensor).append (DIVIDER);

for (float f : event.values) sb.append(f).append(DIVIDER);
sb.append (NEW_LINE) ;

FileUtils.writeToFile(file, sb);

Fig. 6. Annotation and IDE design example: Sometimes an app might have helper functions to collect, store, or transmit
data, which leads to a tricky case that one sensitive API call can be used for multiple purposes. In this example, the app
creates a helper function “writeToFile” that calls a system API “osw.append(text)” to write data to files. However, because
the helper function is called from two different contexts which store different data for different purposes, directly adding
a @Sink annotation to the “text” variable is not sufficient for distinguishing between these two contexts when the app is
running. Therefore, we propose a new annotation @NoSpecificUseCase to allow developers to provide a cue to Honeysuckle
to skip the @Sink requirement for the current level of the function call stack, so developers can annotate @Sink for helper

function calls to distinguish data use in different contexts.

Flag errors and show
quick-fixes

Source detection
(data collection)

“Privacy Ul integration”
panel (annotation tasks)

Sink detection

(data store, network regs) Privacy Ul Config” panel

(Edit Ul XML config)

Support for adding
annotations and editing Ul
config file (IDE plugin)

Code analysis (IDE plugin)

Modify code and swap

Show privacy notices at
execution time
(Library)

compile source
(Build system plugin)

Fig. 7. Honeysuckle system overview. The three colors correspond to the three component: the IDE plugin, the build system

plugin, and the library.

documentation and Third-party APIs were selected using stacktraces of third-party libraries collected by Chitkara
et al. [15]. Honeysuckle covers 18 sensitive data types, two of which were adapted from Coconut (location and
unique id) and the other 16 types were added by us. The sensitive data types are listed in the appendices (Table 2).

To evaluate the code analysis subsystem, we selected 75 open-sourced Android apps on GitHub by searching
for recently updated repos (by July 2020) that contain a Google Play link and declare dangerous permissions in
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the manifest. We cross-checked the API calls detected by Honeysuckle against the API calls detected by doing
a method signature search on the Smali code! of these apps and obtained the same results. This shows that
Honeysuckle can accurately detect all known source and sink APIs. Furthermore, Honeysuckle detected 23
sensitive API calls per app on average (median = 12, std = 40) and detected at least one sensitive API call for 70
out of the 75 apps. This suggests that although we did not aim to optimize for coverage, Honeysuckle can already
detect a sizable number of sensitive API calls so developers do not need to manually keep track of them. We
discuss the limitations of Honeysuckle code analysis and potential enhancement in more depth in Section 5.3.

3.4.2 IDE plugin: Support for Adding Annotations and Editing Ul configuration. Our IDE plugin runs custom code
inspections continuously using the API BaseJavalLocalInspectionTool to maintain a record of all the current
data practices, annotations, and Ul XML confifuration. With this information, We implemented the “Privacy Ul
integration” panel and the “Privacy UI Config” panel using the ToolWindowFactory APIL The quick-fixes are
implemented using the LocalQuickFix API All the above APIs are provided by the IntelliJ Platform SDK.
Regarding the feature to automatically generate Ul XML configuration for new sources and sinks, we chose to
initiate the modification of the configuration file only after the user clicks the tab to switch to the “Privacy Ul
Configuration” panel. This method can help avoid generating configuration for intermediate editing results.

3.4.3 Build System Plugin. We chose to develop a plugin for Gradle, which is the most widely used build system
for Android development. We implemented custom Gradle tasks and then packaged the tasks into a plugin that
can be applied in any Android project by adding one line of code similar to importing a library?.

As the app starts compiling, our Gradle plugin will send a compile start signal to a local server run in the IDE
plugin so IDE plugin can dump the code analysis results. Then the Gradle plugin inserts privacy notice Ul code in
the project at proper places based on the sensitive API calls detected by the IDE plugin, the annotations provided
by developers for these API calls, and the UI configuration file. After finishing compilation, the source code will
be reverted back to the original version that only contains the annotations but not the privacy notice UI code.

3.4.4 Library. The main functionality of our Honeysuckle library is to provide APIs for different types of in-app
privacy notices. The permission explanation dialog is implemented using the AlertDialog system API The
just-in-time notification is implemented as an Android notification using the system API The privacy center is
mainly implemented as a Preference Ul which is a common way for Android apps to implement app settings.
We used an open-source library MPAndroidChart® to implement the data access frequency diagram in the privacy
center. We also defined our custom Java annotations (e.g., Table 1) in the Honeysuckle library.

4 HONEYSUCKLE EVALUATION: COMPARING THE ANNOTATION AND LIBRARY APPROACH

To evaluate the effectiveness of the two methods supported by Honeysuckle in helping developers implement
fine-grained, in-app privacy notices for real-world projects, we conduct a within-subjects programming study
with 12 Android developers to examine the following research questions:

RQ1 What are their effect on developers’ time performance in implementing privacy notices?
RQ2 What are their effect on developers’ cognitive load of implementing privacy notices?
RQ3 What are their effect on developers’ perceived usefulness and usability?

RQ4 How do developers think about the two methods?

1Smali is a human-readable intermediate code format generated by decompiling an app apk which expands every API call to its complete
method signature.

2Developing Custom Gradle Plugins. https://docs.gradle.org/current/userguide/custom_plugins.html
3https://github.com/PhilJay/MPAndroidChart
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4.1 Participants

Out of the 12 participants, 11 were freelance Android developers recruited from a freelancing platform (Upwork).
The other participant signed up for the study after seeing our recruiting ads posted on Twitter. In a pre-study
survey, we asked participants to provide demographic information. 3 participants self-identified as female, and 9
as male. The average age is 31.3 (std = 9.49, min = 22, max = 56) years old.

We also requested our participants to provide their background in Android development. Our participants
reported 4.3 years of Android development experience on average (std = 1.5,min = 2,max = 7). 8 of 12
participants self-reported that they have released Android apps on an app store (e.g., Google Play, F-Droid). One
participant answered that his most popular app achieved 10M+ installs, another participant 1M+ installs, and a
third participant 10K+ installs. All participants considered themselves familiar with Java and Android Studio.

Lastly, we asked them about their prior experience in handling private data and using Java annotations in
general. 11 out of 12 self-reported that they have created Android apps that access users’ personal data (e.g.,
geolocation, device ID), with the other participant answering “I'm not sure”. However, when choosing from a list
of different types of privacy notices, most participants reported only creating privacy policies and requesting
system permissions to provide privacy notices. This finding supports our working assumption that developers
rarely adopt other types of privacy notices for their apps. Regarding the use of Java annotations, all participants
have at least used some simple features such as adding @SuppressLint to clear IDE warnings/errors. 3 out of 12
participants reported that they have previously used annotations for code generation.

4.2 Control and test conditions

The test condition of our study is to use Honeysuckle to modify a real-world app to implement the five types of
example privacy notices. The control condition is to use the library we developed for Honeysuckle to generate
the example privacy notices introduced in Section 3.2. To minimize the carryover effect in within-subjects study
design, we chose two popular open-source apps, AcDisplay* (a notification manager app) and OmniNotes® (a
note-taking app) and ask each participant to work on different projects using the two methods. Both projects use
Java as the main programming language and are of similar complexity. OmniNotes contains around 231 Java files
and 21714 lines of Java code; AcDisplay contains around 331 Java files and 59489 lines of Java code. Regarding
sensitive data use, OmniNotes contains 10 sources and 2 sinks, and AcDisplay contains 13 sources and 4 sinks.
Note that we chose to use the library as the baseline condition instead of asking developers to achieve the task
without any support, because otherwise UI design and implementation issues would clearly dominate the amount
of the time on task and it would be unequal comparison with annotations and do not generate insightful results.
We searched for Android libraries that support developers to implement these three in-app privacy notices but to
no avail, likely because there has yet to be sufficient need to drive the development of such libraries. Hence we
asked participants to use the Honeysuckle library in the library condition, which is also what our generated
code calls to show the privacy notices, to provide a relatively equal comparison between the two approaches.
We sequentially assigned participants to the following groups based on their signup order:

modify AcDisplay using annotations + modify OmniNotes using library
modify OmniNotes using library + modify AcDisplay using annotations
modify OmniNotes using annotations + modify AcDisplay using library
modify AcDisplay using library + modify OmniNotes using annotations

=W N =

4https://github.com/AChep/AcDisplay
Shttps://github.com/federicoiosue/Omni-Notes
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4.3 Procedure

We conducted our study remotely via Zoom because our participants resided in multiple locations. After the
participant signed the consent form, the experimenter turned on screen recording to record the entire session
for further analysis. The entire study took around 2.5 hours and mainly consisted of two programming tasks
(corresponding to the two conditions). Developers had at most 40 minutes for each programming task, and then
spent 5 minutes to fill out a NASA-TLX questionnaire [25] to measure the cognitive load and a Technology
Acceptance Model Scale (TAMS) questionnaire [17] to measure the perceived usefulness and usability of our
tool. For the two programming tasks, developers modified different apps to implement privacy notices using
different methods. Since we wanted to evaluate the programming methods rather than examine developers code
comprehension skills, we provided documentation of the apps’ data practices containing all the information
needed to make the privacy notices so the developer could focus on using the provided tools to achieve the goal.

Before each programming task, the experimenter used a toy app as an example to teach the participant how
to use annotations and the library to achieve the task. Specifically, the experimenter first implemented privacy
notices for half of the sources and sinks in the toy app, and then asked the participant to complete the rest of
privacy notices. During this process, the experimenter answered all the questions the participant had regarding
the method of the current condition. For the library condition, we ensured that developers had access to the
example app code during the main programming task so they could refer to them when needed.

After completing the two programming tasks and filling out the surveys, the experimenter asked several
follow-up questions regarding their thoughts about the two methods, such as which part of the tool was hard to
use, what could be improved, and what they thought about the generated privacy notice Uls. Upon completion,
each participant was compensated with 75 USD. This study was approved by our university’s IRB.

4.4 Study environment

We set up a virtual workstation using a VNC server on a Google Cloud virtual machine, so all participants can
work on the programming tasks in this virtual workstation. The experimenter can view and interact with the
same interfaces during the study to do live coding during the warm up tasks and to provide guidance to help
developers quickly get used to this new environment.

4.5 Quantitative results (RQ1-3)

We present the results to the first three research questions below.

4.5.1 Time on Task (RQ1). All developers completed the task in the Honeysuckle condition in the allotted
time, while only 2 developers (P7 and P9) completed the task when using the library. Furthermore, for these
2 developers, it took them longer time to finish when using the library than using the annotation. P7 used 22
minutes to finished the task using the annotation and 37 minutes using the library. P9 used 14 minutes to finished
the task using the annotation and 27 minutes using the library.

4.5.2  Cognitive load (RQ2). We analyzed the six dimensions of cognitive load measured by NASA-TLX on a
scale of 1 to 100 (lower is better) [25]. Honeysuckle achieved a statistically significant reduction in cognitive
load using a paired t-test (p < .001, t=5.09). Figure 8 shows that Honeysuckle helped reduce the cognitive load
across all six dimensions, especially for mental load and perceived success.

4.5.3  Usefulness and usability (RQ3). We analyzed the perceived usability and usefulness of Honeysuckle and the
privacy notice library measured using TAMS on a scale of 1 to 7 (lower is better, 1=extremely likely, 7=extremely
unlikely) [17]. We then calculated the sum of all ratings in the usability subscale and the usefulness subscale and
compare them between the two conditions. For both usability and usefulness, Honeysuckle received significantly
better (lower) ratings under paired t-tests (for usability, p = .02, t=2.76; for usefulness, p = .02, t=2.67). The mean
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Fig. 8. NASA-TLX ratings of the Annotation and Library conditions (lower is better). Using the annotation-based approach
of Honeysuckle significantly reduces the overall cognitive load as compared to using the library to implement the same
runtime privacy notices. The error bars represent the 95% confidence intervals.

Learning to implement privacy notices using [tool] would be easy.
| would find it easy to use [tool] to do what | want it to do.

My usage of [tool] would be clear and understandable. . el
I Annotation

| would find [tool] to be flexible to use. S Library

It would be easy for me to become skillful at using [tool].

HW

| would find [tool] easy to use. N

1 2 3 4 5 6 7
Usability ratings (1=Extremely likely, 7=Extremely unlikely)

Fig. 9. Perceived usability ratings of the annotation-based approach and the library (lower is better, 1=extremely likely,
7=extremely unlikely). Overall, the annotation-based approach was perceived as more usable than the library. The error bars
represent the 95% confidence intervals.

usability rating of Honeysuckle is 1.45 and the mean usability rating of the library is 2.56. The mean usefulness
rating of Honeysuckle is 1.27 and the mean usefulness rating of the library is 2.30. Overall, developers perceived
both tools to be useful and usable, and perceived Honeysuckle to be more useful and usable than the library.

4.6 Qualitative feedback (RQ4)

One researcher transcribed the interviews, conducted thematic analysis following previous guidelines [14], and
held regular meetings with other authors to review the analysis process and discuss the findings. The identified
themes are categorized as feedback on programming methods or feedback on the generated privacy notices.
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Using [tool] in my job would enable me to accomplish tasks. _—| )
t 1 ¢
¢

Using [tool] would improve my job performance.

¢
Using [tool] in my job would increase my productivity. . Tool

I Annotation

Using [tool] would enhance my effectiveness. E—{ I Library
S —
¢

Using [tool] would make it easier to do my job.

| would find [tool] useful in my job.

¢

1 2 3 4 5 6 7
Usefulness ratings (1=Extremely likely, 7=Extremely unlikely)

Fig. 10. Perceived usefulness ratings of the annotation-based approach and the library (lower is better, T=extremely likely,
7=extremely unlikely). Overall, the annotation-based approach was perceived as more useful than the library. The error bars
represent the 95% confidence intervals.

4.6.1 Feedback on programming methods. When comparing the two methods, all participants preferred the
annotation method a lot than the library method. Without being asked, P2, P7, P10, P11 said they hoped to
see a public release of Honeysuckle so they can use it for their own projects. For example, P7 said that “T hope
any of these can be launched. Anyone of them would be cool, but my preference would be the plugin.” This echos
the fact that there is very limited developer support for building in-app privacy notices and suggests both the
Honeysuckle library and annotation can improve app’s transparency when also making developer’s life a lot
easier. Below, we present themes emerged from participants’ explanations of their preferences.

Productivity. Six participants (P1, P3, P4, P7, P11, P12) mentioned that they felt a lot more productive when
using the annotation method than the library. Specifically, they felt using annotations allowed them to write less
code and achieve the task faster. For example, P4 mentioned using annotations could “avoid a lot of parameters
for calling the APIs”, which is because our annotation design reduces a lot of redundancies by automatically
generating multiple types of notices using one annotation. Developers also praised the automated source and
sink detection and quick-fixes offered by Honeysuckle IDE plugin. For example, P3 mentioned “Just being able to
go through some automated steps makes it more efficient to add annotations”.

Mental Load. Nine participants (P1, P2, P4, P7-P12) said that using annotations helped reduce the mental load
in many ways. For example, P8 loved the automated suggestions offered by the IDE plugin because “It simply tells
me where I need to add annotations and I don’t need to consciously take effort to do that”. On the contrary, using
the library “felt very tedious” (P2) and they found it challenging to “remember what API to use” (P7). Moreover,
using the library requires the developer to “manually track many things at the same time”, including naming the
sources and remembering the names when defining connections between sources and sinks in the privacy info
map (P9). When using annotations, this task is made much easier by the quick-fixes of the IDE plugin.

Learnability and Usability. Nine participants (P2, P4-P7, P9-P12) discussed the learnability and usability of
the two methods. Some people found the annotation tool easy to learn. For example, P11 said “The tool is new to
me, but I didn’t need to think much to figure out what to do. The plugin has made it very simple.” Conversely, some
participants shared a slightly different feeling that “the annotations may have slightly steeper learning curve, but
after getting the hang of it, using it is way easier” (P7). The difficulty was mainly in understanding how to specify
the source in a sink annotation (P2, P10) and handle helper functions (P2, P5, P10). This result echos the fact that
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only three out of the twelve participants had used annotations for code generation before the study. However,
the unfamiliarity with annotations did not seem to hinder the usage of annotations for privacy notice generation.
P4 even said “Normally I don’t like annotations, but for this task I like it. It’s very easy to use.”

Code Comprehension. Four participants (P1, P7, P8, P11) mentioned that using annotations made the code
‘organized” (P1) and “very easy to read” (P8). P8 further explained that “all the configuration goes to the XML, so
the annotation only keeps simple information”.

Teamwork. P4 and P9 explicitly discussed different benefits of using annotations and the IDE plugin for
teamwork. P4 liked the quick-fixes for generating annotation templates because it helps everyone in a team code
in the same format. P9 was thinking about the situation when developers working in a larger group that have a
separate privacy team. He explained that “The IDE automatically analyzes all the sources and sinks, so the privacy
team can focus on the privacy work such as checking if privacy notices have been implemented for all of them.”

4.6.2 Feedback on the generated privacy notices. When asked about their favorite design among the three privacy
notices as a user, eight participants picked the privacy center (P1, P3, P5-P9, P12), three picked the permission
notice (P4, P10, P11), and only one picked the just-in-time notification (P2). Participants preferred the privacy
center the most because it contained more information about the app’s data practices and it was available to the
user at any time. They also generally found the permission notice and the just-in-time notification useful, for they
use a “streamlined format” (P2) and provide “finer-grained detail than what you get with regular permissions” (P3).
Some people also touched upon potential issues about these privacy notices, categorized into two themes:
Notification overload problem. P3 and P5 expressed their concerns about the notification overload problem
specifically for the just-in-time notice design. P3 elaborated her concerns using the Starbucks app as an example,

“Tuse the Starbucks app, and I guarantee you it’ll be blurting at you all the time some privacy notifications,
but would that improve my experience? I'm not sure because I kind of know at the back of my head that
they’re probably doing that and I guess I'm okay with they know where I am”.

Similarly, P5 said “receiving many notifications from an app can be annoying from a user perspective”. We have
considered this issue when designing Honeysuckle and allow developers to control default visibility for each
just-in-time notification to balance user experience and privacy. However, there are still issues such as developers
can only make static decisions so the generated UI can not accommodate to different privacy concerns of different
users. In Section 5.4.2, we discuss potential ways to further improve privacy using the annotations.

Factors that impede adoption. Some participants also explicitly discussed or implied factors that may
prevent them from using Honeysuckle in real life. First, although many participants have been familiar with
system permissions, in-app privacy notice was quite a foreign concept to them. For example, P4 was confused
when first seeing the permission notice and asked “Is this extra dialog useful?” P3 mentioned that she had worked
with many clients but had never encountered a requirement of implementing in-app privacy notices. Second,
currently Honeysuckle has to rely on developer’s input for some fields in the annotation such as purposes and
can not automatically verify them, causing the risk of generating misleading privacy notices if the developer does
not provide accurate information. P1 said “You can not ensure that the developer will be an honest developer and he
will tell you his true intentions of the data”. However, we want to note that this is a general challenge facing any
kind of privacy notices. We discuss potential mitigation methods in Section 5.4.1.

5 DISCUSSION

We now discuss the benefits of using the Honeysuckle system for annotation-based privacy notice generation, the
limitations of Honeysuckle, and other opportunities to improve data transparency and control using annotations.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 3, Article 112. Publication date: September 2021.



Honeysuckle: Annotation-Guided Code Generation of In-App Privacy Notices « 112:21

5.1 Annotations as a Bridge to Connect Users and Developers

Previously, Coconut [29] demonstrated that annotations (and other metadata with similar attributes) can help
educate developers and nudge them towards adopting best practices for privacy in their apps. In this work, we
demonstrate that annotations are also effective in helping developers generate useful and usable privacy notices.

There are many reasons why annotation-based privacy notice generation can address common challenges
regarding the implementation of in-app privacy notices. Since annotations are added next to sensitive API calls,
developers do not need to explicitly specify any context, which saves on a lot of effort. There is a clear relationship
between the annotation and the generated interfaces, which helps with code maintenance and collaboration
for teamwork. Our IDE plugin can automatically detect data sources and sinks and remind developers to add
annotations, which reduces developers’ cognitive load and increases the coverage and accuracy of the information
declared in annotations. We carefully designed Honeysuckle to handle complicated scenarios in real-world apps,
such as having multiple API calls serving the same purpose and having the same API call serving different
purposes. More importantly, our approach allows developers to build effective privacy notices without having to
be a privacy expert, since the generated interfaces automatically follow the best practices.

Our quantitative lab study results demonstrated that the annotation-based approach consistently outperformed
the library-based approach in terms of time on task, cognitive load and perceived usefulness and usability to
developers. We also showed in our qualitative analysis that participants felt adding annotations was a better
approach than using the library. They preferred using annotations because it improved productivity, reduced
mental load, was easier to learn and use, made code easier to comprehend, and could provide benefits for teamwork.
Overall, adding annotations was perceived as a simple task and only led to a small extra effort, because the
annotation and UI configuration XML design allowed them to write much less code and the IDE plugin offered
sufficient suggestions and quick-fixes to streamline the task. They felt the Honeysuckle library more complicated
to use and required more work than annotations, but still considered it useful since no such tool exists either.
Note that both approaches were new to developers who participated in our study. Only three out of the twelve
participants had previously used annotations for any kind of code generation, though all participants picked up
the annotation-based approach and finished the task much faster than the library-based approach.

In a broader sense, some of our design considerations may increase the likelihood for Honeysuckle to be
adopted, based on lessons learned about why model-based user interface design (MBUID) [39, 52] did not
achieve widespread adoption. Instead of solving the generic Ul implementation issue, we focus on privacy notice
generation specifically and try to minimize the implications on regular app development tasks. Furthermore,
given the low adoption of in-app privacy notices, developers likely have not established preferences for building
their own interfaces, one of the barriers that prevented the adoption of MBUID [52].

5.2 Increasing Developers’ Incentives to Improve Privacy

Many privacy-related requirements currently in place for Android and Google Play impose many restrictions
on what data developers can use [30]. Conversely, we argue that requiring developers to create more privacy
notices to improve transparency will cause little to no impact on the apps’ functionality, which makes developers
potentially more amenable to them. Furthermore, by making it easier to create privacy notices, we may be able to
nudge developers who care about users’ privacy to adopt more effective designs.

As suggested in prior research [13, 33], providing more detailed privacy notices for legitimate data practices
is likely to not only improve users’ perceived comprehension and control of their privacy, but also make users
more comfortable with allowing the app to access their data and trust the app more. Nowadays, there seems
to be a growing interest in both academia and industry to build applications that can provide benefits to users
and preserve privacy at the same time, but the common technical approach is still to minimize data practices,
such as using differential privacy, federated learning, and on-device training and inference. With the current
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permission system, there is still a gap between users’ perceptions and the actual data practices [30], and our tool
can potentially address this problem and make developers’ effort in protecting user privacy more visible to users.

5.3 Limitations of Honeysuckle

We chose a relatively simple code analysis method for Honeysuckle implementation, which is to search for
all API calls that match a predefined source and sink API list. Although the code analysis subsystem is largely
adapted from Coconut [29] and is not our main contribution, we want to discuss limitations in the current
implementation and point out potential mitigation methods. First, the detected sinks may not actually store
or send sensitive data off the device. Although we allow developers to manually add annotations to mark non-
sensitive sinks, this process can be tedious and error-prone, especially for teamwork. Given that researchers have
built tools to statically analyze data flows of compiled Android apps [8], a potential solution is to investigate
how to conduct in-IDE data flow analysis over the source code and give developers hints and warnings for
more efficient and accurate annotation filling. Second, our sensitive API list does not guarantee a full coverage.
To improve the coverage, we can integrate existing methods [9, 44] to automatically identify source and sink
APIs for different versions of Android. For third-party libraries, Honeysuckle solely relies on a curated list of
popular third-party libraries. Since prior work suggests the usage of third-party libraries in Android apps follows
a long-tail distribution [15], a potential solution is to combine a predefined third-party API list to cover the
majority of cases with on-demand analysis to handle edge cases. Furthermore, Honeysuckle does not support
customizing the styles and themes of the generated UL This feature is straightforward to implement by allowing
developers to specify their own style and theme XMLs ¢ to Honeysuckle.

5.4 Future work: Going further from Honeysuckle and privacy notice generation

Despite the promising benefits, a developer tool for generating privacy notices alone can not solve all challenges
facing the adoption of privacy notices and privacy by design in general. Therefore, we propose some follow-up
work ideas to further improve privacy based on Honeysuckle and annotation-based privacy notice generation.

5.4.1 Engaging other stakeholders to enforce and stimulate accurate privacy notice. Honeysuckle relies on devel-
opers to provide accurate input to generate useful privacy notices. This could lead to the issue of “dishonest
developers”, which was also brought up by our participants (Section 4.6.2). Hence, we discuss potential methods to
enforce or stimulate accurate privacy notices beyond building developer tools. First, the internal privacy auditing
teams or the app store need to check if developers have provided correct information in their annotations. As we
have alluded to earlier, to supplement the free-form purpose string, we can add another annotation field that
requires developers to declare a purpose category, using a set of predefined options. Then app reviewers may be
able to infer the purpose category to cross check the annotations. An alternative approach is to generating code to
log, synthesize, and help users visualize what data is collected, retained, or sent off the device. The rationale here
is to give users, privacy researchers, and consumer advocates the ability to cross check what data practices are
declared by developers against actual data practices. Similar ideas can be found in both research and commercial
systems. For example, the i0S background location history dialog renders the location traces collected by the app
on a map along with a rationale string provided by the developer. Harbach et al. [24] demonstrated visualization
design using personal examples to improve the communication of privacy risks.

5.4.2 Other opportunities of improving transparency and control using annotations. Currently, Honeysuckle
works as a standalone tool, but we envision that privacy annotations, the Honeysuckle IDE plugin, and build
system plugin could be more tightly integrated into the Android ecosystem. For example, annotations can be
embedded into compiled apps, which would let the operating system generate unified interfaces for all apps and

Shttps://developer.android.com/guide/topics/ui/look-and-feel/themes
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allow users to manage global settings about the appearances and frequency of notices, as well as when and where
to see notices to avoid notification overload. As another example, having annotations embedded into compiled
apps could make it easier to check the behavior of apps by app stores, researchers, and consumer advocates. By
expanding the kinds of annotations developers have to add, it would be possible to generate a summary of the
app’s behaviors, such as what websites or cloud services it accesses and what data it sends. This kind of summary
could augment the existing privacy interfaces, help users make decisions about whether to install an app (e.g. see
PrivacyGrade.org), and help developers fulfill new requirements such as providing privacy labels for iOS apps.

Stepping back, we believe that a compelling vision for privacy is to have developers annotate their code just
once, which can then help those developers with a number of privacy-related tasks (so that they will want to
include accurate annotations), as well as make apps easier to audit by users and third parties. A challenge here is
defining a unified and complete enough set of annotations that can cover all of these use cases.

6 CONCLUSION

In this paper, we presented Honeysuckle, a programming tool that helps Android developers build in-app privacy
notices using a combination of privacy annotations, an IDE plug-in, and a build system plug-in. We conducted a
within-subjects study with 12 Android developers to evaluate Honeysuckle, and found that developers were able
to easily use our annotation approach over a conventional library-based approach to generate in-app privacy
notices. Our annotation approach also had much lower cognitive load and was generally preferred by developers.

More broadly, our work suggests two compelling paths forward for future research. The first is additional
tool-based support for developers with respect to privacy, for example to alleviate the burden of manually tracking
data uses in an app, adding additional features, and supporting other privacy needs not examined in this paper
(e.g. internal auditing of apps). The second is other uses of annotations to support developers. Annotations can
act as hints about intended behavior of apps, and we speculate that they may also be useful for other kinds of
complex development tasks of cross-cutting features distributed across many points in the source code, such as
user interface generation, security, energy efficiency, and more.
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Table 2. Honeysuckle sensitive data type coverage

Permission Requirement Data Type

Calendar
Call Logs
Camera
Contacts
Location
Microphone
Body Sensor
Sms
User Account

Protected by dangerous permissions

Unique Identifier

Partially protected by dangerous permissions
User File

Notification
Accessibility (UI events)
Motion Sensor

Protected by other permissions

User Input
Clipboard
Running Apps
System Logs

Not protected by permissions
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