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Abstract
Many smart home frameworks use applications to automate devices
in a smart home. When these applications interact in the same
environment, they may cause unintended actions which can lead
to a safety violation (e.g., the door is unlocked when the user is
not at home). While recent efforts have attempted to address this
problem, they do not capture complex app behaviors such as: 1)
timed behavior and user inputs (e.g., a door can remain unlocked for
a long time because of a lock-door app that locks the door after 𝑥
duration, if 𝑥 is set too large.) and 2) interactions between devices
and the environment they implicitly affect (e.g., water sprinklers
cannot be turned on if the water supply is off). Hence, prior work
leads to many false positives and false negatives. In this paper,
we present PSA, a practical framework to identify safety intent
violations in a smart home. PSA uses parameterized timed automata
(PTA) as an expressive abstraction to model smart apps. To parse
these apps into PTA, we define mappings from smart app APIs
to equivalent PTA primitives. We also provide toolkits to model
devices, environments, and their interactions. We evaluate PSA on
86 apps in the Samsung SmartThings IoT ecosystem. We compare
PSA against two state-of-the-art baselines and find: (a) 19 new
intent violations and (b) 35% fewer false positives than baselines.
Keywords
IoT safety and security, violation detection, formal verification

1 Introduction
With the surge in IoT devices, several smart home platforms have
emerged; e.g., Samsung SmartThings [34], IFTTT [20], which allow
users to control devices using apps. Unfortunately, these apps can
cause safety violations when they interact directly or because of
shared environmental context. Apps can also be incorrectly config-
ured by users, leading to unsafe situations; e.g., in Figure 1, if the
user sets a large value of 𝑥 , the door will remain unlocked for a long
time. Recent work attempts to detect such violations in IoT ecosys-
tems either statically [8, 9, 11, 23, 31, 37, 40] or dynamically[10, 38].
However, these efforts are not expressive enough to capture the
following features of modern smart apps and IoT ecosystems:
1. Timing: Consider the interactions of real SmartThings apps in

Figure 1. The unlock-when-arrive app unlocks the door when
the user arrives. After the user enters and closes the door, auto-
lock-door app is triggered, which waits for x min and then locks
the door. If we do not model the𝑤𝑎𝑖𝑡 , it is not a safety violation
because the door is locked after unlocking. However, it is a safety
violation if 𝑥 is large. Existing efforts ( [9, 11, 23, 37]) either ignore
timing or only model it coarsely, resulting in inaccuracies.

2. User Inputs: Apps can be customized by users, e.g., the auto-lock-
door app in Figure 1 takes input 𝑥 . These inputs often determine
if an app is safe. However, existing techniques ( [8, 9, 23, 30, 31,
37, 40]) do not reason about the safe range of user inputs.

Figure 1: A violation that exists only if the value of x is large.
3. State: Apps can maintain state (discrete value or time), e.g., con-

sider an app that turns off an A/C if it has already run for 2 hours.
The app tracks when the A/C was run by keeping state. Unfortu-
nately, prior works either consider stateless apps ( [8, 23, 37, 40])
or capture discrete state only ( [9, 11]), while failing to capture
continuous state resulting in false positives or negatives.

4. Environment Interaction: Apps may interact indirectly because of
shared environment and devices. For example, if an app turns the
main water valve off when a leak is detected, another app cannot
turn water sprinklers on. We need to model this interaction to
detect that sprinklers cannot be run. Existing efforts ( [8, 9, 11, 30,
31, 40]) either miss or only partially capture these interactions
resulting in false negatives or false positives.
To overcome the limitations of prior work, we present PSA. 1

PSA uses model-checking to verify a smart home deployment for
safety violations. It uses static instead of runtime analysis which
allows PSA to detect violations before they occur. PSA takes as input
a set of apps deployed in a home (with their source code) and a set
of safety properties or 𝑖𝑛𝑡𝑒𝑛𝑡𝑠 which check if an app does anything
unintended. It then confirms whether the apps satisfy these intents
or provide counterexamples when they do not.

In designing PSA, we need an expressive abstraction to model
the stateful and timed behavior of smart apps, and their interaction
with the devices and the environment. Hence, we explore the ab-
stractions proposed in the model-checking literature [3, 13, 21, 35].
We focus on literature in the cyber-physical systems (CPS) since
CPS have an additional notion of environment interactions which
differentiate it from verification in software systems. We identify
parameterized timed automata (PTA) as a suitable abstraction. Next,
it is hard to translate the apps correctly into PTA, as there is no one-
to-one mapping between apps and PTA. We carefully define these
app to PTA mappings and verify our generated PTA for correctness
by emulating an app in SmartThings, and comparing the output
trace with its PTA. We also define a taxonomy for environment
attributes and sensor devices, and provide templates to model each
category of devices and environment attributes into PTA in the con-
text of smart home. Moreover, we define a mapping of interactions
between device actions and environment attributes by building a
device-environment library. We describe these in Section 5 and 6.
In this paper, we make the following contributions:
• We identify PTA as the expressive and appropriate abstraction
to model modern smart apps. We define a mapping between
various smart app APIs into equivalent PTA primitives such that
it is correct and efficient. Finally, we design and implement a
parser to generate formal models of apps from source code.

1The name PSA stands for Proactive Safety for smart home Applications, which is also
a play on Public Safety Announcements for Smart Homes.
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(a) (b)
Figure 2: An overview of the Smart Home Ecosystem (a) and a logi-
cal workflow between different components of this smart home (b).

Figure 3: Trigger-action programming (Stateless, Stateful).

• We develop a systematic methodology to model devices, environ-
ment, and intents for smart homes. We design heuristics to make
the model-checking more tractable. For instance, we discretize
continuous inputs e.g., temperature. We model the environment
effects qualitatively and not quantitatively and, use taint-tracking
to minimize the number of variables while parsing the apps.

• We run PSA on 86 SmartThings apps and find 640 intent viola-
tions. We also find that 23% of these violations can be avoided
when configured using the safe values output by PSA.

• We show that PSA has no false positives or false negatives (when
our analysis terminates). We also compare our system against
two baseline modeling approaches [9, 23], 2 and show that PSA
leads to 35% less false positives and finds 19 new violations.

2 Background and Motivation
We begin with a background on modern smart home ecosystems.
Then, we give a taxonomy of safety intent violations and discuss
the limitations of prior work.

2.1 Smart Home Ecosystem
Smart home platforms, such as SmartThings [34] (Figure 2a), usually
comprise a cloud-connected hub to control the IoT devices. Users
interact with IoT devices in their home using smart apps, from
the provider’s [33] or third-party app store [7]. Figure 2b shows a
logical view of a smart home. Changes in the environment influence
the sensor devices (e.g., temperature influences thermostat reading).
The sensor devices trigger apps, which actuate on devices, affecting
the environment (e.g., A/C.on() to decrease temperature).
Smart Apps: Smart apps have event-driven programming, also
called trigger-action programming (TAP). There are two types of
TAP paradigms for smart apps (Figure 3): 1) Stateless-TAP apps
(e.g., IFTTT [20], Zapier [39]), which have stateless event handlers
(e.g., turn lights on when there is motion), 2) Stateful-TAP apps (e.g.,
SmartThings [34], Hubitat [19]), which preserve the context across
executions, such as counting the frequency of an event. These smart
apps can also schedule actions and keep timers (e.g., turn A/C off
after 30min). Stateful-TAP is a super-set of Stateless-TAP apps. In
this work, we consider Stateful-TAP apps, focusing on Samsung
SmartThings [34] since it is widely used. However, our techniques
also apply to other platforms (e.g., IFTTT [20], Hubitat [19]).
2These baselines are approximations of prior work.

1 preferences {

2 input "AC", "capability.switch", input "threshold", "Number"

3 input "TH", "capability.thermostat", input "d", "time"}

4 def installed () {

5 subscribe(TH, "temperature", handler) }

6 def handler(evt) {

7 if (evt.value < threshold) {

8 AC.off()

9 runIn (60 * d, func}}

10 def func() { AC.on() }

Figure 4: Example SmartThings application which turns A/C off
for duration d when temperature is below a threshold.

Smart apps are also configurable; users can set app parameters
e.g. temperature threshold x for switching on A/C. Figure 4 shows
an example smart app that turns A/C off for duration minutes when
the temperature drops below a threshold. The preferences section
(line 1-5) specifies inputs which are configured by the user at install
time. In this example, the user needs to select an A/C, a thermostat,
a temperature threshold, and the duration. The app subscribes to
events in the installed section (line 6-7) at the install time. Each
subscribed event has a handler which is triggered when the event
takes place. This example also highlights the timed behavior in
apps. We discuss the detailed features of smart apps in Section 5.

2.2 Safety Violations in Smart Home
Wefirst present a taxonomy of intent violations that we use through-
out the paper. It captures all the safety violations proposed in the
prior work [9, 23, 31, 37], as well as novel extensions to incorporate
the effects of timed behavior. To define the violations, we introduce
some notation. Let 𝑎𝑑,1,𝑎𝑑,2,...,𝑎𝑑,𝑛 be the list of actions that can be
performed on device 𝑑 . For example, for an air-conditioner (A/C)
the actions can be A/C.on() or A/C.off(). Let 𝑡𝑎𝑑,1 be the time when
action 𝑎𝑑,1 on device 𝑑 happened. Let 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑠𝑑 ) be a boolean
operation defined on device state 𝑠𝑑 of device 𝑑 e.g., a condition
defined on the A/C state can be: if A/C is on. Let 𝑒𝑘𝑚 be the 𝑚𝑡ℎ

state of environment attribute 𝑒𝑘 e.g., the A/C.on() action affects
the environment attribute “temperature”.
P1 Conflicting Actions: Consider the following two interactions:

𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡_𝑟𝑒𝑎𝑑𝑖𝑛𝑔 > 75𝐹 → 𝑤𝑖𝑛𝑑𝑜𝑤𝑠.𝑜𝑝𝑒𝑛()
𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒_𝑠𝑒𝑛𝑠𝑜𝑟 .𝑎𝑏𝑠𝑒𝑛𝑡 → 𝑤𝑖𝑛𝑑𝑜𝑤𝑠.𝑐𝑙𝑜𝑠𝑒 ()

Here, the two interactions lead to conflicting actions. Conflicting
actions can be of two types:
P1.1 Device Conflicts: Conflicting actions happening on the same
device are device conflicts. Formally, the following interactions be-
tween sensor events and actuator actions result in device conflicts:

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑠𝑑1 ) → 𝑎𝑑2,1 (1) 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑠𝑑3 ) → 𝑎𝑑2,2 (2)
𝑤ℎ𝑒𝑟𝑒 𝑎𝑑2,1 ≠ 𝑎𝑑2,2 𝑎𝑛𝑑 |𝑡𝑎𝑑2,1−𝑡𝑎𝑑2,2 | ≤ 𝑥 ;𝑥 𝑖𝑠 𝑠𝑜𝑚𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

P1.2 EnvironmentConflicts:These occurwhen app actions cause
conflicting effects on the same environment attribute. Formally:

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑠𝑑1 ) → 𝑎𝑑2, → 𝑒𝑘1 (1) 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑠𝑑3 ) → 𝑎𝑑4, → 𝑒𝑘2 (2)

𝑤ℎ𝑒𝑟𝑒 𝑒𝑘1 ≠ 𝑒𝑘2 , 𝑑2 ≠ 𝑑4 𝑎𝑛𝑑 |𝑡𝑎𝑑2, − 𝑡𝑎𝑑4,
| ≤ 𝑥 ;𝑥 𝑖𝑠 𝑠𝑜𝑚𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

For example, one app turns on a heater causing the temperature to
increase and another app turns on an A/C causing it to decrease.

P2 Co-occurrence Violation: Certain device states and actions
should always co-occur. For example, when no one is in the house,
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User
Config State Env.

Model.
Time
Model.

Intent
Vio.

Prog.
Paradigm

SiFT [23] ✗ ✗ ✓* event P1,2,4 Stateless
Soteria [9] ✗ discrete ✗ ✗ P1.1,2 Stateful
IoTSan [31] ✗ ✓ ✗ ✓ P1.1,2 Stateful
Iota [30] ✗ ✓ ✗ ✓ P1.1,2 Stateful
HomeGuard [11] ✗ discrete ✗ ✗ P1.1,2 Stateful
iRuler [37] ✗ ✗ ✓ event P1,2,4 Stateless
AutoTap [40] ✗ ✗ ✗ ✓ P1.1,2,3 Stateless
Menshen [8] ✗ ✗ ✓ ✓ P1,2 Stateless
Salus [22] ✓ ✗ ✓ event P2 Stateless
PSA ✓ ✓ ✓ ✓ P1-5 Stateful

Table 1: Comparison of PSA with prior work (Vio means violation)

Figure 5: Example of a device conflict that we found. It exists only
if the value of x is small

the door should be locked, presence_sensor .inactive → 𝑑𝑜𝑜𝑟 .𝑙𝑜𝑐𝑘 ().
Formally, in 𝑠𝑑1 → 𝑎𝑑2,, 𝑎𝑑2, should occur with device state 𝑠𝑑1 . In
𝑒𝑘1 → 𝑎𝑑1,, 𝑎𝑑1, and environment attribute state 𝑒𝑘1 should co-occur.
This property checks if the co-occurrence is violated. There can be
a conjunction of multiple device or environment states.
P3 Deadline Violation: Certain actions should be time bound for
user safety. For example, the door should be locked within a min
of being closed (𝑑𝑜𝑜𝑟 .𝑢𝑛𝑙𝑜𝑐𝑘𝑒𝑑 () → 𝑑𝑜𝑜𝑟 .𝑐𝑙𝑜𝑠𝑒 () within 1 min). If
the action is not performed within a given deadline, then it is a
deadline violation. These deadlines are specified on device actions.
More formally, 𝑎𝑑1, → 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦 𝑎𝑑2,𝑤𝑖𝑡ℎ𝑖𝑛 𝑥 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛. We can
also have a conjunction of actions on either side.
P4 Blocked Action: Consider the following interaction:

𝑙𝑒𝑎𝑘.𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 → 𝑤𝑎𝑡𝑒𝑟_𝑠𝑢𝑝𝑝𝑙𝑦.𝑜 𝑓 𝑓 ()
𝑓 𝑖𝑟𝑒.𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 → 𝑓 𝑖𝑟𝑒_𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 .𝑜𝑛()

Here the actionwater_supply.off () blocks the action sprinkler .on().
If an action 𝑎𝑑1, on device𝑑1, makes it impossible to execute another
action 𝑎𝑑2, on device 𝑑2, then 𝑎𝑑2, is a blocked action. More formally,
𝑎𝑑, → 𝑛𝑒𝑣𝑒𝑟 𝑎𝑑′, Here 𝑑1 and 𝑑2 can be the same device.
P5 Invalid Action Sequence: This is a general property to cap-
ture unreasonable, or risky action sequences; e.g., if the duration
between door .close() and door .lock() action is over 3 min, then it
is a risky action sequence. More formally, invalid action sequence
between two actions can be of the form:

(𝑎𝑑,, 𝑡𝑎𝑑, ), ..., (𝑎𝑑′,, 𝑡𝑎𝑑′, ) 𝑤ℎ𝑒𝑟𝑒 |𝑡𝑎𝑑′, − 𝑡𝑎𝑑, | ⋄ 𝑥, ⋄ = {=, <, >, ≤, ≥,≠}

𝑥 is some duration. Note that P1 and P3 are special cases of P5.

2.3 Comparison with Prior Work
Given this context of apps and violations, we now compare the
existing approaches with our work by looking at the various aspects
of smart home frameworks in Table 1. The columns 1-4 in Table 1
highlight the supported app features. The fifth column highlights
the supported properties mentioned in Section 2.2. The last column
reports the supported programming paradigm for each approach.
User configurable inputs: Apps may have configurable inputs
which often decide whether a configuration is safe. For example,
in Figure 1, the scenario is unsafe only if x is large. Existing tech-
niques [8, 9, 11, 23, 30, 31, 37, 40] do not analyze the apps for poten-
tial safe configurations as they take pre-configured apps. Salus [22]

Figure 6: A blocked action violation that we found, where water
sprinkler cannot turn on because main water supply is off.

gives some insight into safe configurations for the stateless-TAP
apps. But, it cannot be extended to the stateful-TAP apps.
Modeling time: Smart apps exhibit timed behavior (Section 2.1).
Modeling time is important to check for intent violations accurately.
For instance, consider the interaction between actual SmartThings
apps in Figure 5. The camera-power-scheduler app turns on a switch
for charging the camera and the power-allowance app turns it off
after duration 𝑥 . If we do not model the wait after the switch on
action, we will incorrectly mark it as a device conflict, which exists
only if the actions happen together, i.e., when 𝑥 is small. Apps show
timed behavior in twoways: 1) Timed Events which are triggered on
the value of time during the day, e.g., the camera-power-scheduler
app is triggered at 6 pm. 2) Duration, where some time interval is
measured between events and actions, e.g., the power-allowance
app waits for x min before turning off the switch.

SiFT [23], iRuler [37] and Salus [22] model timed events but not
duration as they only consider stateless-TAP apps. Soteria [9] and
HomeGuard [11] consider stateful-TAP apps but ignore their timed
behavior. These approaches will mark the interaction in Figure 5
as a device conflict, even if x has a large value (i.e., a false positive),
and also miss the violation in Figure 1 (i.e., a false negative). Also,
properties having time e.g., P3 cannot be handled by previous work
(e.g., [9, 11, 22, 23, 30, 37]). Other approaches [30, 31] model timed
behavior in apps, but only support untimed properties.
State: Apps can maintain state, which may be a discrete value
or time. For example, consider an app that tracks when the A/C
was last run and turns it off if it has run for 2 hours. Prior work
(SiFT [23], iRuler [37], AutoTap [40], Salus [22] and Menshen [8])
only consider stateless apps and cannot be trivially extended to
handle stateful apps. Soteria [9] and HomeGuard [11] do not model
time and hence can only handle discrete state.
Modeling Environment: Apps may have indirect inter-app inter-
actions when they run in the same environment. For example, in
Figure 6, when the water supply is shut, the sprinklers cannot be
run, causing a blocked action (Property P4). We cannot detect this
blocked action if we do not model the interaction between the water
supply and the sprinklers. To find environment related violations
(e.g., P 1.2), we need to model the interactions between devices (sen-
sors and actuators) and the environment. Existing techniques either
do not model these interactions [9, 11, 30, 31, 40] or only model
interactions between actuators and the environment [8, 22, 23, 37].
Programming Paradigm: Smart apps follow two programming
paradigms, Stateless- and Stateful-TAP (Section 2.1). The latter is
more expressive and enables complex automation e.g., Figure 4.
Most of the prior works ( [8, 22, 23, 37, 40] support stateless-TAP,
which cannot be trivially extended to stateful-TAP apps.

3 System Overview
In this section, we describe PSA (Figure 7) and highlight our design
challenges. PSA uses a model checking approach [12] to verify
whether a smart home deployment (set of apps deployed) satisfies
the specified safety intents. We envision PSA to be used offline by
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Figure 7: A high level overview of PSA.

the smart home vendor (e.g. SmartThings). The vendor will run the
analysis for all possible deployments (set of apps in a house).

PSA needs the source code of the apps like prior work [9, 11,
23, 30, 31]. Users can specify a set of device types as input to PSA.
Otherwise, PSA checks for all available device types. Device type is
a general category of devices such as A/C, heater, and not a specific
instance. PSA has a built-in library of safety intents (Section 2.2).
PSA outputs a counter-example in case of a violation, and a set of
safe configurations of user inputs for the apps. The smart home
vendor can then provide this list of safe configurations to the users
for their home deployments. The main components of PSA are:
• The parser converts an app into a formal model. In particular,
for an app 𝐴𝑖 of a smart home platform, a platform-specific
parser takes the source code of 𝐴𝑖 as input. It then generates
an ensemble of models 𝑀𝑖

1, 𝑀
𝑖
2, ..., 𝑀

𝑖
𝑛 . The number of models

depends on the number of event handlers, and asynchronous
APIs used in the app, as explained in Section 5.2.

• The model generator creates models for the devices and the envi-
ronment by looking at the app models, the safety intents, and
the metadata for the devices and the environment attributes.
It also creates interaction models to map device actions to the
environment, using the device-environment library (Section 6)
e.g., 𝐴/𝐶.𝑜𝑛() → 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒.𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔. For example, con-
sider the violation in Figure 6. The model generator creates the
device model for the water sensor. The environment model will
be for the environment attribute water with states on and off.
The interaction models will map the actions water_supply.off ()
and sprinkler .on() to the model for water. This interaction is
present in the device-environment library. Finally, the intent P4
checks if 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 .𝑜𝑛() is issued after water_supply.off ().

• The generated models are then fed to a model checker. In case
of a violation, the model checker outputs a counter-example
as a trace of dated events and actions. PSA also outputs a set
of configurations of input values that do not lead to an intent
violation. This set can aid users to safely configure the apps.

Given this overview, there are a few outstanding questions:
Modeling Abstraction: As motivated earlier (Section 2), we need
to model user inputs, timed behavior of apps, and their interaction
with the environment to detect violations accurately. Modeling
these entails trade-offs between the expressiveness of models, accu-
racy of verification, and performance. For example, we can model
time quantitatively or qualitatively. Similarly, user inputs can be
modeled by enumerating all values or by treating them as symbolic
states. We discuss our choices in Section 4.
App to Model Parsing: Naively translating the apps to our ab-
straction can affect the expressiveness and correctness of PSA. For
example, apps have synchronous and asynchronous functions, local
and global variables, built-in utilities, e.g., find, collect, etc., diverse
data types such as maps, lists, etc., scheduling and unscheduling of
actions. We discuss these challenges and our approach in Section 5.

thermostat_evt?

0 1 2

Sync AC_act
Sync thermostat_evt

Clock c := 0Discrete a
val

:= 1
Discrete t

val
:= 1 Parameter d

c < 60*d
c ≥ 60*d  AC_act! a

val
:=1

t
val

 < threshold  AC_act!
a

val
:=0 c:=0

Figure 8: PTA for the app shown in Figure 4

Practical Smart Home Modeling: Besides apps, modeling the
environment and devices is also challenging. For example, contin-
uous environment attributes such as temperature, humidity, can
significantly blow up the state space of models. Moreover, mod-
eling the effects of various device actions on the environment is
challenging as different devices can affect an environment attribute
differently. For example, an A/C.on() and a fan.on() action, both
affect temperature differently. We discuss this in Section 6.

4 Modeling Abstraction
Now we explain our choice of parameterized timed automata (PTA)
as the modeling abstraction to model the smart home components
such as smart apps, devices, environment, and intents.
Choosing the modeling abstraction: Our abstraction should al-
low us to model modern smart app features such as state, time,
and user inputs, and other components of the smart home, such as
devices. We looked at modeling options across three dimensions: 1)
Time, 2) Environment Attributes, and 3) User inputs (Appendix A).
We can model quantitative time either as discrete or continuous.
Modeling time as discrete values would enable using a simple FSM
abstraction. However, to achieve correctness we need to use suf-
ficiently small intervals for discretization, leading to a large state
space. On the other hand, modeling time as a continuous variable
using either a Timed Automata [4], Timed Petri-Nets [32] or using
Hybrid Automata [18] addresses this shortcoming.

While environment attributes are naturally continuous variables,
we observe that they generally have a narrow discrete range of
values in practice. For example, thermostat set-points are usually
set at integer values within a narrow range (e.g. 60F-80F), sound
and motion sensors usually produce a binary output indicating
presence, and carbon-monoxide (CO) sensors need to check CO
levels for particular thresholds. Therefore, we model environment
attributes using discrete instead of a continuous variable. This saves
us from state space explosion without compromising on accuracy.

We can model user inputs by either enumerating over all values
(enumeration), or treating user inputs as symbolic variables/pa-
rameters (parameterization). We adopt parameterization since an
app may have more than one user input leading to exponential
complexity in the possible combinations with enumeration.

The above modeling choices lead us to choose Parameterized
Timed Automata (PTA), where we model time as a continuous
variable and environment attributes as discrete, using the param-
eterized variant of Timed Automata (PTA) to handle user inputs.
Now we give a brief background on parameterized timed automata
(PTA) using the example of the app mentioned in Figure 4.
ParameterizedTimedAutomata:APTA extends a non-deterministic
FSM with a finite set of real-valued clock variables, integer-valued
discrete variables and unknown variables called parameters. A tran-
sition can be synchronized with other PTAs using synchronization
labels (sync). Figure 8 shows the PTA model for the app in Figure 4
with states (𝑆0, 𝑆1 and 𝑆2), a clock 𝑐 , discrete variables 𝑎𝑣𝑎𝑙 and 𝑡𝑣𝑎𝑙 ,
a parameter 𝑑 , and sync 𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡_𝑒𝑣𝑡 and 𝐴𝐶_𝑎𝑐𝑡 .
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A linear constraint over clocks, discrete variables, and param-
eters may guard a transition i.e., a transition can be taken only if
the guard is satisfied. For example, 𝑡𝑣𝑎𝑙 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 guards the
transition from 𝑆1 to 𝑆2. Clocks and discrete variables can be up-
dated along with a transition. A clock can be updated to a linear
combination over clocks, parameters, and discrete variables; a dis-
crete variable can be updated to a linear combination over discrete
variables. For example, from 𝑆1 to 𝑆2, 𝑐 is reset to 0 and 𝑎𝑣𝑎𝑙 is
updated to 0. A clock tracks the elapsed time since its last reset and
all the clocks evolve at the same rate. A state in a PTA may have an
invariant as a linear constraint over clocks, discrete variables, and
parameters e.g., the state 𝑆2 has the invariant 𝑐 < 60 ∗ 𝑑 . It means
that the PTA can stay at 𝑆2 for no longer than 60 ∗ 𝑑 time units.

To summarize, the PTA in Figure 8 starts at 𝑆0 and transitions
to 𝑆1 when the sync 𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡_𝑒𝑣𝑡 is received from the thermo-
stat model (not shown here). We use ? for a receiving sync (e.g.
𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡_𝑒𝑣𝑡 ), and ! for a sending sync (e.g., 𝐴𝐶_𝑎𝑐𝑡 ) . At 𝑆1, if
the guard is satisfied, it synchronizes with the A/C model on sync
𝐴𝐶_𝑎𝑐𝑡 and updates 𝑎𝑣𝑎𝑙 to 0 for an AC.off() action, and resets the
clock 𝑐 . The PTA waits for time 60∗𝑑 at 𝑆2, and then returning to 𝑆0
and updates 𝑎𝑣𝑎𝑙 to 1, while synchronizing with an A/Cmodel using
sync 𝐴𝐶_𝑎𝑐𝑡 . Multiple PTAs are usually needed to model a system.
Clocks, discrete variables, and parameters are shared among all
PTAs. Transitions with the same sync across PTAs can be taken
only if all the PTAs containing this sync can take the transition.

5 Modeling Smart Apps
As discussed in Section 3, naive parsing of apps into PTAs can cause
scalability, expressiveness, or correctness issues. In this section, we
first elaborate the main app features and then discuss the modeling
choices we considered and their trade-offs. Finally, we explain our
parsing algorithm to auto-generate PTA models from source code.

5.1 Features of Modern Smart Apps
We discuss some of the app features in Section 2.1. Table 2 shows
a more exhaustive list of features. SmartThings apps inherit basic
features (e.g., values (v), expressions (e) and control flow statements)
from its underlying programming language Groovy. Besides, these
apps also support domain-specific constructs.

First, a smart app can store and access values in a database
using the state.x, construct where x is a user-defined entry in the
database. For example, an app that counts the number of events can
use state.counter which is incremented when an event is received.
Apps use the state construct to store discrete or time values.

Second, a smart app can interact with devices by receiving events
or sending actions to them. It can also poll for the current state of a
device using currentState, e.g., reading the temperature value from
a thermostat TH using TH.currentState(“temperature”). In addition, a
smart app can get all events issued from a device dvc from a specific
time t using dvc.eventsSince(t), called device history polling.

Finally, smart apps offer an extensive set of constructs for timed
behavior. For example, an app can schedule actions using runIn(e,f)

(which calls function f at a time determined by the expression e) or
do things periodically using runEvery(e,f) (which repeatedly runs f

after some duration determined by e), schedule(e,f) (which runs f

everyday at the time determined by e). Similarly, an app can use
unschedule(f) to unschedule a previously scheduled execution of f.

Feature Example constructs
Basics values, expressions (e.g., a+b), if, while, s1;s2
Global state state.x
Device interaction event, action, currentState, eventsSince
Timed commands now, runIn, runEvery, schedule, unschedule

Table 2: Constructs of SmartThings apps

c ≥ 60d
AC_act!
aval:=1

tval < threshold
AC_act!

aval := 0 c := 0

thermostat_evt?

0

2 1

c < 60d

(a) Blocking

thermostat_evt?
scheduled = 0
runIn_func!

scheduled := 1

tval < threshold
AC_act!
aval := 0

0

2 1

runIn_func?
c := 0 c < 60d

c ≥ 60d
AC_act!
aval:=1

scheduled := 0

3 4

(b) Non-blocking
Figure 9: Two ways to model a runIn command

5.2 Modeling Challenges and Approach
Given the aforementioned app features, we discuss their modeling
challenges and our approach to addressing them.
Timed Commands: We can treat timed commands like regular
synchronous function calls. Figure 9a shows the model of the app
in Fig 4 using this approach. The PTA waits at 𝑆2 for 60∗𝑑 duration
before executing the action 𝐴𝐶.𝑜𝑛() and returns to the initial state.
The PTA is blocked at state 𝑆2 for 60 ∗ 𝑑 . But, the timed commands
in Table 2 are non-blocking. They schedule a function and return. A
scheduler in the smart home framework executes these functions
at the specified time. While a function is waiting to be executed,
another execution of the app may unschedule the function or update
any state which the scheduled function uses. Hence, we need to
model the timed commands in a non-blocking way.

A naive solution is to add a self-transition at 𝑆2 in Figure 9a that
receives 𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡_𝑒𝑣𝑡 . But we still cannot update state variables
or unschedule calls. Another solution is to add a True transition from
𝑆2 to 𝑆0, introducing non-determinism. Now a later app execution
can happen and update state and unschedule actions. But, if that
transition is taken, the scheduled action will not happen. Hence, we
create a separate PTA for each timed command shown in Figure 9b.
The PTA synchronizes with another PTA on 𝑟𝑢𝑛𝐼𝑛_𝑓 𝑢𝑛𝑐 sync at
𝑆2. The other PTA waits for time 60𝑑 at 𝑆3 and executes the action,
while the first PTA returns to 𝑆0. When a function is scheduled
multiple times by subsequent calls, PSA only model the execution
of the latest scheduled function, which is also done by SmartThings.
Note that modeling the earliest one is straightforward.
Device Interactions: To model app interactions with devices, we
use the PTA primitive sync, that allows apps models to synchronize
with devicemodels. For example, in Figure 9b, the sync 𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡_𝑒𝑣𝑡
synchronizes transition between thermostat model and the app
model. Besides events and actions, smart apps also poll the current
and past device states. We implement current device state polling
as reading the device value from its model. We discuss polling in
Section 6.2. Note that PSA can also model event polling as compared
to trigger-action. We do not model polling device history.
Global State:We model discrete-valued state using discrete vari-
ables e.g., a 𝑠𝑡𝑎𝑡𝑒.𝑐𝑜𝑢𝑛𝑡𝑒𝑟 variable that counts the total events re-
ceived. State variables are shared among the functions in an app,
while local variables are local to a particular function. PSA models
both using discrete variables. We append function identifiers to
local variables to differentiate them across functions.
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Figure 10: Measuring elapsed time using clocks.
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Figure 11: Illustration of parsing the example app for Figure 4

State variables also store time. Figure 10 shows a code snippet
that stores time, when themotion.active event is received. On receiv-
ing the contact.open event, it measures the elapsed time between the
two events. We can naively model it as we model discrete state, and
replace discrete variables with clocks. Hence, there will be a clock 𝑐1
for state.motion, and another clock 𝑐2 for the call to now(). At line 4,
the PTA will assign the value of 𝑐2 to 𝑐1 as 𝑐2 = 𝑐1. Then 𝑐1 will be
stopped at all states so that its value does not change. At line 7, the
PTA will do 𝑐2−𝑐1. But, having stop-watches in model significantly
increases verification time. Essentially, time-valued state variables
measure the elapsed time. Recall that in PTA, clocks also measure
the elapsed time since their last reset. Hence, we introduce a clock 𝑐
for state.motion, and reset it when we receive motion.active at 𝑆0 in
Figure 10. When contact.open event is received, the value of 𝑐 gives
the elapsed time since motion.active. We parse line 7 as 𝑐 > 3. This
approach results in less number of clocks and no stop-watches.
Unschedule: An unschedule(f) call requires removing function f

from the list of scheduled functions. PSA uses a flag variable to
track if unschedule has been called on a function f. If the flag is
true, the transition to the PTA of f is not taken.

We also provide primitives to capture other features such as
values, expressions, and conditionals, omitted here for brevity.
Unsupported APIs:We do not model polling past device states
(eventsSince) as there can be an indefinite number of past states.

5.3 Parsing Algorithm
Our parsing algorithm has two phases. In the first phase, we parse
the preferences section in the app code to get the names and types of
all user inputs. We also parse subscribe calls to generate a map from
events to handlers. We use this map to generate PTA in a bottom-up
fashion for each handler function in the second phase. We also do
taint analysis to create our model with minimum variables.
Example:We illustrate the parsing of the app in Figure 4. First, con-
sider the parsing of the runIn function (Figure 11a). The algorithm
first parses the expression 60*d. It generates a PTA (highlighted with
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Figure 12: PTAModel for a non-categorical environment attribute.
dotted lines) with one state for 60 which is parsed as a constant and
another state for 𝑑 which is parsed as a 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 (𝑝). The return
value of the PTA is 60𝑑 . For function call func, which contains an
AC.on() action, the generated PTA issues a sync𝐴𝐶_𝑎𝑐𝑡 and sets 𝑎𝑣𝑎𝑙
to 1 for 𝐴𝐶.𝑜𝑛() (highlighted in dashed lines). To finish the parsing
for runIn, the two PTAs are composed as shown in Figure 11a. The
algorithm adds a state 𝑟3 with invariant 𝑐𝑙 < 60𝑑 and adds a transi-
tion to 𝑓 𝑢𝑛𝑐 at 𝑓0 with guard 𝑐𝑙 >= 60𝑑 . To model runIn command
(5.2), we also add a sync to synchronize with the handler PTA.

Now, we consider the handler function, as shown in Figure 11b.
First, the algorithm parses the condition and the statements appear-
ing in the if statement. The parsing of the condition is highlighted
with dotted lines, and the first statement in if (AC.off()) is high-
lighted with dashed lines. The second statement which is the runIn

command is shown in the dotted-dashed line. We add 𝑟𝑢𝑛𝐼𝑛𝑓 𝑢𝑛𝑐 to
synchronize with the 𝑟𝑢𝑛𝐼𝑛 PTA. The variable 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 tracks if
𝑓 𝑢𝑛𝑐 has been scheduled before. This example executes the earliest
schedule. These PTA are later composed together to model the
handler function. Finally, our algorithm adds an initial state ℎ0 for
the handler, a transition from the final state 𝑟1 of the PTA for the
if statement, and a transition from ℎ0 to 𝑒 (the initial state of if)
with a sync thermostat_evt indicating the subscribed event.

6 Modeling Devices, Environment and Intents
In this section, we explain how we model the environment at-
tributes, devices, and safety properties.

6.1 Modeling Environment
The environment models: 1) trigger changes in sensor states, and 2)
react to app actions. We use the term environment events for triggers
that cause a state change in sensors, and environment effects for
changes in environment attributes that result from app actions
on the devices e.g., a heater.on() causes the temperature to rise.
Environment attributes can be categorical (e.g., motion can either be
present or absent) or non-categorical (e.g., temperature). Modeling
environment attributes as discrete pose the following challenges:
• State Space Explosion: Some environment attributes can blow up
the state-space. For example, an environment model for tem-
perature with a granularity of 1F. Multiple apps together, using
different environment attributes, exacerbate the problem.

• Modeling Environment Effects: Environment effects are challeng-
ing to model because actuator actions can affect each environ-
ment attribute differently, e.g. an A/C being turned on leads to a
more significant temperature decrease than a fan.

To handle the first challenge, prior work models the critical states
only [9, 23], which are the minimum and maximum values, or
other values used in the app e.g., if an app turns A/C on when the
temperature exceeds 76F, the temperature model will have three
states for minimum and maximum values and for 76F. The critical
states are not always obvious due to user-configurable inputs which
leads to inexpressive models. Another solution is to increase the
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Figure 13: PTA for environment sensor device.
granularity of discretization, e.g., a temperature model with a step
size of 5 will have states where temperature directly jumps from
60F to 65F. The larger the size of these steps, the less accurate the
results. In PSA, we use this approach with a step size of 5.

To handle the modeling of environment effects, we can precisely
model the effect of a device on the environment, e.g., if an A/C is
turned on for 1 min, it causes a 2F decrease in temperature. But, this
information is highly specific to the user’s house, device vendor, etc.
Another approach is to generalize the environment effects as either
increasing or decreasing for non-categorical environment attributes,
while for categorical attributes, there is an effect for each value e.g.,
present and absent for motion attribute. As a result, turning on the
A/C and fan, both will cause a decreasing effect on the temperature
model. PSA models environment effects using this approach, as we
observe that this approach is enough to yield useful results.
Environment Metadata: PSA generates environment attribute
models using this metadata. For a categorical attribute (e.g. motion),
we define its states(e.g., present and absent) in the file. For non-
categorical ones, we use domain knowledge to define their ranges
(e.g., 60F-80F for temperature) (Appendix B.1).
PTA of Environment Attributes: Figure 12 shows the PTA for a
non-categorical environment attribute. In the initial state 𝑆_0, the
attribute value 𝑒𝑣𝑎𝑙 can non-deterministically increase or decrease
by a fixed step. On each value change, it synchronizes with devices
that report on that environment attribute using sync (e.g., a thermo-
stat reports on temperature). The environment attribute model can
be influenced by the effects of increase or decrease. When increase
effect is received, the model transitions to 𝑆_1 where its value only
increases. We add an invariant to each state so that the attribute
value remains within [𝑚𝑖𝑛,𝑚𝑎𝑥]. This range is present in the envi-
ronment metadata file. For example, for app model in Figure 9b,
the action 𝐴𝐶_𝑎𝑐𝑡 affects the temperature model (Appendix B.5)
which will have temperature_evt as env_attr_evt in Fig 12.
Interaction Models: These map interactions of app actions on
environment attributes and sensor models. For example, an interac-
tion model will map𝐴𝐶_𝑎𝑐𝑡 sync with 𝑎𝑣𝑎𝑙 = 1 for app in Figure 11
with the temperature model using 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒_𝑑𝑒𝑐 sync (Appen-
dix B.4). PSA generates these models using the device-environment
library which maps devices actions to environment effects e.g.,
𝐴/𝐶.𝑜𝑛() → 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒.𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 (Appendix B.2). These ef-
fects are increasing or decreasing for non-categorical attributes, and
actual values for categorical attributes. We manually built the li-
brary by looking at the specification of smart home frameworks
and devices. It can easily be extended to interactions of new devices.

6.2 Modeling Devices
Devices in a smart home framework: 1) trigger apps that subscribe
to events from these devices, 2) react to changes in the environment
and app actions, 3) record the time when it changes its state, 4) sup-
port device state polling and triggered events. Our device models
must support all these. To model the devices, we first categorize
devices by surveying the smart home market and design separate
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Figure 14: Device conflict model

PTA model templates for each type of sensor device. We categorize
them as: 1) Environment sensor devices which are influenced by
the environment e.g., temperature sensor. 2) Actuator sensor de-
vices that are influenced by actuators either directly e.g., A/C as
sensor, or indirectly e.g., a contact sensor for a door. 3) Independent
sensor devices that are not influenced by environment attributes
or actuators, e.g., presence sensor. Environment sensor devices and
actuator sensor devices are modeled the same way.

Figure 13 shows the device model for environment sensor de-
vices. In the initial state 𝑆_0, the model synchronizes on the sync
env_attr_evt with the relevant environment attribute model e.g.,
a temperature sensor synchronizes with the temperature model
using temperature_evt. At 𝑆_1, which is an urgent state (equiva-
lent to having an invariant of 𝑐𝑙𝑜𝑐𝑘 ≤ 0), if the updated value of
𝑒𝑣𝑎𝑙 is not equal to current 𝑑𝑣𝑎𝑙 , it updates 𝑑𝑣𝑎𝑙 . It also triggers
the app models using the sync sensor_evt. For example, the tem-
perature sensor model will trigger apps that subscribe to it using
temperature_evt. When the sensor updates its value, it also resets
the clock 𝑑𝑐𝑙𝑘 , so that apps can use 𝑑𝑐𝑙𝑘 to get the time elapsed
since the sensor changed state. To poll device state, an app model
reads the value of the variable 𝑑𝑣𝑎𝑙 . The guard 𝑑𝑐𝑙𝑘 > 0 on the 𝑆0 to
𝑆1 transition ensures that the sensor does not have multiple values
in zero time. We show the thermostat model for app in Figure 4 in
Appendix B.5. PTA models for independent sensors (e.g., presence
sensor) non-deterministically keep switching states (e.g., presence
active or inactive) which we do not show here for brevity.
Device Metadata: This file is used to generate device models. The
file contains a list of device types as either environment sensor,
actuator sensor, or independent sensor (Appendix B.3). For the
environment/actuator sensor, we list the environment attributes/ac-
tuator devices that it reports on (e.g. temperature for temperature
sensor, door for a contact sensor). For the independent sensor, we
list its values (e.g., absent and present for presence sensor).

6.3 Modeling Intents
We use a well-known technique of using observers [5] to model
safety properties. These are effect-free PTA models; i.e., they do not
have any effect on the environment, sensor, and app models. The
observer contains a special bad state that has no outgoing transition
The verification then checks the reachability of this bad state. Now
we model P1 and P3 to illustrate how we model complex safety
properties as observers and show the rest in Appendix B.6, B.7.
Conflicting Actions: Consider two apps that issue actions 𝑎𝑑,1
and 𝑎𝑑,2 on device 𝑑 . The observer model for device conflicts is
shown in Figure 14. The model waits for 𝑎𝑑,1 or 𝑎𝑑,2 at 𝑆0, and then
measures the time between the next action. If the time is less than
𝑥 and the two actions on 𝑑 are conflicting, (checked by storing the
value of the first action in 𝑐𝑢𝑟_𝑣𝑎𝑙 and then comparing this value
against the device state 𝑠𝑑 when the second action happens), the
model reaches a bad state. This model can be extended to include
more actions from apps. Environment conflicts are also similar.



ICCPS ’22, May 4–6, 2022, Virtual Event, Italy Aqsa Kashaf, Vyas Sekar, and Yuvraj Agarwal

0 1
≤

? ?
:= 0

? := 0

?
=

or ? Sync
Syns
Clock c = 0
Discrete = 5

‘

‘

‘
‘

Figure 15: Observer model for Deadline Violation

Deadline Violation: Let 𝑎𝑑, be an action on device 𝑑 , and 𝑎𝑑′, be
an action on device 𝑑 ′, and let 𝑎𝑑, → 𝑎𝑑′, be a time bound action,
bounded by time duration 𝑥 . Figure 15 shows the observer model
for deadline violations, which transitions to a bad state if 𝑎𝑑′, does
not happen within time 𝑥 after receiving 𝑎𝑑,. This model can be
extended to more actions and environment attributes.

7 Implementation
Our prototype implementation of PSA for the SmartThings plat-
form has two main implementation components: the parser and
the model generator. We implement our parser using Groovy. Our
parser uses the abstract syntax tree (AST) of the app code for both
of its passes. The parser visits AST nodes at the compiler’s semantic
analysis phase, where the Groovy compiler performs consistency
and validity checks on the AST. Our implementation uses Groovy-
ClassVisitor to extract the entry points and the structure of the
analyzed app, and GroovyCodeVisitor to extract method calls and
expressions inside AST nodes. The parser outputs PTA in a JSON
format. Our model generator is written in Python. It takes the
output of the parser and generates the required environment and
device models. We use the IMITATOR PTA model checking tool [6]
for its maturity. We express our models for the apps, intents, and
environment interaction in the IMITATOR DSL.

8 Evaluation
We perform experiments on CloudLab nodes [16] with a 10-core
2.6GHz Intel E5-2660 processor and 160 GB of RAM. We use IMI-
TATOR version 2.12. Our dataset has 86 SmartThings apps [33]. To
build this dataset, we look at all the open source apps and exclude
those which do not perform actuation, are integration apps between
platforms (e.g. IFTTT and smartThings connect app), or if they use
unsupported APIs (Section 5). These apps use sensors such as hu-
midity, motion, water, temperature, illuminance, 𝐶𝑂2 and contact
sensors, and door locks and electricity meter. These apps actuate
on devices like door locks, cameras, vents, fans, lights, A/C, heater,
HVAC, thermostat, garage doors, and valves. Table 3 summarizes
the main features of these apps. These apps contain a mix of all app
APIs discussed in Section 5 and hence are representative.

Total Apps 86
Apps with User
Inputs

51 (59%)

Apps with Timed
APIs

37 (43%)

Apps with Device
Polling

33 (38%)

Stateful Apps 18 (21%)

Table 3: Summary of apps

Figure 16: Example of a device
conflict where a𝐶𝑂2 vent is turned
off when𝐶𝑂2 levels are high

8.1 Findings
We run PSA on 86 apps to detect violations mentioned in Section 2.2.
For conflicting actions, we run all apps in pairs, to see if they con-
flict with each other. We find 338 device conflicts (P 1.1), and 265

environment conflicts (P1.2). Around 95% of our device conflicts in-
volve devices such as lights, A/C, and heater. Our indirect conflicts
involve environment attributes such as temperature and humidity.
We find 18 co-occurrence violations (P2), 8 deadline violations (P3),
4 blocked actions (P4) and 7 invalid action sequences (P5). Table 4a
summarizes our results with some examples. Of the total violations,
23% can be avoided with safe input configurations e.g., the second
example for P5 in Table 4a. Some of the violations we find are par-
ticularly dangerous. For example, Figure 16 shows a device conflict
between the co2-vent and the energy-saver apps. The vent fan is
turned on when the 𝐶𝑂2 level is too high. The energy saver app
turns it off because the energy consumption crosses a threshold.
Ground Truth: To get ground truth for violations, we emulate the
apps in SmartThings. For each violation that PSA finds, it outputs
a trace in the form of a tree, where if the leaf node is a violation,
we extract the path from root to that leaf node. This path gives us
a series of events and time values that resulted in the violation. We
use this sequence of dated events, and play them in SmartThings to
reproduce the violation. SmartThings allows users to define virtual
devices that are controlled by programmable device handlers. To
feed event sequences output by PSA to real apps in this virtualized
environment, we write scripts to generate custom device handlers.
These device handlers generate fake events as specified by the PSA
output. We compare the log trace of SmartThings with PSA to
obtain ground truth. We also test for false negatives (Section 8.3).
However, testing for all possible scenarios is very hard in case of
no violation, specially because of configurable user inputs.

8.2 Comparison with baselines
In Section 2, we argue that not modeling the stateful and timed
behavior of apps can lead to false positives and false negatives.
Now, we quantitatively compare PSA against two baselines. The
first baseline does not model state and models timed events but
not duration in apps (B1). The second baseline models discrete
state but not time in apps (B2). Both of these do not model indi-
rect environment-device interactions such as heater on action will
increase temperature, causing thermostat reading to rise. B1 repre-
sents SiFT [23], and B2 represents Soteria [9]. Since prior efforts
do not directly apply to our specific setting, these baselines are
approximations of prior work. Table 4b summarizes our results.

As discussed before, PSA outputs a set of safe configurations.
We separately verify PSA output (Section 8.3) for correctness. For
testing against the baselines, we use pre-configured apps. To con-
figure an app for a property, we pick an input value from the set of
safe configurations output by PSA and one value from unsafe con-
figurations. For cases where no safe configurations exist, we pick
a random value to configure that app. This approach allows us to
identify false positives and false negatives. We get the ground truth
by using the same approach we described in Section 8.1. Except
here for non-violations, we play the apps with the chosen configu-
ration to see if the violation happens. We define false positives (for
a given app configuration) when the violation does not exist but the
verification tool outputs a violation. A false negative is when the
verification tool returns no violations, when in fact one does exist.
Table 4b highlights the false positive (FPR) and false negative (FNR)
rate for B1, B2 and PSA for all the 86 apps. The last column high-
lights if we can reproduce the violation using the counter-example
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Prop. Total Examples Apps involved in Example

P1.1 338 (ii)𝐶𝑂2 vent is turned off when𝐶𝑂2 levels are too high co2-vent, energy-saver
(iii) Door is locked and unlocked at the same time unlock-it-when-I-arrive, lock-it

P1.2 265 (i) Vent fans to dehumidify, and humidifier are on auto-humidity-vent, humidifier
(ii) A/C and heater are turned on at the same time turn-it-on-when-im-here, Its-too-cold

P2 18 (i) Lights and A/C are turned on when there is no one in the house my-light-toggle, turn-off-with-motion
(ii) Heater, thermostat, etc., are turned off when the user is at home switch-changes-mode, keep-me-cozy

P3 8
(i) Door remains unlocked for more than 5 min unlock-when-I-arrive
(ii) Lights are not turned off within 10 min of no motion light-up-the-night

P4 4
(i) Water sprinklers cannot turn on because the water supply is off close-the-valve, sprayer-controller
(iii) Thermostat set-points cannot be set because thermostat is off keep-me-cozy, thermostat-auto-off

P5 7
(i) Too many same notifications sent to the user very close in time text-me-when
(ii) Lights are turned on and off frequently causing a strobing effect the-flasher

(a)

Prop. BL FPR FNR CE

P1.1 B1 0.35 0 0.19
B2 0.27 0 0.39

P1.2 B1 0.21 0 0.22
B2 0.16 0 0.41

P2 B1 0.11 0 0.28
B2 0.6 0 0.45

P3-5 B1 0 1 0
B2 0 1 0

PSA 0 0 1

(b)

Table 4: Summary of our findings in 4a. Comparison with baselines in 4b (Prop. = property, BL = baseline, CE = counter-example)

provided by the tool. For P1 and P2, PSA reduces false positives
by up to 35%. In cases, where we drop state and timed behavior
of apps, the counter-examples also lacks that information, which
makes it hard to reproduce that violation in B1 and B2. Properties
P3 and P5 cannot be verified without modeling time. Hence, a 100%
false-negative rate depicts that tools representative of B1 and B2
cannot find any such violation. For property P4, both B1, and B2
cannot find any violation that PSA finds because they do not model
indirect environment interactions (e.g. by turning the thermostat
off, setting heating setpoint will not have any effect).

8.3 Validating PSA

We use a multi-pronged validation approach as discussed below.
Test Apps: To check the correctness of PSA for false negatives, we
create a representative set of test apps that cover all APIs of Smart-
Things (Table 2). For each test app𝐴, we generate𝐴′ such that it has
the same logical structure, but its output(device action) is opposite
to that of A such that they result in a device conflict (Appendix C.1).
We find that PSA successfully points out all conflicts.
Real Apps: To check for false positives, we consider all violations
output by PSA for device conflicts. For each violation, we randomly
sample 10 paths in the analysis trace that lead to a violation. We
replicate them in our SmartThings virtualized environment. If we
observe the violation, we declare it as a true positive, else mark it
as a false positive. We did not find any false positives. To test for
false negatives, we input a random sample of 100 app pairs to PSA,
and check for violations. In case of no violation, we generate 50
random event sequences of length 10 with an arbitrary duration (0s
to 1000s) between each event to trigger apps. We run these random
event sequences in our virtualized smart home environment to
check if we find a violation (Appendix C.2). We did not find any
false negatives. We understand that this testing methodology is by
no means exhaustive. Testing for all possible scenarios is very hard,
specially because of configurable user inputs. Hence, we randomly
pick samples and test on those to get some confidence on our results.
Correctness ofModels: To evaluate the correctness of models, we
feed an event sequence to real apps in the virtualized environment,
and compare the logs to the output trace of PTA models (Appen-
dix C.3). For each app, we generate 50 event sequences of length
10. We introduce arbitrary (0s to 1000s) duration between events.
If the output trace of the models is the same as SmartThings logs,
then our app model is consistent with the app. We find that app
models generated by PSA are consistent with real apps.

(a) (b)
Figure 17: Time to verify a given deployment size for P1 (a). Vari-
ation in verification time across apps for P1.1 and P1.2 (b).

8.4 Performance of PSA
We denote the number of apps in a smart home as the “deploy-
ment size”. Then, from our 86 smartThings app dataset, we sample
100 combinations at random for a given deployment size (n=2 to
n=8) and report the time to verify these apps for a given violation
as shown in Figure 17a. The time for the analysis to complete in-
creases exponentially with an increase in deployment size. The
significant variations in the box plot highlight the varying com-
plexity of real apps. For a given deployment size, if the random
set generated involves less complex apps, the time for analysis is
also small. Figure 17b shows how the computation time varies for
a fixed deployment size. If an app has too many event handlers,
timed APIs, user inputs, then the analysis will take a lot of time.

9 Related Work
We discussed the key prior work [9, 14, 23, 28, 31] in Section 2.
Here, we discuss other related efforts.
IoT Security: Many existing works formally analyzing IoT de-
vices [2, 27] but do not model application behaviors and environ-
ment interactions. Croft et al., looks at control programs such
as home automation and SDNs and models them as timed au-
tomata [13]. It does not model the interaction between devices,
environment and apps, and does not handle user-configuration.
Similarly, Alhanahnah et al., models app interactions in a smart
home but skips state and time in apps [1]. Many prior works also
focus on run-time conflict detection and resolution [15, 17, 24, 25],
and static conflict detection [29, 36] which assume stateless-TAP
rules. Our work considers a broader class of violations than these
for complex stateful-TAP apps. DepSys [28] also finds conflicts in
apps at static time, but it requires the developers to define the trig-
gers and actions of the app in a metadata file, and does not model
app behavior. IoTGuard [10] and Wang et al., [38] instrument apps
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to check for safety properties at run time, which is complementary
to our work. IoTMon [14] marks smart home apps’ interaction as
risky or safe, by looking at their triggers and actions. It does not
model the internal app behavior and cannot reason about viola-
tions that PSA finds. Similarly, Helion [26] uses statistical language
modeling to generate home scenarios to automatically define safety
intents. This work is complementary to PSA.
CPS and Verification: Using timed automata (TA) to model cyber-
physical systems is not new. Kumar et al. [21] models industrial
automation systems using TA. Sun et al., uses TA to formally verify
an aerial video tracking system [35]. Croft et al. use it to formally
verify control systems [13]. We build on this work and make it
practically useful for modeling smart home apps.

10 Discussion and Conclusion
The interaction of apps in smart homes can cause safety violations.
We are not the first to identify this issue; however, we note that prior
efforts have key expressiveness issues in tackling the timed, stateful,
and parameterized behavior of apps and their complex interactions.
To overcome these limitations, we design PSA which uses PTA to
model a smart home. We evaluate PSA on 86 SmartThings apps. We
compare PSA against two baselines. We find 19 previously missed
intent violations and have 35% fewer false positives. We discuss the
limitations and future directions for PSA below:
Intents Library: Our Intents library can be extended by the com-
munity or the smart home vendor. Prior works like Helion [26] can
also be used to auto-generate intents based on home data.
Risky vs. Benign violations: Some violations discovered by PSA
maybe benign. To screen violations, there is complementarywork [14]
which try to categorize app interactions as risky or not.
Scalability: As we envision PSA to be used offline by the smart
home vendor, the high verification time should not be a problem.
In the future, we intend to prune our models by removing the app
interactions irrelevant to the property using taint analysis. We are
also looking at parallel verification approaches [6] for PTA.
Need for Source Code: Similar to prior work [9, 31], PSA requires
app code which is reasonable if vendor deployed. However, we can
use blackbox modeling techniques to infer app behavior ( [14]).
Such models will be noisy but they do not require source code.
Usability: We plan to conduct user studies to improve the output
of PSA so that non-expert users can understand and take action.
EnvironmentModels:Discretemodeling of environment attributes
requires no manual effort in PSA. However, PSA requires a domain
expert to define more complex environment models.
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A Modeling Choices
The Table 5 summarizes our modeling choices across three dimen-
sions: 1) Time, 2) User Inputs, 3) Environment Attributes.

Environment User Input
Time Discrete Continuous

Discrete Enumeration FSM Timed Automata [4], Timed
PetriNets [32]

Parameterization Symbolic
Automata

Parameterized Timed Au-
tomata [4], Parameterized
Timed PetriNets [32]

Continuous Enumeration - Hybrid Automata (HA) [18]
Parameterization - Parameterized HA [4]

Table 5: Choices for modeling abstractions for smart home

B Smart Home Modeling
We give details regarding our smart home modeling. We first pro-
vide example of environment metadata in Appendix B.1, device
environment library in Appendix B.2, and device metadata in Ap-
pendix B.3. Then, we give example of an interaction model in Ap-
pendix B.4. We also give a high-level picture of how all the models
interact in Appendix B.5. Finally, we show the PTA models for
properties P4 and P2 in Appendix B.6 and B.7.

B.1 Environment Metadata
Examples of a few entries in the environment metadata is shown
in Table 6. For categorical environment attributes e.g., motion, we
also list their states.

Table 6: Environment Metadata
Environment Attributes States

Carbon Monoxide clear, detected, tested
Carbon Monoxide number
Motion present, absent
Smoke clear, detected, tested
Sound detected, clear
Temperature number
Air Quality number
Illuminance dark, light
Illuminance number
Energy Usage number
Dust present, absent

B.2 Device-Environment Library
We give examples of a few entries in the device environment library
in Table 7. For each device type and an action, the library lists
environment effects for the attributes that it affects.

B.3 Device Metadata
We give examples of a few entries in the device metadata. For each
sensor device, we list its type. In case of an independent sensor
device, we list its states. In case of device and environment sensor
devices, we report the device/environment attribute it reports on.

B.4 Interaction Model
Figure 18 shows the interaction model that maps the actions of A/C
on the temperature environment model using temperature effects
of 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒_𝑖𝑛𝑐 and 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒_𝑑𝑒𝑐 .

Table 7: Device-Environment Library Example
Device Type Action Effect

Door open contact.open
Door close contact.close
Alarm ring sound.detected
Light on illuminance.increasing
Light off illuminance.decreasing
AC on temperature.decreasing
AC off temperature.increasing
TV on power.increasing
TV on sound.detected

Device Type Details

Presence Sensor Independent detected, not detected
Contact Sensor Device Door
Motion Sensor Environment motion
Shock Sensor Independent present, absent
Smoke Detector Environment smoke
Sound Sensor Environment sound
Heater Device heater
Water Sensor Environment water
Valve Device Valve
Dust Sensor Environment Dust
Illuminance Measurement Environment illuminance
AC Device AC

Table 8: Device Metadata Examples

𝑆0 𝑈 , 𝑆1

AC_act?

𝑎𝑣𝑎𝑙 = 0
temperature_inc!

𝑎𝑣𝑎𝑙 = 1
temperature_dec!

Init:
Sync AC_act
Discrete 𝑎𝑣𝑎𝑙
Sync temperature_inc
Sync temperature_dec

Figure 18: Interaction model that maps actions of A/C on temper-
ature model.

B.5 Interaction between all models
We illustrate how all the models interact with each other in Fig-
ure 19. The temperature model synchronizes with the thermostat
model using 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒_𝑒𝑣𝑡 . If the temperature value 𝑒𝑣𝑎𝑙 has
changed, the thermostat model synchronizes with the app model
using 𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡_𝑒𝑣𝑡 . The app issues an 𝐴𝐶_𝑎𝑐𝑡 which is synchro-
nized with the interaction model, and the device conflict model. The
interaction model then issues temperature effects 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒_𝑖𝑛𝑐
or 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒_𝑑𝑒𝑐 depending on the AC state 𝑎𝑣𝑎𝑙 .

B.6 Blocked Action Violation
Consider 𝑎𝑑, be an action on device 𝑑 , and 𝑎𝑑′, be an action on
device 𝑑 ′. The observer model to check if 𝑎𝑑, blocks 𝑎𝑑′, is shown
in Figure 20. The model transitions to 𝑆1 when 𝑎𝑑, is received, and
then it transitions to the state𝑔𝑜𝑜𝑑 if 𝑎𝑑′, is received. Then we check
the reachability of the 𝑔𝑜𝑜𝑑 state, indicating that 𝑎𝑑′, is not blocked
by 𝑎𝑑,.Note that in addition to checking if 𝑎𝑑′, can happen after 𝑎𝑑,,
we also need to check if 𝑎𝑑′, can happen at all. This will require
another model which transitions to 𝑔𝑜𝑜𝑑 state if 𝑎𝑑′, happens.
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Figure 19: High level interaction between allmodels illustrated for the app in example 4. The temperaturemodel synchronizes
with the thermostat model using 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒_𝑒𝑣𝑡 . If the temperature value 𝑒𝑣𝑎𝑙 has changed, the thermostat model synchro-
nizes with the appmodel using 𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡_𝑒𝑣𝑡 . The app issues an𝐴𝐶_𝑎𝑐𝑡 which is synchronizedwith the interactionmodel, and
the device conflictmodel. The interactionmodel then issues temperature effects 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒_𝑖𝑛𝑐 or 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒_𝑑𝑒𝑐 depending
on the AC state 𝑎𝑣𝑎𝑙 .

𝑆0 𝑆1 𝑔𝑜𝑜𝑑

𝑎𝑑′,?

𝑎𝑑,?

𝑎𝑑,?

𝑎𝑑′,?

𝑎𝑑, or 𝑎𝑑′,?

Init:
Sync 𝑎𝑑,
Syns 𝑎𝑑′,

Figure 20: Observer model for Blocked Actions

B.7 Co-occurrence Violation Model
To implement Co-occurrence violation 2 in PSA, the observer model
listens for device events, to see if the required actions happen to-
gether. For instance, to check 𝑠𝑚𝑜𝑘𝑒_𝑠𝑒𝑛𝑠𝑜𝑟 .𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 → 𝑎𝑙𝑎𝑟𝑚.𝑜𝑛(),
the observer model listens for smoke sensor events, and if the value
is detected, then it checks if 𝑎𝑙𝑎𝑟𝑚.𝑜𝑛() action is issued. Let 𝑒𝑣𝑡𝑑
denotes an event from device 𝑑 , and 𝑠𝑑 denotes the device state,
then observer model to detect that action 𝑎𝑑′, happens when the
device state 𝑠𝑑 of device 𝑑 is equal to 𝑦 is given in Figure 21

𝑆0 𝑆1

𝑐 ≤ 1

𝑏𝑎𝑑

𝑎𝑑′,?
𝑒𝑣𝑡𝑑 ?
𝑠𝑑 = 𝑦

𝑐 := 0?

𝑎𝑑′,?

𝑐 = 1?

𝑎𝑑′,? Init:
Sync 𝑎𝑑,
Sync 𝑒𝑣𝑡𝑑
Syns 𝑎𝑑′,
Clock c = 0
Discrete 𝑦

Figure 21: Observer model for Co-occurrence violation

C Testing
Now we illustrate how we validate PSA for correctness.

C.1 Testing using Test Apps
Figure 22 shows the methodology for checking false negatives in
PSA using test app pairs which are logically equivalent but perform
the opposite device action leading to a conflict.

Figure 22: Testing methodology for checking if PSA has any false
negatives using app pairs for which we know the ground truth.

C.2 Testing using Real Apps
Methodology for checking the correctness of PSA output is shown
in Figure 23. In case of a violation, we play the counter-example
in the SmartThings virtualized environment and compare the logs
with PSA output. In case of no violation, we generate random event
sequences and emulate in SmartThings to reproduce the violation.

Figure 23: Checking the correctness of PSA output.

C.3 Correctness of Models
We illustrate our methodology to check for the correctness of our
generated PTA models for the apps in Figure 24. For each app, we
feed random event sequences to the PTA model of the app, and play
the same event sequences in SmartThings to trigger the app. Then
we compare the SmartThings logs with the PSA analysis trace.

Figure 24: Checking the correctness of PTA models.
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