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Many smartphone apps collect potentially sensitive personal data and send it to cloud servers. However, most mobile users
have a poor understanding of why their data is being collected. We present MobiPurpose, a novel technique that can take
a network request made by an Android app and then classify the data collection purposes, as one step towards making it
possible to explain to non-experts the data disclosure contexts. Our purpose inference works by leveraging two observations:
1) developer naming conventions (e.g., URL paths) often offer hints as to data collection purposes, and 2) external knowledge,
such as app metadata and information about the domain name, are meaningful cues that can be used to infer the behavior of
different traffic requests. MobiPurpose parses each traffic request body into key-value pairs, and infers the data type and data
collection purpose of each key-value pair using a combination of supervised learning and text pattern bootstrapping. We
evaluated MobiPurpose’s effectiveness using a dataset cross-labeled by ten human experts. Our results show that MobiPurpose
can predict the data collection purpose with an average precision of 84% (among 19 unique categories).
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Fig. 1. Android and iOS ask developers to offer explanations about why an app is accessing sensitive user data by way of a
purpose string or a “usage description”. However, these purpose strings are only shown at the user interface layer, and can be
arbitrary text. There is no easy way to verify if the purpose strings are accurate. Furthermore, these purpose strings are a
relatively recent addition to Android and iOS, and are not yet widely adopted.

1 INTRODUCTION
A major privacy concern of mobile apps is that they can potentially access a great deal of sensitive personal
information [2, 30]. Here, we focus on one dimension of mobile privacy, namely the point when sensitive data
leaves the device and is sent to remote servers over the network. Many privacy researchers have adopted this
network perspective, studying the raw attributes of privacy-sensitive mobile data sharing [34, 61, 65, 66, 77, 78],
namely which app is sharing data, what data is being shared, and where that data is going.
Currently, though, there is little research looking into why an app is requesting access to sensitive data (we

also refer to this as the purpose of data collection). “Why” is a fundamental component of contextual definitions
of privacy [48, 54]. For example, users might be more willing to provide their locations to make search results
more relevant, but less for targeted advertising. Past work has also found that surfacing what data an app is using
without explaining why can raise privacy concerns [43, 48, 70]. For example, Lin et al. [43] found that when
end-users were told that the Dictionary app accessed their location, they were very concerned about privacy.
However, when told that location data was only used to search for trending words that people nearby are looking
up, they felt much less concerned. As another example, Brush et al. [7] found that people were very willing to
share their location data to help cities plan bus routes or to get traffic information, but reluctant to share the
same data for ads or for maps showing one’s travel patterns.
A major challenge here is that end-users currently have little support for understanding the purpose of data

use in smartphone apps [26, 43]. Android and iOS now offer the capability to explain why an app is accessing
sensitive user data by way of a purpose string or a “usage description” [18]. Figure 1 illustrates two example
app permission modal dialog boxes, which depicts that Camera/Uber (who) is requesting location (what) to tag
photos or locate passengers (why). However, these purpose strings are only shown at the user interface layer,
and can be arbitrary text. There is no easy way to verify if the purpose strings are accurate. Furthermore, these
purpose strings are a relatively recent addition to Android and iOS, and are not yet widely adopted [68].

There has been some past work looking at how to infer purposes, for example based on static text analysis of
executables [71] or by considering the libraries used by the app [11, 36]. Instead, we look at a new approach for
inferring purpose, namely based on network traffic, since looking at data egress provides a better vantage point
in understanding the specific data that is flowing out of the phone.

In this paper, we present MobiPurpose, a novel technique to automate the inference of mobile traffic purposes.
MobiPurpose takes a network request made by a smartphone app and classifies the purposes of each of the
key-value pairs, to help explain to non-experts why their data is being collected.

MobiPurpose is designed to run on in-lab devices instead of end-users’ smartphones. We built tools to automate
downloading and installing apps onto a smartphone, interacting with those apps using an Android Monkey
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Tra�c request snapshot

source app: 

     com.inkcreature.predatorfree

connect to host:

    inkcreature.com

server path:

    /_predatorServer/

key-value pairs in request body:

  myLat: 40.4435877

  myLon: -79.9452883

  ....

“lat” and “lon” are common key words for

location data, 40 and -79 are legit geo-values

Data type classi�er

source app feature: 
   predator is an o!ender registry search app 

textual feature: 
   the app sends data to its own server 

domain feature: 
   - company business type from Crunchbase

    - decompile large scale app "les to 

 mine the domain references

taxonomy lookup to get 

the purpose candidates

search nearby

location-based customization

transportation information

recording

map/navigation

geosocial networking

geotagging

location spoo"ng

alert and remind

location-based game

reverse geocoding

advertising

analytics

supervised 

learning

purposes candidatesprobability

0.72

0.2

0.03

0.02

0.02

0.01

0

0

0

0

0

0

0

①

②

③
④

⑤
⑥

Fig. 2. Overview of MobiPurpose’s workflow (running on in-lab devices). Numbers indicate the order of the methodological
steps. (1) MobiPurpose uses a UI automation tool to simulate user interaction with an app, allowing us to navigate an app and
generate network traffic. (2) MobiPurpose uses a VPN that acts as a Man-in-the-middle (MITM), intercepting all outgoing
traffic requests from a smartphone and parsing the body of requests into key-value pairs. (3) A bootstrapping algorithm
automatically classifies each key-value pair data type based on the textual patterns. (4) Based on the identified data type, we
find associated purpose candidates through a taxonomy lookup. (5) Based on internal and external features extracted from
the traffic snapshot, (6) we use a supervised machine learning model to predict the data collection purpose.

Script [67], and capturing synthetic network data from in-lab devices. We assume that the network service API
collects nearly the same types of data from different devices. While we are intercepting data using in-lab devices,
the learned knowledge can be transferred to real users as well. MobiPurpose is a key step towards our broader
goal of offering a public, large-scale database (similar to PrivacyGrade [36]) that can show not only what data is
being collected by different services around the world via smartphone apps, but also help explain why. This will
allow us to analyze the privacy practice in mobile apps as well as API service providers in an unprecedented way.

1.1 MobiPurpose: Inferring the Purposes of Network Traffic in Mobile Apps
MobiPurpose uses a VPN approach to intercept all outgoing traffic requests and parses the HTTP(S) request
body into KV pairs (see Fig. 2 2 ). HTTP(S) is considered the most common protocol in smartphone-server
communication [25] and recent studies show that more than 80% of apps have structured responses [66]. Using a
combination of supervised machine learning and natural language processing (NLP) techniques, MobiPurpose
inspects the data disclosure context of each KV pair. Figure 2 illustrates an example of MobiPurpose inferring the
data type of "myLat:40.44; myLon:-79.94" as LOCATION and the corresponding purpose as “search nearby”.

At the core of MobiPurpose is our purpose taxonomy (§2), in which we enumerate the potential data collection
purposes for each data type explicitly (See the complete taxonomy in Appendix §A). That is, rather than having
to generate text describing the purpose, our goal is to instead select the appropriate purpose from this taxonomy.
Given any traffic request, we first infer what data types are involved using a bootstrapping NLP approach (§3),
and then find the associated purpose candidates through a taxonomy lookup. Then, we use a supervised machine
learning approach to predict the data collection purposes (§4).

Our machine learning approach emulates how reverse engineering experts [16, 56] use various cues in network
traffic (e.g., variable names, the URL path, etc.) to infer API details (e.g., data types, data collection purposes). We
first observed a group of experts examine a large set of network traffic requests and label data types and purposes
(§6), and then asked the participants to describe their reasoning processes (§4). Based on these observations, we
propose a set of computational features (§4) to model these data patterns by leveraging two intuitive facts:
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• Developer naming conventions often make identifiers self-explainable, in both KV pairs and URLs. For
example, a KV pair "userAdvertisingId : 901e3310-3a26-487e-83c7-2fa26ac2786c" is likely a unique ID, because
the keyname contains keywords such as “advertising” and “id”, and the value is a machine generated UUID.
As another example, a network request connecting to reports.crashlytics.com is likely for crash reports
generation, since the domain is a neologism of “crash” and “analytics”, and the subdomain is “reports”. We
also discuss potential obfuscations in §9.3.
• External knowledge, such as the app description and the domain owner, can be meaningful cues to infer
the data collection purpose [43]. For example, suppose we have a game app that sends location data to
admob.com. Since AdMob is a mobile advertising company, we can infer that the location data is probably
used to tailor what advertisements to show based on the user’s location.

We used automated tests to scale the traffic data collection. We developed a test harness1 that can install apps on
an Android device and then explore those apps using an interface automation monkey [67] that randomly clicks
on UI elements. Over 50 days, we used 8 Android devices to collect data on 15k apps, each running the monkey for
3 minutes, and intercepted 2 million unique traffic requests (§5). We then sampled 1059 traffic requests and had 10
human experts manually label the behavior of each traffic request using our What&Why Taxonomy. Since data
collection purposes can be subjective and ambiguous, we collected 3 independent labels for each traffic request.
We used the labeled data to evaluate our data type inference algorithm and train a purpose classifier. In our

experiments, we found that MobiPurpose achieved an average precision of 95% in predicting “what” (among 8
unique data type categories) and 84% in predicting “why” (among 19 unique purpose categories).

As noted earlier, our approach is intended to replicate what developers already do when attempting to reverse
engineer APIs, so our method does not account for things like deliberate obfuscation of variable names or server
names (See §9.3), or account for additional hidden purposes of how the data is used once it is on a remote server.
However, we believe that MobiPurpose can be an effective starting point in improving the transparency of the
smartphone app ecosystem, by mapping out what data is being shared with why it is being collected.

1.2 Contributions
Our contributions lie in the technical implementation of purpose inference. MobiPurpose is the first work to
address automatic mobile network purpose inference. To achieve that, we first make the machine inference
feasible by turning the purpose description generation task into a classification task. We then propose practical
computational methods to emulate how reverse engineering experts use various cues in network traffic (e.g.,
variable names, the URL path, etc.) to infer data collection purposes. Our specific contributions are as follows:
• We present the design and implementation of the first system that can automatically categorize data
collection purposes of sensitive data in mobile network traffic. To achieve this, we developed an extensible
taxonomy of purposes, and turned the purpose description generation task into a classification task.
• We propose a set of practical computational features and patterns for inferring purposes. We investigate
the effectiveness of different kinds of features, showing that text-based features and domain features offer
high gains, while source app features offer marginal improvements.
• We evaluate our framework using a human-labeled data set of 1059 labeled instances of network data from
815 different apps, which contact 636 distinct domains. We found that MobiPurpose can achieve an average
accuracy of 95% for data type inference and 84% for data purpose inference.

The remainder of this paper is organized as follows. The system design of MobiPurpose is discussed in §2-4. We
present our experiment and evaluation in §5-7, followed by a discussion of the related work in §8. We conclude
with the limitations and design decisions of our system in §9-11.

1 Open sourced at https://github.com/CMUChimpsLab/MobiPurpose
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2 BUILDING A PURPOSE TAXONOMY
This section describes the design and development of our purpose taxonomy, which turns the purpose description
generation task into a classification task. We present the full taxonomy in the Appendix (§A). The goal of this
taxonomy is to offer a collection of purposes that is comprehensive (covers the vast majority of use cases of
sensitive data), have a meaningful granularity (a given purpose should not be too narrow in only characterizing
very few apps, nor too broad), and understandable (developers and end-users can understand each purpose with
minimal explanation). Below, we describe our process for developing this taxonomy of purposes.

2.1 Existing Purpose Taxonomies
We first conducted a broad survey of existing purpose taxonomies (Table 1 enumerates a partial list). We found
that two distinct types of purposes were used mixedly in the past work. Some of the purposes are proposed to
describe the specific context explicitly (e.g., nearby search, map navigation), while the rest are more general (e.g.,
legitimate, primary).

Our goal is not to argue if the privacy-sensitive data disclosure is legitimate. Instead, we want to communicate
to non-experts the data collection contexts and help them understand what they should expect. So we opted
to focus on purposes that better characterize the functionality, e.g. advertising, SNS, etc, but exclude purposes
such as “primary” [29], “internal use” [44], “legitimate” [24], or “core functionality” [70]. We discuss the detailed
rationale behind that choice in §10.2.
Table 1. A partial list of employed purposes in past work and MobiPurpose. MobiPurpose taxonomy does not capture if a
data disclosure is legitimate or malicious. Rather, the goal is to characterize the traffic requests and explain why and how
they can cause trouble potentially.

Data collection purposes (Why)
Lin et al. [44] utility, advertising, UI customization, content host, game, SNS, analytics, payment, internal use

Wang et al. [71] 10 fine-grained purposes (e.g. search nearby places, map/navigation) for two permissions
(location, contact list)

Han et al. [29] primary, advertising, content server, analytics, API, don’t know
TaintDroid [24] legitimate or non-legitimate
Kleek et al. [70] core/non-core functionality, marketing
Martin et al. [48] game, weather, social networking, navigation, music, finance, shopping, productivity
MobiPurpose 76 fine-grained purposes (e.g., ad, analytic) for 16 data types (e.g., device info, tracking ID)

2.2 Methodology
We iteratively developed our taxonomy by examining a large number of smartphone apps, in terms of the sensitive
data they used (Android permissions) and network traffic behaviors.
Permission access. Android classifies all permissions into three protection levels: normal, signature, dangerous.

Requesting the 9 "dangerous" permissions require users’ explicit consent [20]. We indexed Android apps (see
dataset description in §5) based on their required permissions, and sampled 100 apps for each "dangerous"
permission, resulting in a total of 900 apps. We then printed the app name, app description, and permission on
900 index cards, which would be used for the later card sorting session.
Network traffic. We installed 20 most popular free apps across all categories on two smartphones and then

actively used each app for 3 minutes, with the goal of invoking major pieces of functionality in these apps. We
used a MITM (man-in-the-middle) VPN app [8] to intercept 5504 unique HTTP(S) traffic requests connecting
to 321 unique domains. We then sampled 400 of these traffic requests, each contacting a unique URL (domain +
path). We printed the destination host name, app name, app description, and data body on 400 index cards.
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Fig. 3. Taxonomy card sorting sessions. Left: participants first sort the raw cards (white cards) and proposed their
categorizations (post stickers in assorted colors) independently, in which each cluster (single color) is the individual result.
Right: after the individual sorting session, we have group discussions to reach an agreement and use an affinity diagram
technique to form a hierarchical taxonomy.

We conducted four card sorting [75] sessions to create and refine the taxonomy. In each iteration, participants
first independently created their own taxonomy (Fig. 3 left) and then discussed with other participants to reach an
agreement (Fig. 3 right). The converged taxonomy would then be the starting point of the next iteration. Overall,
we had 12 participants across these four sessions, involving a mix of mobile developers and UX designers.

In our earlier iterations of the taxonomy, one main question that arose was how to organize the purposes into
meaningful categories.
• We started with independent purpose categories similar to [29, 44], such as Social/Communication,
Advertising, Game, Multimedia consumption, Content, Analytic, Personalization, and Map/Navigation.
This structure is intuitive for both developers and users since apps are organized through these categories
in the App Stores. However, this purpose granularity mainly stays at the app-category level, only providing
little privacy insights.
• We then switched to a hierarchical structure similar to [48, 70] where the end leafs were purposes, and
the parent nodes were app categories. However, participants in later iterations found this hard to use, in
terms of being able to look up purposes quickly. Apps in any category can make traffic requests for any
purpose. Besides, this structure can help users understand how privacy friendly the app is, but not the
disclosure context of the specific network request.
• Our final taxonomy is inspired by the app permission modal dialog boxes (Fig. 1). We still use a hierarchy
in our final taxonomy (see Appendix Fig. 9, Table 10,11,12,13), but the parent nodes are now data types,
with the end leafs being purposes (same as before). The purpose candidates listed in Figure 2 are the leaf
nodes of "LOCATION " node. We also organize the data types into four groups (see Appendix Fig. 9): PHONE
ID, PHONE STATUS, PERSONAL DATA, and SENSOR.

3 DATA TYPE (WHAT) INFERENCE
The hierarchical structure of our taxonomy allows us to narrow the purpose candidates down significantly by
inferring the data type first. This section describes how MobiPurpose can predict the data type of "myLat:40.44;
myLon:-79.94" as LOCATION (Figure 2 3 ).
Data type inference in the network traffic has been studied extensively in the past. Past projects use either

hard-coded regular expressions [37, 65] or supervised machine learning approaches [61] to classify data types.
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However, the regular expressions cannot be generalized to unseen patterns, and labeling training data for our
taxonomy would be a daunting task. Instead, we adapt a traditional generative NLP technique to avoid data
labeling and scale the automation to fine-grained data types. More specifically, we first use a bootstrapping
method to build a key-value text pattern corpus, and then derive a Bayesian probabilistic model from the corpus
to classify the data type.

3.1 Using Pattern Bootstrapping to Build a Corpus
Our bootstrapping approach is inspired by prior work in information extraction tasks, which requires minimal
human participation [3, 32, 33]. The key idea is leveraging the key-value text pattern redundancy. We noticed
that many key-value pairs in our data set were combinations of constrained text patterns, owing to two reasons.
First, developers share similar naming conventions, which limits the key name variations. For example, typical
patterns for latitude key names are: “lat,” “***_lat,” “lati,” “latitude,” etc. Second, our devices also share similar
configurations (e.g., physical location, device models), which limits the value variations as well. If a developer
tries to collect some GPS data, the devices will send nearly the same values to the server.

More concretely, if we manually start with a handful of patterns for LOCATION key names, we can then find
more key-value pairs containing unknown value patterns. These new value patterns can then be used to find
more key-value pairs again, this time with new key name patterns. In each iteration, the algorithm will only
keep the most reliable ones for the next iteration. This iterative process can collect a large text pattern corpus
with minimal human efforts. We describe the approach in more detail below.
Table 2. Extracted text patterns for key-value examples. We extract two types of text patterns for any key/value string:
bag-of-words & special string, and then use these text patterns for the later bootstrapping process.

Key: Value bag-of-words special string
devid: 99349319-a6c7-4657-a3bc-6929c52090e1 dev, id UUID
ip_addr: 128.237.175.242 ip, addr IP
device_model: Nexus_6P device, model, nexus, 6p
pickup_lat: 40.4431531 pickup, lat LATITUDE_NUM

Extracting text patterns. A strawman solution is to use the exact string match as the text pattern. However,
it doesn’t fit well with the developer variable contexts. For example, common latitude key names include “dev_lat,”
“device_lat,” “my_lat,” “mylat,” etc. Values of UUIDs are universally unique but share a common string pattern.
We need a more generalizable representation to capture these repetitive text patterns. Through experimentation,
we extract two types of text patterns for any key/value string:
• Special-string check: we first use regex expressions and bi-gram models to recognize common special strings,
such as MAC address, IP, Email, URL address, UUID [21], Advertising-ID [19], MD5 Hash, package name,
timestamp, isnumber, latitude/longitude, developer version number, randomly generated strings [51], etc.
• Bag-of-words: If the key/value string is not a special string, we parse the string into a bag-of-words
representation using an open source English WordSegmentation model [55]. To better handle technical
jargons (e.g., lte, gsm) and casual abbreviations (e.g., ad for advertise), we manually add these common
terms into the open source model.

Bootstrapping the text patterns. Algorithm 1 shows pseudo-code for our bootstrapping process. The method
is initialized with some manual seed rules to provide initial rules for learning. For example, if the key contains
“lat” or “lon” and the value is a legitimate latitude/longitude string, the data type would be LOCATION.

We (1) use the initial rules to find an initial LOCATION key-value set (denoted as L-KV), (2) extract all the text
patterns that appear in the L-KV set, (3) compute the frequency of different text patterns and identify the text
patterns that commonly occur (if their frequencies exceed a threshold), (4) use these text patterns to search the
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whole data set to recognize more LOCATION key-value pairs, and (5) update the L-KV set and then go back to (2).
This process is repeatedly performed, each time with higher frequency thresholds to ensure high reliability, until
the LOCATION KV set converges.

Identifying the initial seed set is the necessary first step for snowball bootstrapping algorithms [3]. Choosing
different seeds should only impact the results slightly if the frequency thresholds are carefully tuned. In our
implementation, the initial rule set contains an average of 7.5 seed rules per data type. The data type of Device
has most seed rules (14) as the text patterns are diverse, while data type of IP has the least seed rules (4).

ALGORITHM 1: MobiPurpose’s bootstrapping algorithm for data type inference

Input: A large collection of key-value pairs R and a list of data types D = {d1,d2, ...}
Define: For any key/value string, we extract text patterns T = {t1, t2, ...}.
Initialization: For each data type di in D, we initialize a set of seed rules to extract a initial key-value set Ei .
Bootstrapping Algorithm:

Step 1: Traverse all the keys and values in Ei , and extract the patterns as Tk and Tv .
Count the frequency of unique patterns in Tkey and Tvalue , and remove less common patterns.
Annotate the results as T ′k and T ′v .

Step 2: Search key-value pairs in R using T ′k and T ′v .
If the key matches T ′k or the value matches T ′v , we add that pair to Ei .
Go back to Step 1 to find new patterns, and repeat the iteration until the size of Ei does not grow.

Output: A text pattern corpus where key-value pairs are labeled with different data types.
Bayesian classifier:

Given any key-value pair, we estimate the likelihood of different data types using a bayesian method:
P (c |k,v ) =

P (k,v |c )∗P (c )
P (k,v )

Determining the data type for that key-value pair is equivalent to finding c∗ that maximizes P (c |k,v ):
c∗ = argmax

c
P (c |k,v )

3.2 Bayesian Classification
It is possible that the bootstrapping approach might miss some key-value pairs for each data type. Furthermore,
running the bootstrapping iteration can be slow. To address these problems, we used the bootstrapped results as
a corpus to quantify the weights of different text patterns, and built a probabilistic Bayesian classifier to infer the
data type. LetC = {c1, c2, ..., cn } be the n data types (n = 16 in our taxonomy), E = {E∗1,E

∗
2, ...,E

∗
n } be the converged

KV set for each data type. Given any key-value pair (k,v ), we can extract the text patterns X = x1,x2,x3, ... to
represent that pair. The conditional probability that the data type of (k,v ) is c is P (c |k,v ). Determining the data
type is equivalent to finding c∗ that maximizes P (c |k,v ). From Bayes’rule, P (c |k,v ) can be formulated as:

c∗ = argmax
c

P (c |k,v ), where P (c |k,v ) =
P (k,v |c ) ∗ P (c )

P (k,v )
(1)

in which P (c ) represents the prior probability of selecting c without the observation of the (k,v ), P (k,v |c ) is
the likelihood function, which expresses how probable the text patterns can be seen in data type c , and P (k,v ) is
the normalization constant.

We model P (ci ) as the percentage of each data type in all key-value pairs. For example, if MobiPurpose identifies
1,000 privacy-sensitive pairs and 30 of them are LOCATION pairs, P (LOCATION ) is 0.03. We use text patterns to
represent each key-value pair; therefore the likelihood function is interpreted as the product of the possibility
P (xi |c ) each text pattern happening in class c:

P (k,v |c ) ∼ P (X |c ) =
n∏
1
P (xi |c ) (2)
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In our traffic data set, not all data fields are necessarily privacy-sensitive (e.g., timestamp, version number). We
further empirically determine a threshold. If all the likelihood predictions are below that threshold, we classify
the key-value pair into the NON-PRIVACY category.

4 DATA COLLECTION PURPOSE (WHY) INFERENCE
Based on the data type prediction, we can find a small list of associated purpose candidates through a taxonomy
lookup (Fig. 2 4 ), and then use machine learning techniques to infer the likely purpose. To do so, we leverage our
ten participants from the data labeling step (see details in §6). Specifically, after the labeling, we discussed the
data patterns (DP) they observed and asked them how they determined the purpose that they labeled. Based on
this discussion, we derive a number of computational features from three separate data sources: traffic requests
(G.1,2,3), app descriptions (G.4) and the host domain information (G.5,6) (Table 3).

4.1 Data Patterns Observed by Labeling Participants & Features Extraction
Here we report the data patterns which our participants mentioned for inferring purposes, and how they informed
our proposed features.

Table 3. The features used in classification model can be classified into three groups: embedded textual features, source app
features and domain features.

Group Feature Details
Embedded textual

features
G1: url path bag-of-words A bag-of-words representation of the URL path and sent

data (160∼350 dimensions)
G2: package-endpoint
similarity

A 3 dimension vector, each value represents if the URL
components share a common string with the package name.

G3: co-sent data types The length of k-v pairs and involved data types.
Source app features G4: app category The app category can be queried from Google Play using

the package name (15 binary dimensions).

Domain features G5: owner business type The business categories from Crunchbase.
G6: domain occurrences
in app corpus

We first decompile the app file, then find the apps that
contains the domain inside their source code, and count the
app distribution across different app categories. We use the
top app categories to represent the business type.

DP.1: The keywords in the host path (e.g., searchnearby, fetchads) and key-value pairs (e.g., accesstoken) often
describe the API behavior directly. Nearly all the participants actively looked for special keywords, such as “ad”
and “analytic”, during the labeling process. Given any endpoint address (host+path), we parse the address into
components by the URI protocol (i.e., scheme :// subdomain.domain / path / document . extension ? query # fragment),
segment each component (except scheme) into words using the probabilistic model described in Section 3, and
encode the results into a "bag-of-words" representation (i.e., number of word occurrences in the URL). We
maintain a stopword list, such as "com", "www", "android", "google", to filter out some unnecessary features. We
also apply the same approach to the key-value pairs and merge the results into one "bag-of-words" representation.
DP.2: The string similarity between the app package name and the domain name can indicate if

the app is connecting to third party services. For example, the app "net.passone.gwabangeng" contacts
"api.passone.net/ggwabang/questionApi.php", suggesting that the endpoint is not a third party service. We segment
the endpoint address into three parts (subdomain, domain, path), and compute the longest common substrings
between the package name and the three components separately. We then use a vector to describe this data

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 4, Article 173. Publication date: December 2018.



173:10 • H. Jin et al.

pattern, with each item in the vector representing if the corresponding component contains a non-stop-word
common string longer than four characters.

DP.3: The co-sent data can help determine the purpose. For example, advertising services often collect ID as well as
screen size, since they need to determine the visual appearance of the advertisement. Analytic services often collect
key-value pairs (10+) more aggressively than the rest. We use a numerical vector to represent the number of total
key-value pairs as well as the number of different data types of key-value pairs.

DP.4: Participants often read the app description in Google Play to understand the network request context. In this
feature group, we only use the app category in Google Play. To reduce unnecessary features, we merge all the
game categories to reduce the feature dimensions [1].

DP.5: Understanding the service provider (domain owner) business can help the purpose inference. For example, ID
collected by “doubleclick.com” are most likely for advertising purpose, since ’DoubleClick’ is a subsidiary of Google
which provides ad services. Participants often check Google Search, WHOIS to infer the business type. We developed
a set of scripts to automate the domain owner lookup using WHOIS API2 and Crunchbase API3. We use the
corporate categories in Crunchbase to represent the organization business type.

However, most international companies do not have a profile on Crunchbase and many domain owners choose
“private registration” to hide their WHOIS registration information. We were only able to identify 22% domains
using that approach. To address this issue, we leverage the app source code to represent the business types. The
intuition is that if an app contacts a domain, the app category can indicate the business type of the domain owner.
For example, uber.com is contacted by five apps in our network tracing dataset, three in the "Maps & Navigation"
category and two in the "Travel & Local" category. We can use these two categories to describe Uber’s business.
This approach can also identify the domains providing third party services since they are contacted by apps
across all the categories.
We extract this domain feature as follows. We first decompile all the 185k apps using Androguard [17] and

index the domains in the decompiled source code. For each domain, we find the apps that contain the domain
inside their source code and count the app distribution across different app categories. We use two heuristic rules
to extract features representations: 1) if the domain is contacted by 10+ apps across 5+ categories, we set the
business type to "third party library"; 2) otherwise, we use top 3 app categories to represent the business type.

4.2 Feature Selection
A simple bag-of-words model produces too many features which may lead to overfitting. We assume the
low-frequency features are less generalizable, so we filter out all the features with a document (i.e. traffic request)
frequency below 3%, resulting in feature vectors with a dimension between 160 and 350 for different data types.

4.3 Supervised Machine Learning
We use supervised machine learning to train a purpose classifier based on the proposed features. We assume the
heterogeneous data sources contribute similarly to the classification process, so we set all the weight components
to 1.0. We maintain an independent classifier for each data type and experimented three different classification
algorithms: Support Vector Machine using a linear kernel (SVM), Maximum Entropy (ME), and C4.5 Decision
Tree (C4.5). In §7.2, we compare the performance of different algorithms and different feature combinations.

5 DATA COLLECTION
In this section, we describe the design and implementation of our network tracing system (Fig. 4). The goal of
this network tracing system is to make it fast and easy for us to collect diverse network data from a large set of
apps in the lab.
2 https://www.whoisxmlapi.com/ 3 https://data.crunchbase.com/docs
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185k apps in the pipeline

. . . . . . install one app at each time

report success

run app behavior automation

VPN Service

report intercepted tra!c

collecting 65k unique tra!c 

from 8 phones per day

Fig. 4. Scalable Network Tracing. Left: the pipeline of the network tracing. Right: the hardware configuration. We install the
app one by one on eight Android devices, connecting to a PC running app interface real-time analysis. For each app, we
will explore the app behavior for 3 minutes and uninstall the app afterward. This configuration can intercept around 65,000
unique traffic requests every day.

Our tracing system is comprised of two main components: a UI automation test tool and a network sniffing
app. We implemented the UI automation tool using DroidBot [41], a lightweight UI-guided test input generator,
which analyzes the user interface on-the-fly and randomly traverse the UI elements on the screen. We then built
our network sniffing app by using the internal Virtual Private Networking (VPN) service provided by Android
OS. We manually added a trusted root certificate to our test devices and performed a Man-in-the-Middle (MITM)
SSL injection to decrypt SSL/TLS traffic. Our architecture made it easier for us to capture which app initiated the
network request, which would have been more difficult if we had used a server proxy approach (e.g. [70]). For
each traffic request, we recorded the destination domain, path, source app, and the network request body.

We tested a large collection of Android apps using this tracing system. We crawled the Google Play web pages
in November 2016 to create an index of all the apps that were visible to US users, among which 1.5 million of
them were free apps. We decided to only focus on free apps updated after 2015, resulting in 185,173 apps.

For each app, our automation tool first explored the app behavior for 3 minutes and then uninstalled the app
afterward. The 3 minutes duration is a tradeoff between our computation resources and our goal to collect as
many unique traffic requests as possible. Our hardware configuration (Fig 4 right) consisted of 1 PC and 8 Android
phones. Roughly, using this set up, we could intercept around 65k network requests and 3k apps every day.
Descriptive statistics. Our data collection process took 50 days to traverse the 185k apps. Due to OS

compatibility (our devices were running on Android 7), we were only able to install 30,075 apps. In total,
we intercepted 2,008,912 traffic requests from 14,910 apps, contacting 12,046 unique domains (302,893 unique
end-point URLs), sending 6,376,833 key-value pair data to a remote server. The top 3 active domains were
doubleclick.net (261048 requests), googlesyndication.com (158672 requests), and startappservice.com (124289
requests). The number of requests across domains followed a long tail distribution: 9320 (77.3%) domains were
only contacted by one app, and 5653 (46.9%) domains were contacted less than 10 times. Figure 5 illustrates a
more comprehensive view of the traffic distribution.
Preprocessing the dataset. If we study the individual request directly, the final system would be biased to top

domains like doubleclick.net and less adaptive for the wild traffic requests. So we first filtered out traffic requests
that sent an empty data body and then merged repetitive traffic requests. We grouped requests based on the
end-point address (i.e. host + path) using manually crafted regex expressions, resulting in 60,753 unique network
API traces. For example, we use graph.facebook.com\/v\d.\d\/\d{15} to group similar traffic requests sent
to facebook graph API, and merge their parameters (i.e. key-value pairs).
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Fig. 5. Data stats of the 2 million outing traffic requests. The left figure illustrates the long tailed distribution of domains in
the data set. The right figure shows that the apps in different categories generate similar numbers of traffic requests.

6 LABELING THE GROUND TRUTH BEHAVIOR OF TRAFFIC REQUESTS
Our goal of data labeling was threefold: 1) to evaluate the accuracy of data type classification, 2) to test the
taxonomy completeness, and 3) to prepare a data set for purpose inference. We designed each labeling task as a
short set of questions about a specific traffic request, with a focus on one key-value pair (Fig. 6). We presented
participants raw traffic requests as well as the data type classification results. We then ask them to judge if the
classification is correct, and label the data collection purpose.
In the pilot test, we found judging the data type was straightforward for engineers, while labeling the data

collection purpose required more contextual knowledge [16, 56]. To accommodate that, we incorporated multiple
shortcuts (e.g., Google Play, WhoIS) to help participants access relevant external information quickly.

In the example illustrated in Figure 6, a participant can find that the app is a shopping coupon app named “The
UOL Club” from the Google Play link, infer that the traffic is sent to a UOL server. Combining with the host path
"/coupon/category/nearby" and the data body, she can then infer that the traffic request is to "Search Nearby"
using longitude and latitude information.
Procedure. To avoid test data leakage [35], we randomly sampled 5k API traces from the preprocessed dataset

for evaluation. We developed our bootstrapping algorithm based on the remaining 56k API traces, and run
the final data type inference algorithm on the 5k reserved API traces. The labeling instances were from the 5k
reserved API traces. Our labeling strategy was similar to Wang et al. [71]. We tried to label at least 30 instances
for each purpose manually. However, some purpose instances are scarce (<5%) in our traffic data set. For example,
we only observed 5 instances of "reverse geocoding" among 250 location instances. We stopped once we got 30
instances for common purposes (>=5%).
Participants. We recruited ten engineering graduate students with prior Android app development experience.

All participants had over three years of experience in Android/iOS development, six were Ph.D. students in
computer science, and four are familiar with reverse engineering and mobile privacy research. Participants are
also aware of the GPS location of the lab, so they can recognize if the set of coordination is the nearby location.
We introduced our taxonomy in a five-minute labeling tutorial. Since the purpose interpretation can be

subjective and in some cases ambiguous (e.g. due to insufficient or incomplete information), we collect three
independent labels for each task and allow participants to label multiple purposes for each entity if needed. The
purpose labeling is quite time-consuming. Each labeling task takes between 30 seconds to 2 minutes since the
participant often needs to generate search queries and check the facts on external websites. We organized 2 group
data labeling hackathons with free food, each lasting around 5 hours. No monetary remuneration was paid.
Labeled data stats: We collected labels from 3,177 (1,059 x 3) labeling tasks, where each entity was labeled by

three independent human experts, covering 7 data types and 34 data purposes (Table 4). The data type annotations
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Fig. 6. An example labeling task. We classified the "numLongitude" and "numLatitude" key-value pairs as LOCATION data.
Participants determined if our automated classification is correct. If correct, participants continue by labeling the data
collection purpose. Otherwise, participants are asked to select the correct data type. In this example, “The UOL Club”, a
shopping coupon app, sends LOCATION data to the host path "/coupon/category/nearby" on a UOL server. So the purpose is
"Search Nearby Places."

had a very high inter-annotator agreement: only 23 traffic requests (23/1059 <2%) received inconsistent annotations,
giving us confidence that the quality of labels is high and mostly consistent.

Table 4. The examples of different data type and the # of labeled instances.

data type #labels examples data type #labels examples
ID 400 MAC address, uuid Battery 7 battery level, if charging

Device 150 phone model, screen size Network 100 IP address, wifi, lte, RSSI
Running state 2 foreground tasks Account 150 email, age, gender, zip
Location 250 GPS coord, place name

Total: 1059
The purpose labeling results further illustrate the feasibility of inferring data collection purpose from the

embedded attributes of the app and external factors such as where it contacts. In the labeling tasks, the participants
can choose to annotate it with “Insufficient Information” (II) if they find there is not enough information to
support their judgment. 123 (123/3177 < 4% ) labeling tasks were marked as such, among which only 3 entities
were marked as II by all three participants, and 20 entities were marked by two participants.

We merged the purpose labels from different participants using majority voting. If at least two independent
participants believe the key-value pair is associated with a specific purpose, we accept that label. Based on this
standard, there were 118 traffic requests (118/1059 < 12%) that are too ambiguous to reach an agreement. We
excluded these traffic requests in the later purpose inference evaluation.
Taxonomy in Practice: The labeling interface also allows participants to add a new purpose label if they find

the behavior is not covered by the current taxonomy. Our participants nominated new purposes in 30 labeling
tasks (1.2%), resulting in 4 new categories after re-coding: "Network Info - Advertising", "Location - Reverse
Geocoding", "Location - Malicious", "ID - Malicious". We incorporate the first two purposes in our final taxonomy
and have a separate discussion regarding malicious purposes (Sec. 10.2).
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Based on the labeling tasks, we believe the current taxonomy has a good coverage for most regular network
traffic. The described process can be repeated from time to time if we need to add/update the taxonomy.

7 EVALUATION
MobiPurpose uses a two-step procedure to infer purposes. MobiPurpose first infers the data types, using it to find
the associated purpose candidates through a taxonomy lookup. Then, MobiPurpose uses a supervised machine
learning approach to predict the data collection purpose. Here, we evaluate both the data type inference and
purpose inference, and found that MobiPurpose can achieve an average accuracy of 95% for data type inference
and 84% for data purpose inference.

7.1 Data Type Inference Performance
7.1.1 Methodology. To evaluate the performance of data type inference, we measure the number of true

positives (TP), false positives (FP), true negatives (TN), and false negatives (FN) for each data type, and present
our results regarding precision, recall, and f-score.
We define precision as the fraction of true predictions (TP) among all the predictions (TP+FP) regarding one

class. In the labeling tasks, participants determined if our data type inference was correct and provided the correct
label if the inference was wrong. We define recall as the fraction of true predictions (TP) among all the true
instances (TP+FN) regarding one class. We manually inspect all the fields classified as NON-PRIVACY to determine
if any privacy-sensitive key-value pairs are missed. We label obfuscated key-value pairs as NON-PRIVACY. F-score
is the harmonic mean of precision and recall.
To measure the overall correctness of our approach, we use two standard multi-class accuracy metrics:

micro-averaged (equal weight for each instance) and macro-averaged (equal weight for each class) [46, 71]. For
micro-averaged metrics, we first sum up the TP, FP, FN for all the classes, and then calculate precision and recall
using these sums. So classes that have many instances are given more importance. In contrast, macro-averaging
is the mean of the metrics for all the individual classes. Since we do not have enough data samples in Battery and
Running State, we exclude them in computing the macro-average.

7.1.2 Results. Our results for classifying data types are shown in Table 5. Our approach has precisions above
93% for all the classes and an overall precision (micro-averaged) of 95.9%. For recall, our approach identifies over
86% of the privacy-sensitive entities for all the categories with an overall recall (micro-averaged) of 89.9%.

Most FP instances are due to the similar text patterns shared between different classes. For example, gps_adid
is classified as a location data type but is actually an ID. Reasons for TN are diverse: some personal data are
nested in a serialized dictionary; several unusual variable names (e.g., using a token to name ID data) have not
been captured by the bootstrapping algorithms, etc.

Table 5. Data type inference accuracy

ID Battery Device Network State Account Location Macro-avg Micro-avg
Precision 97% 100% 93% 94% 100% 96% 96% 95.6% 95.9%
Recall 86.8% 100% 87.5% 92.1% 100% 92.3% 95.2% 90.8% 89.9%
F-score 0.925 1.00 0.902 0.930 1.00 0.941 0.956 0.931 0.928

7.2 Purpose Inference Performance
7.2.1 Evaluation Metrics & Methodology. We use 10-fold cross validation to evaluate the performance of

purpose inference. For the purpose predictions of each key-value pair, we measure the accuracy, precision, recall
and f-score as we did in the data type inference evaluation.
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To measure overall performance, we aggregate the individual metrics using micro-average and macro-average
for both precision and recall. Since we do not have enough data samples for the Battery and Running State data
categories, we only cover the other five data categories (i.e., ID, Device, Network, Account/Profile, and Location)
in the purpose evaluation. Due to the imbalance of purpose distributions, some purposes are not common in our
dataset. For example, we only have 5 SENSOR.LOCATION.ReverseGeoCoding instances in the labeled data set.
We opt to run the classification only among the purpose categories with more than 20 instances.

7.2.2 Results. Our results in classifying the purpose of different data types are shown in Figure 7. The
Maximum Entropy algorithm performs the best, with an overall accuracy (macro-average) of 84% for all the
categories, while SVM outperforms ME in Account/Profile and Device categories. Overall, all the algorithms
perform reasonably well across all the data types. MobiPurpose has a comparable accuracy as [71] (85%), which
infers the Android permission purposes by analyzing the source code, though MobiPurpose treats the app as a
black box.

SVM ME C4.5
Precision 0.85 0.88 0.83
Recall 0.84 0.85 0.82

F-1 Score 0.84 0.86 0.82

(a) ID.

SVM ME C4.5
Precision 0.82 0.82 0.81
Recall 0.81 0.79 0.80

F-1 Score 0.81 0.80 0.80

(b) Device.

SVM ME C4.5
Precision 0.82 0.86 0.84
Recall 0.81 0.86 0.84

F-1 Score 0.81 0.86 0.84

(c) Network.
SVM ME C4.5

Precision 0.85 0.84 0.84
Recall 0.85 0.83 0.83

F-1 Score 0.85 0.84 0.84

(d) Account/Profile.

SVM ME C4.5
Precision 0.79 0.82 0.80
Recall 0.79 0.82 0.80

F-1 Score 0.79 0.82 0.80

(e) Location.

SVM ME C4.5
Precision 0.83 0.84 0.82
Recall 0.82 0.83 0.82

F-1 Score 0.82 0.84 0.82

(f) Overall (Macro-avg).

Fig. 7. Performance of different machine learning models (using all the features) for classifying purposes

Figure 8 shows more details about misclassifications across all the data types. The micro-average accuracy of
82.3% (Fig. 8f) is similar to the macro-average accuracy. However, the specific classification errors across different
categories vary greatly.
For ID data (Fig. 8a), the category "Ad" achieves the best result, with precision and recall both higher than

90%, which is due to the domain name as a feature in recognizing the business types of the domain owner. The
category of "Authentication" purposes have 94% precision but recall under 60%. The main misclassifications are
in classifying "Sign-out personalization" and "Authentication" into "Analytics," which may because these three
purposes collect similar types of data.

For Device data (Fig. 8b), the main classification errors come from the confusion between "Ad" and "Analytics":
11 "ad" (35%) instances are classified as "analytics". Similar situations also happen to the Account/profile data
(Fig. 8d): 8 "ad" (23%) instances are classified as "analytics". In the location matrix (Fig. 8e), the major confusion
happens between "Location-based personalization" and "Search nearby," which may be due to the semantic
similarity between these two purposes.

Through inspecting these individual misclassifications, we categorize errors into two types. First, developers
use diverse vocabularies for purpose instances such as “sign-out personalization” and our model didn’t capture
the statistical patterns of these less common keywords. For example, one term in a “sign-out personalization”
instance is “visualdna.” Continuing to increase size and diversity of the labeled data set will help here. Second, the
semantic correlation between different purposes, such as “Ad” & “Analytic,” or “Location-based personalization &
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P1 P2 P3 P4 P5 Total
Anti-fraud P1 26 - - 1 4 31

Authentication P2 - 16 1 3 7 27
Personalization P3 3 1 8 1 11 24

Ad P4 - - - 162 15 177
Analytics P5 - - 1 11 114 126

(a) Confusion Matrix for ID

P1 P2 P3 Total
Ad P1 19 11 1 31

Analytics P2 3 62 2 67
Interface P3 3 6 19 28

(b) Confusion Matrix for Device Information

P1 P2 P3 Total
Ad P1 20 3 3 26

Analytics P2 4 29 4 37
NetOptimization P3 3 1 24 28

(c) Confusion Matrix for Network

P1 P2 P3 Total
Ad P1 26 8 1 35

Analytics P2 5 59 3 67
Login P3 2 6 17 25

(d) Confusion Matrix for Account/Profile
P1 P2 P3 P4 Total

Ad P1 102 4 3 - 109
Analytics P2 4 26 4 3 37

Personalization P3 2 3 16 7 28
Search Nearby P4 - 4 4 25 33

(e) Location

Prediction
Pos Neg

Tr
ut
h Pos 770 166

Neg 166 2683

(f) Overall (Micro)

Fig. 8. Detailed confusion matrices using all the features with Maximum Entropy algorithm. Each column represents the
instances in a predicted class, while each row represents the instances in an actual class. Note, the P1-Pn shown in each
table denote the different purposes, and they vary for each feature (a)-(e). For example, P1 is “Anti-Fraud” for the ID feature,
but is “Ad” for the Network feature.

“Search nearby,” also imposes extra challenges in classifying the purposes. This semantic noise is not introduced
only from the data labeling bias, but also the developer’s naming decisions.
The classification results in Figure 8 is biased to "Analytics", since there are many "Analytics" instances. We

also run an evaluation based on a sampled dataset, where each purpose has the same number of instances. This
experiment shows similar performance results with an average accuracy of 81%. We report the original data as it
fits better the real-world situation.

7.2.3 Feature Comparison. We perform component evaluations to find the efficacy of different feature
groups (Table 3). We use the bag-of-words features (G.1) as the baseline and experiment with different feature
combinations. All the models are trained with Maximum Entropy algorithm. The overall experimental results are
summarized in Table 6. We can see the bag-of-words features (G.1) alone can achieve an accuracy above 74% and
the rest of the features play supporting roles.
Different supporting features illustrate different performance gains in different data categories. The domain

features (G.6) improve the performance by 12% in the "ID" category but has little impact on the performance
in "Device" and "Account" categories. The co-sent features (G.3) do not perform well in general but is the most
valuable feature in “Device” category.

Inspecting the individual results, we find that different categories suffer from different ambiguities. For example,
it is hard to differentiate “ad” instances from “analytics” instances in the “ID” category using just the URL. Domain
features would be the primary differentiator in this case. In contrast, “ad” services may also collect “Device”
information for “analytics” purpose as well. In this case, domain features do not help much in resolving that
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confusion. Instead, “analytic” services usually collect more key-value pairs than “ad” service, so G.3 (co-sent data
types) is the most helpful feature in “Device” category.

Table 6. F1-score performance across different feature combinations (Maximum entropy algorithm). Bag-of-words features
(G.1) achieve good baseline accuracy alone, with domain features (G.6) offering significant improvements. Using only G1,6
can have a similar performance as using all the features.

G.1 G.1,2 G.1,2,3 G.1,2,3,4 G.1,2,3,4,5 G.1,2,3,4,5,6 G.1,6
ID 0.74 0.74 0.74 0.75 0.78 0.86 0.86

Device 0.76 0.77 0.81 0.81 0.81 0.81 0.80
Network 0.81 0.81 0.77 0.74 0.76 0.80 0.86
Account 0.83 0.84 0.81 0.81 0.81 0.84 0.82
Location 0.77 0.79 0.78 0.76 0.78 0.82 0.83

8 RELATED WORK
MobiPurpose is mainly related to three major approaches to characterize mobile data access and disclosure: static
analysis, dynamic analysis, and network analysis. We organize the relevant work in Table 7 & 8, and discuss
these areas in detail below.

8.1 Network Analysis
Table 7. Network analysis research at different granularities using different techniques

Traffic request Key-value Pair
Network
Analysis

Differential test Zhang et al. [78], AntMonitor [37] PrivacyOracle [34], PrivacyProxy [66]
Text-based PrivacyGuard [65], Zang et al. [77] Recon [61], MobiPurpose

Many commercial tools [14, 27, 64, 76] have been developed to support analysis of network flows and
identification of leaks of potentially sensitive data. For example, VIP Defense [14] and Forcepoint [27] can
detect and block leaks of personal information (e.g., credit card number and social security number) automatically.

Past projects have mainly looked at two granularities of network flows: individual traffic requests [60, 78] or
specific data fields inside a request. Zhang et al. [78] is an example of the first type, which labels the entire network
request as legitimate if the request is associated with a UI event. In contrast, projects like Recon [61] parse the
request body into key-value pairs and check if the request contains some specific types of privacy-sensitive data.

While looking at data egress is a good vantage point, searching for privacy-sensitive data in large quantities of
network data is still challenging. Black box differential testing is commonly used to tackle this issue [12, 34, 66].
It first establishes a network behavior baseline of an application. It then modifies some specific data on the device
and detects leaks by observing deviations in the resulting network traffic. However, this approach is mostly
limited to recognizing personally identifiable information and does not generalize to other kinds of sensitive data
(e.g., device model, screen resolution, etc.). An alternative choice is leveraging text patterns in traffic requests,
which use either hard-coded regular expressions [37, 65] or supervised machine learning approaches [61] to
classify network flows.

In contrast, MobiPurpose analyzes the key-value pairs inside a traffic request by leveraging text patterns [61]
as well as external knowledge (e.g., app description, domain owner business, etc.). More fundamentally, we
not only categorize the data types in a fine-grained manner, but more importantly, classify the purpose of each
key-value pair.
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8.2 Dynamic and Static Analysis of Mobile Apps
Table 8. Using dynamic and static analysis to analyze mobile privacy at different granularities.

App Library Permission Data flow
Dynamic
Analysis

Chitkara et al.[11]
Han et al. [29]

PmP [2], TaintDroid [24]
AppsPlayground [59]

Static
Analysis

PrivacyGrade [36]
CHABADA [28] Amandroid [73]

Pscout [5], WHYPER [57]
AutoCog [58], ASPG [72]

Wang et al. [71]

PiOS [23]
DroidJust [10]

Dynamic analysis tracks the flow of privacy sensitive data at runtime. By modifying the device OS, solutions
like TaintDroid [24] can label (taint) data from privacy-sensitive sources and transitively apply these labels as the
data propagates through program variables, files, and interprocess messages. In this way, the system can track
the data flow, namely which app transmits the data and where the data is being sent to. However, this approach
suffers from large false positives (due to coarse tainting granularity ) and false negatives (e.g., the data does not
leave the device) detection issues. The significant runtime overheads and the compatibility of modified OS are
also barriers to widespread use.

Static analysis detects potential privacy leaks through analyzing the source code (e.g., permission file analysis [5,
36, 43], data flow analysis [10, 23], or text pattern analysis [71]). For example, PrivacyGrade [36] inspects the
permission files and app descriptions to identify unnecessary permissions, since these permissions may lead to
privacy leaks eventually. This approach is designed to be more scalable than dynamic analysis since it can avoid
runtime overhead without code execution [40]. However, it is still hard to infer the privacy context using static
analysis, e.g., where the data is sent to. Besides, running symbolic execution is very time-intensive, and loading
code dynamically is increasingly common [45].

Past research has used these two approaches across a range of different granularities (see Table 8). For example,
PrivacyGrade [36] grades the privacy behavior of each app by measuring the gap between people’s expectations
and the app’s actual behavior. Chitkara et al. [11] use code injection to infer whether the data access is by a
third-party library or by the app itself for its functionality. To justify if the data access is legitimate, DroidJust [10]
uses static taint analyses to link each data flow with certain application function.

Both approaches can be complementary to the network analysis approach [37, 61]. For example, AntMonitor [37]
uses the dynamic analysis to cross-check with the result of network analysis. MobiPurpose leverages the idea of
static analysis in feature extractions (Sec. 4). We decompile the app file into source code, and count the number
of occurrences of domain names across different apps to infer the information of the domain owners.

9 LIMITATIONS

9.1 Network Tracing Coverage
Gathering large-scale comprehensive data from mobile apps is a challenging task [39, 60]. The UI monkeys
approach used in our paper can collect a large dataset with relatively small computing resources [9, 42]; however,
it also suffers from the issue of lacking comprehensiveness. For example, text entry box validation (e.g., log in
screens) can impede the monkey’s progress through an app [60, 62]. In our experiment, we also find monkeys
cannot parse the Unity4 interface in some game apps because it’s hard to parse the UI element tree.
We have implemented several heuristics5 to mitigate these issues. First, we manually login into the popular

apps (e.g., Yelp, Twitter, Google) to avoid the login screens in these apps. Second, we detect third-party login
options (e.g., log in with your Google account) and select these options if available. A recent study shows that

4 https://unity3d.com/ 5 Open sourced at https://github.com/CMUChimpsLab/MobiPurpose
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more than 40% mobile login screens support third-party login functionalities [47]. Third, our monkey clicks
different coordinates randomly if the app interface is written in Unity.
While developing a better monkey alternative is beyond the scope of this paper, we conducted a preliminary

experiment to understand the network tracing coverage. We selected the top 20 popular free apps and manually
logged into the apps before the study. We then tested the apps under 3 conditions: manual interaction (3 minutes),
monkey interaction (3 minutes), and monkey interaction (15 minutes). We tested the monkey interaction at a
longer duration since the monkey duration can be scaled up with little extra resources in practice.

Table 9. The Mean (SD) of detected unique network API traces per app under different conditions.

Manual interaction (3 min) Bot interaction (3 min) Bot interaction (15 min)
# of unique requests 45.2 (20.3) 33.1 (16.7) 40.8 (23.5)
# of unique purposes 5.4 (2.2) 3.1 (1.8) 3.9 (1.9)

Table 9 illustrates the statistics of unique network API traces detected across different conditions. In general,
manual interaction has the best coverage regarding unique requests and unique purposes. The coverage of
monkey interaction will increase if we extend the test duration (15 min vs. 3 min). The network traces observed
for the same app in 3 conditions are not fully overlapped, so we cannot compare the recall directly. We empirically
noticed that monkey interaction generates less diverse traffic than manual interaction, and we observed more
ad/analytic traffic requests in the monkey interaction dataset. Future works may consider incorporating app
interface semantic knowledge [15, 40] to improve the bot implementation.

9.2 Apps Requiring Login
To further understand the login limitation, we studied howmuch the login blocking will impact the bot interaction.
We manually installed the top 80 free apps in US Android stores, found 41 of them support login and 22 of them
support Google/Facebook/Twitter login. Among the remaining 19 apps, 15 apps (e.g., Chase Mobile, Robinhood)
requires a critical login to interact with core functionalities. Most critical login apps appear in the top 40 apps
(13/15), while only 2 apps between 40-80 require a critical login. Modern mobile app design guidelines often
suggest registration is a road-block to adoption [6]. Forcing registration too early can cause more than 85% of
users to abandon the product [63]. We expect to see fewer apps require a critical login in "lower-ranked" apps.
Beyond the technical perspective, automated logins with fake profiles can be a legal grey zone, which may

raise two legal concerns: 1) packet sniffing while accepting terms and conditions and 2) login with fake profiles.
First, logging into a service generally requires accepting terms and conditions, which may ban the packet sniffing
analysis. The banning of packet sniffing appeared in the early End-User License Agreement (EULA) and received
strong opposition [52]. Recent EULA templates [69] and Terms of Service employed by major apps (e.g., Google,
Facebook, Yelp) only prohibit source code reverse engineering. Second, login with fake profiles has been heavily
used in web/mobile data scraping [13]. Most recently, a US court ruled that creating fake profiles can be protected
by The First Amendment [49]. Future work should pay attention to these potential legal implications as well.

9.3 Traffic Obfuscation
Our premise is that mobile network traffic textual data, the app source, and the domain information reflect
underlying developer purposes. However, developers might deliberately or unintentionally have obfuscated
names. For example, we noticed some apps have unclear key names like "v2", "c12", and these key names might
not be consistent across different traffic requests. We found 218 out of 12,046 (1.8%) domains and 405 out of 14,910
(2.7%) apps have some form of obfuscation.
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9.4 Certificate Pinning
Our current implementation of MITM SSL injection cannot intercept certificate pinned traffic. Using modified OS
that disables SSL certificate checking at the system level can potentially mitigate that issue [74]. In our early
experiments, we found that this approach only works for the apps developed with Android SSL libraries. So
we decided to use the original OS for better compatibility. To quantify the problem of certificate pinning, we
selected the top 500 free apps from Google Play retrieved on March 13th, 2018 and found only 22 apps (<5%) used
certificate-pinning on all network requests [66].

10 DISCUSSION

10.1 Theoretical Framework: Contextual Integrity
Our work can be thought of helping contribute to the growing body on privacy as contextual integrity [53],
which argues that a data access or disclosure is legitimate based on the specific context and norms in which
the information flow happens. In 2012, the White House further espoused this framing in the Privacy Bill of
Rights [31]: “consumers have a right to expect that companies will collect, use, and disclose personal data in ways
that are consistent with the context in which consumers provide the data.”

Some of the ideas behind contextual integrity have started to diffuse into research in mobile computing (either
deliberately or through convergent evolution). One example is the app permission system (Fig.1). Researchers
have also started to look at ways to incorporate users’ privacy expectations [4, 38, 43, 57, 58, 71]. For example,
WHYPER [57] and AutoCog [58] build a machine learning model to determine if the purposes of permissions are
consistent with the app description. ASPG [72] and CHABADA [28] identify outlier permissions by clustering
similar apps based on app descriptions. Beyond binary anomalous detection, Lin et al. [43] and Wang et al. [71]
framed mobile privacy in the form of people’s expectation about the data collection purpose.

There has been a rich literature in studying the benefits of understanding “why” [48, 54, 70] in network traffic.
For example, Van Kleek et al. [70] manually labeled the network traffic purposes and found purposes can help
users make confident and consistent choices. In contrast to prior work, MobiPurpose is the first solution that can
automate the mobile traffic purpose inference.

10.2 Taxonomy Motivation & Completeness
Our taxonomy does not capture if a data disclosure is legitimate or malicious. The question of whether a traffic
request is legitimate or not can only be answered in each specific context in which the question arises. But
attempts to answer this question are challenging because of confusion about defining the troublesome activities
that fall under the rubric of privacy. Our taxonomy will aid us in analyzing various privacy problems so we can
better address them and balance them with opposing interests.

We have created a taxonomy of 16 privacy-sensitive data types and 76 purposes, and 10 participants used this
taxonomy to label 1059 instances. While our taxonomy is good enough for our purpose, it is possible that there
are other purposes that we did not find. Further, depending on how purposes are used, our taxonomy might
be too fine-grained or too coarse-grained. For example, we can further branch the data analytics purpose into
developer analytics (e.g., crash reports) and marketing analytics (e.g., marketing attribution analysis). However,
we believe that the proposed approach should generalize for new purposes and data types.

10.3 Apps from Non-English Speaking Developers
Though we crawled apps from US Android app market, we noticed that many apps are from non-English speaking
developers. During data labeling, participants used Google Translate to understand the app functions and the
developer’s business type. One challenge of the inference pipeline is that developers with different language
backgrounds may have different naming conventions. The bootstrapping algorithm works across different
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languages since it only identifies repetitive patterns [50]. For example, different traffic requests will send the
same GPS decimal degree values (e.g., 41.40338, 2.17403) with some common key names. These key names will
become parts of the bootstrapping extraction. In fact, “weidu”, the Chinese pinyin romanization of “latitude,” was
captured in our experiment.

11 CONCLUSION & FUTURE WORK

In this paper, we present the design and implementation of the first system that can automatically categorize
data collection purposes of sensitive data in mobile network traffic. The core of our solution is our data-type
dependent purpose taxonomy, in which we enumerate the potential purposes associated with each data type.
Given any key-value pair in the traffic request, we first infer the data type using a bootstrapping NLP approach
and then use a supervised machine learning approach to predict the data collection purpose. We evaluated our
approach using a dataset cross-labeled by ten human experts. Our experiments show that our approach can
predict "what" with an average precision of 95% (among 8 unique categories) and "why" with an average precision
of 84% (among 19 unique categories).
Past research shows that the privacy indicators that surface the purpose of data collection can help users

make privacy decisions [36, 43, 70]. As such, our next step is to scale up our analysis even further and to build a
public resource that can help developers, end-users, journalists, and policy makers better understand which app
is collecting data about us, what data, where that data is going, and why it is being collected.

A APPENDIX: COMPLETE MOBIPURPOSE PURPOSE TAXONOMY

MobiPurpose
Taxonomy

Phone ID Phone Status Personal Data Sensor

Instance ID

Advertising ID

Hardware ID

Battery/charging

Device Info

Network

Running state

Notification

Contact list

Calendar

SMS

Storage

User profile

Camera

Location

Microphone

Inertial Sensors

Fig. 9. Taxonomy overview for Data Type Groups
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Table 10. The purpose taxonomy for Phone ID.

Data types (what) Purposes (why) Example usages
Instance/hardware/
advertising ID6

Tracking for advertising Support ad targeting/evaluation
Tracking for data analytics Avoid redundant device counting in marketing.
Signed-out personalization Personalize news for sign-out users
Anti-fraud Enforce free content /advertisement limits
Authentication Relogin a user with a cookie

Table 11. The purpose taxonomy for Phone Status.

Data types (what) Purposes (why) Example usages

Battery/charging Battery-based event trigger Show charging/low battery notifications
Power management Adapt the phone settings to save battery
Data collection for analytics Analyze the battery assumption of apps

Device Info Interface customization Customize the interface based on the resolution
Data collection for ad Collect data for ad personalization
Data collection for analytics Collect data for marketing analysis

Network Network switch notification Show wifi/lte switch notification
Network optimization Download low resolution images when on LTE
Geo localization Use IP to infer the geo location
Data collection for ad Collect data for ad personalization
Data collection for analytics Collect data for marketing analysis

Running state Cross-app communication Support cross-app communication
Task management Detect foreground tasks

Notification Interface customization Customize lock screen notifications
Interruption management Delay notification to manage interruption

6 MobiPurpose runs apps on in-lab devices so that MobiPurpose can identify the unique identifier (ID) types (e.g., Ad ID, MAC address,
Instance ID). Official development guidelines [22] often recommend developers to use different types of ID in different contexts; however, our
dataset shows that developers use different types of ID mixedly. If future developers better adopt these best practice guidelines, the taxonomy
of ID purposes would be listed separately.
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Table 12. The purpose taxonomy for Personal Data.

Data types (what) Purposes (why) Example usages

Contact list Backup and Synchronization Backup contacts to the server
Contact management Merge duplicate contacts
Blacklist Block unwanted calls
Call and SMS Make VoIP/Wifi calls using Internet
Contact-based
customization

Add contacts to the personalized dictionary of
input typing apps

Email Send Email to contacts
Find friends Find common friends who use the same service
Record Display call history
Fake calls and SMS Select a contact to fake calls

Calendar Context prediction Predict if the user is commute to workplace
Schedule Manage schedule conflicts
Alarm Notify calendar events ahead

SMS Send messages Send messages through apps
Organize messages Cluster/delete/re-rank SMS messages
Extract message content Extract the verification code in SMS
Block messages Block unwanted SMS
Schedule messages Delay the messaging sending
Backup/sync messages Backup messages to the server

Storage Access photo album Modify or upload photos
Manage downloaded files Save photos to local storage
App data persistent storage Save configuration files

Account/user profile Third-party login Login through Facebook/Google accounts
Data collection for analytics Collect data for marketing analysis
Data collection for ad Collect data for ad personalization
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Table 13. The purpose taxonomy for Sensor.

Data types (what) Purposes (why) Example usages

Camera Flashlight Turn on/off flashlight
Video streaming Steam the video capture
Code scanning Scan QR code
Document scanning Scan document
Augment reality Capture videos
Text recognition Recognize the text in the live video capture
Photo taking Take photos

Location7 Nearby Search Search nearby POIs/real estates
Location-based
Customization

Fetch local weather/radio information

Query Transportation
Information

Estimate the trip time through Uber API

Recording Track the running velocity
Map and Navigation Find the user location in Map apps
Geosocial Networking Find nearby users in the social network
Geotagging Tag photos with locations
Location Spoofing Set up fake GPS locations
Alert and Remind Remind location-based tasks
Location-based game Play games require users’ physical location
Reverse geocoding Use the GPS coords to find the real world address.
Data collection for analytics Collect data for marketing analysis
Data collection for ad Collect data for ad personalization

Microphone Voice Authentication Authenticate users using voices
Audio streaming Make VOIP phone calls
Voice control Use voice to send the command
Speech recognition Turn the speech audio into text
Audio recording Record voice messages
Acoustic event detection Sense users’ health using microphone
Acoustic communication Decode audios to receive messages
Music Record songs

Accelerometer/
gyroscope/

magnetometer

Step-counter Count users’ steps
Game input controller Detect device movements to control game input
Map/Navigation/Compass Use dead reckoning to improve localization

Proximity sensor Speaker/display activation Turn off screen if the phone is near the users’ ear
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