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Abstract—We present Peekaboo, a new privacy-sensitive ar-
chitecture for smart homes that leverages an in-home hub to
pre-process and minimize outgoing data in a structured and
enforceable manner before sending it to external cloud servers.
Peekaboo’s key innovations are (1) abstracting common data pre-
processing functionality into a small and fixed set of chainable
operators, and (2) requiring that developers explicitly declare
desired data collection behaviors (e.g., data granularity, destina-
tions, conditions) in an application manifest, which also specifies
how the operators are chained together. Given a manifest,
Peekaboo assembles and executes a pre-processing pipeline using
operators pre-loaded on the hub. In doing so, developers can
collect smart home data on a need-to-know basis; third-party
auditors can verify data collection behaviors; and the hub itself
can offer a number of centralized privacy features to users across
apps and devices, without additional effort from app developers.
We present the design and implementation of Peekaboo, along
with an evaluation of its coverage of smart home scenarios,
system performance, data minimization, and example built-in
privacy features.

I. INTRODUCTION

For many smart home products - such as smart speakers,
cameras, and thermostats - the “brains” of these systems
are typically in the cloud. However, a key concern with
cloud-based software architectures is data privacy [72]. It is
challenging for users to have any assurances of privacy after
their sensitive data leaves the confines of their home [53].
Further, it is challenging for companies to legitimately avoid
collecting unnecessary smart home data while also re-assuring
users and independent auditors that this is indeed the case.

For example, imagine a developer of a smart TV claims to
only send aggregated viewing history data to their servers once
a week. How can outsiders validate this claim, since the
hardware, firmware, and backend servers are proprietary
black-boxes? Today, an independent auditor would need to
use arduous reverse engineering techniques to validate devices’
data collection behavior [61]. One alternative is for the device
to do everything locally without sending any data [4], though
given that many devices only have basic CPU and storage
capabilities, this approach severely limits the functionality they
can provide. Doing everything locally also limits many kinds
of rudimentary analytics that users might find acceptable, e.g.
developers may want to know how many hours the TV is on
per week. As another alternative, the device can aggregate or
denature the data itself before sending it out [[73], [[77], but
again there is no easy way to verify this behavior. Yet another
alternative is to leverage new mechanisms for trusted cloud
computing [26l], [42]], [47]. However, these approaches are
challenging for users and auditors to understand and verify,

and do not necessarily perform data minimization before
sensitive data leaves one’s control.

This paper introduces Peekaboo, a new privacy-sensitive
architecture for developers to build smart home apps. Peek-
aboo has three key ideas. First, app developers must declare
all intended data collection behaviors in a text-based manifest
(see Fig.[Th), including under what conditions data will be sent
outside of the home to cloud services, where that data is being
sent to, and the granularity of the data itself. Second, to specify
these behaviors, developers choose from a small and fixed set
of operators with well-defined semantics, authoring a stream-
oriented pipeline similar to Unix pipes. This pipeline pre-
processes raw data from IoT devices in the home (e.g. sensor
data or usage history) into the granularity needed by the cloud
service. Third, an in-home trusted Peekaboo hub mediates
between all devices in the home and the outside Internet. This
hub enforces the declared behaviors in the manifests, and also
locally runs all of the operators specified in these manifests to
transform raw data before it is relayed to any cloud services.
Combined, these ideas make it so that developers can reduce
data collection by running pre-processing tasks on the in-home
trusted hub, and users and third-party auditors can inspect data
behaviors by analyzing these manifests as well as any actual
data flows. Our approach also facilitates a number of privacy
features that can be supported by the hub itself, such as adding
additional conditions or transformations before data flows out,
or transforming parts of the manifest into natural language
statements to make it easier for lay people to understand what
data will be sent out, when, and to where.

For example, the “HelloVisitor” app (Fig. [T) identifies
visitors using faces in images. Today’s video doorbells often
send captured raw photos to the cloud when they detect a
scene change. By applying a pre-processing pipeline (i.e.,
face detection and image cropping), HelloVisitor can avoid
sending images of people or vehicles simply passing by, thus
minimizing data egress to just what the app needs to operate.

Peekaboo’s architecture is based on an analysis (§III) we
conducted of 200+ smart home scenarios drawn from the
research literature and design fiction interviews we conducted.
This analysis led to two insights. First, many apps do not
need raw sensor or log data, but rather a transformed or
refined version. Second, while it cannot support all smart home
scenarios, our approach of using a small and fixed set of
operators can support a surprisingly large number of scenarios.

We implemented a Peekaboo manifest authoring tool on top
of Node-Red, a mature, web-based, visual programming plat-
form [33]]. We developed the operators as a set of Node-Red
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Figure 1: The architecture of the “HelloVisitor” app. A developer creates a manifest making use of four chainable operators
(i.e., push, detect, select, and post) and adds a text string to specify the purpose. Once deployed, a camera streams the video
to the hub, which pre-processes the video so that only portions of images with detected faces are sent to cloud servers. Since
the semantics of each operator is known, it is easy to analyze the privacy-related behavior of apps (e.g. “this app only sends
images of faces to HelloVisitor.com”) and modify it if desired.

compatible building blocks. Further, we built the Peekaboo
runtime, which parses a manifest, retrieves raw sensor or log
data from IoT devices, sets up a data pipeline by assembling a
chain of operators, and streams the data through this pipeline.
Note that Peekaboo operators are device-agnostic, and rely on
runtime drivers to handle heterogeneous device APIs (similar
to HomeOS [17]). We deployed the Peekaboo runtime using
a Raspberry Pi connected to a TPU accelerator.

We conducted detailed experiments to validate the design
of Peekaboo. To understand the range and limitations of its
architecture, we first implemented 68 different manifests to
cover over 200 use cases and analyzed the types of pre-
processing in these manifests (§VII-A). We then used three
example manifests to demonstrate the feasibility of using
simple algorithms to reduce privacy risks while having little
impact on utility (§VII-B). We built five end-to-end Peekaboo
apps, covering 5 data types (video, image, audio, tabular, and
scalar) and used these apps to evaluate system performance.
We also evaluated the scalability of our low-cost Rasberry Pi
setup (~=$100), showing it can support more than 25 inference
tasks and 100 filtering transformations per second (§VII-C).
Finally, we demonstrated how Peekaboo’s architecture, and the
hub specifically, can support three kinds of privacy features
across all apps (§VII-D). Specifically, we show how a static
analysis tool can generate natural language descriptions and
privacy nutrition labels [20] of behaviors based on operator
pipelines, how an arbitrary manifest can be extended with
time-based scheduling features, and how rate limiting can
be easily added to a data flow. We performed a preliminary
developer study to evaluate Pekaboo’s usability, but due to
space constraints we discuss it in our technical report [37].

We make the following contributions in this paper:

« A novel software architecture, Peekaboo, that helps devel-
opers collect sensitive smart home data in a fine-grained
and flexible manner, while also making the process trans-
parent, enforceable, centrally manageable, and extensible.

o A study of over 200 unique smart home use cases to
design a taxonomy of reusable pre-processing operators
that can feasibly be implemented at the Peekaboo hub to

enforce privacy requirements.

« An end-to-end open-source prototype implementatiorﬂ of
a Peekaboo hub on a Raspberry PI platform with a TPU
accelerator.

o A detailed evaluation of Peekaboo’s expressiveness based
on coverage of smart home scenarios, system perfor-
mance, data minimization, and application-independent
privacy features.

II. PEEKABOO DESIGN OVERVIEW

Peekaboo has three main components. The first is developer-
specified manifests that declare all data pre-processing
pipelines. Note that the simplest manifest can just describe
getting data from IoT devices and sending it to the cloud
if no pre-processing is needed. The second is a fixed set of
reusable and chainable operators to specify these pipelines.
The third is an in-home trusted hub that enforces these
manifests and mediates access between edge devices and the
wider Internet. We present more details about our design
rationale and tradeoffs below.

Peekaboo’s manifest is a natural evolution of Android
permissions [22], [57] and Manufacturer Usage Description
(MUD) whitelists [13]] for IoT devices. In Android, developers
must explicitly declare permissions in an app’s manifest so that
it can access protected resources (e.g., location or SMS mes-
sages). Similarly, MUDs allow IoT device makers to declare
a device’s intended communication patterns. The rationale is
that many IoT devices are expected to communicate with only
a few remote servers known a priori, and so declaring the
device’s behaviors allows the network to blacklist unknown
traffic requests.

However, a weakness with Android’s permission system is
that it is binary all-or-nothing access. For instance, an app
developer might need to access SMS messages from just one
phone number for two-factor authentication, but Android only
offers access to all SMS messages or none. Furthermore, while
the developer can display text in the app or in a privacy policy
that the app will only access messages from one source once,
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there is no easy way for a user to verify this behavior. One
solution is to offer many fine-grained permissions for every
potential use case, but this would lead to an explosion of
permissions that would be onerous for developers to program,
unwieldy for users to configure, and complex for platform
builders to support.

Peekaboo proposes an alternative approach, requiring devel-

opers to declare the data collection behavior inside a text-based
manifest using operators, with the hub only allowing declared
flows. With Peekaboo, a user can install a new smart home
app by simply downloading a manifest to the hub rather than a
binary. This approach offers more flexibility than permissions,
as well as a mechanism for enforcement. It also offers users
(and auditors) more transparency about a device’s behavior, in
terms of what data will flow out, at what granularity, where it
will go, and under what conditions.
Threat model: We envision that future third-party developers
can build and distribute sophisticated ubiquitous computing
apps through smart home App Stores, similar to today’s app
stores for smartphones. However, these smart home app devel-
opers, similar to mobile app developers, might deliberately or
inadvertently collect more data than is necessary. Peekaboo’s
goal is to limit data egress by such developers, while also
making it easier for users and auditors to verify the intended
behaviors and data practices of their IoT apps.

We make the following assumptions: (1) Trusted Hub: The
Peekaboo Hub, developed by platform providers (e.g., Apple,
Google), is trusted and uncompromised. (2) loT Devices:
We assume that the Peekaboo hub can isolate IoT devices
and only allow whitelisted outgoing data flows, similar to
the MUD [13]. All actual IoT Devices are required to send
data through the Peekaboo hub, and do not circumvent the
Peekaboo hub, either through an independent or covert side-
channel. (3) Operators: We assume that the operators that
we have created are themselves secure and do not have
vulnerabilities. The source code of operators will be made
open source and allow for verification, audits, and updates
as needed. We note that while our threat model assumes that
devices within the home are trusted, it does not make a similar
assumption about cloud services.

III. ANALYSIS OF SMART HOME SCENARIOS

To inform the design of Peekaboo, we collected over 200
smart home use cases and examined the feasibility and trade-
offs of doing pre-processing on a hub. Overall, our analysis
suggests that, while it cannot support all smart home scenarios,
pre-processing data locally before it leaves a smart home via
a small set of operators can indeed support a wide range of
smart home apps.

Collecting smart home use cases. Since smart home appli-
cations are not yet as popular as those on smartphones [44],
we chose to study use cases beyond today’s commercially
available products, sourcing applications through three ap-
proaches. First, we conducted a literature review of sensor-
based scenarios for smart homes (e.g., [46]). Second, we
surveyed the mobile privacy research literature (e.g., [211],

[38], [49]) to understand common data use patterns by mobile
app developers since many of them apply to IoT scenarios.
Third, we conducted design fiction interviews [19] with 7
participants (3 female, 4 male) across different age groups
(min=21, max=60, avg=32) to broaden our set of use cases
(See details in Appendix §A). In total, we gathered over 200
unique smart home use cases.

Method. We clustered similar use cases, resulting in 37 smart
home apps spanning different sensors and locations in a home
(Appendix Table [V). We then analyzed what data these apps
needed to operate. Specifically, we enumerated why these
apps need to collect data (e.g., sensing, analytics, system
diagnostics), analyzed potential requirements and constraints
in using this data (e.g., compute load, proprietary algorithms,
business models), and concluded with what we felt were
reasonable outgoing data granularity for each data collection
purpose. For example, suppose that the developer of a video
doorbell app wants to build an online album for visitors to
the home. A reasonable data requirement of this app is face
images. We enumerated these data requirements for different
purposes in Appendix Table organizing them by data type.

Results. We make the following key observations. First, most
cloud services do not need raw sensor or log data. For
example, an app that uses images to detect potential water
leaks likely only needs the parts of the original image showing
the floor. A smart lighting app which needs to infer the
brightness of a room from a camera only needs derived
brightness values rather than the raw image. Table [V]] offers
a quantitative view of data granularity requirements across
various scenarios. Only 4 out of 37 camera usages require
raw data, while the rest only need either derived or partial
data. Beyond cameras, we found that only 19 out of 61 cloud
services require raw data, while 8 were scalar values (e.g., a
binary door status sensor).

Second, most pre-processing functions share similar
data-agnostic data actions, suggesting the feasibility of using
a small set of reusable operators to replace these repetitive
pre-processing implementations. At first blush, the number of
pre-processing functions appears huge, since we need to cover
various data types, output data granularity (e.g., face, objects,
audio events, abnormal data), and filter/transform operations
(e.g., image cropping, audio spectrum extraction). However,
by enumerating the 200+ smart home uses, we find that
there exists consistent, simple, and data-agnostic semantics
behind most of the functions. In Table we categorize all
the output data granularity into two classes. Partial original
data is a subset of the raw sensor data in the original data
representation, such as the parts of an image with faces
extracted, audio recording segments containing human speech
only, and a column in a table. Derived data is computed from
the raw data, often resulting in a new data representation (e.g.,
the keypoints of a human pose). We use two verbs, “select” and
“extract,” to summarize all the functions that output “partial
original” and “derived data,” respectively.

Third, many of these pre-processing functions are
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Figure 2: The hub program for “HelloVisitor” (Fig. . Operators come with a few configurable parameters and have clearly
defined ways to interact with a uniform data model (dashed boxes). For example, the detect operator only modifies the
“inference” field. The select operator modifies the “data” field based on the “inference” field. We highlight the affected data
fields with underscores. Operators are open source to help with verification of their behaviors.

lightweight and non-proprietary, suggesting that they can
be run on a low-end smart home hub. For example, pre-
trained machine learning models like face detection, functions
like inferring brightness, as well as database-like operations
on tabular data (project, select, sum, average) are relatively
straightforward, openly available, and fast to compute.

IV. PROGRAMMING MANIFESTS USING OPERATORS

We discuss the design of Peekaboo’s manifest and operators,
plus the rationale and tradeoffs behind our design. The mani-
fest and operators need to be expressive enough to support a
wide range of scenarios, easy to author for developers, easy to
comprehend for auditors, and beneficial for privacy protection.

Peekaboo uses a Pipe-and-Filter software architecture [24],
modeling a hub program as a set of connections between
a set of stateless operators with known semantics. Figure [2]
presents a data pre-processing pipeline from the HelloVisitor
app, which can be abstracted into a directed acyclic graph
(DAG) of operators. The first operator, a push operator named
“wait for images”, specifies the raw image retrieval behavior
(e.g., pull v.s. push, frequency, resolution) and gets raw image
from the Peekaboo runtime when there is a motion event. The
second operator, detect, annotates the bounding boxes of faces
inside the raw image. Next is “crop face”, a select operator
that crops the image to output a set of face images based
on annotated bounding boxes. Finally, “send2cloud” is a post
operator with outgoing network access, which posts cropped
faces to a remote cloud service.

provider| inference] o filter | {network| utility |
pull ) (detect) H(spoof ) post ) inject)

push ) H(classify)  HCnoisify ) publish )

extract) [(select) stream ) debug)

Figure 3: The taxonomy of Peekaboo operators. Each operator
corresponds to a "verb" statement relative to the operator itself.
For example, the pull operator pulls data from the hub runtime.

A. Abstracting Reusable Operators

At a high level, pre-processing pipelines do three things:
collect raw data from edge devices, transform that data into
the targeted granularity, and send the processed data to external
servers. Although the exact desired data actions vary across
use cases, the high-level data pre-processing semantics are
surprisingly similar across data types. For example, a noisify
data action denatures the original data slightly by imposing
some noise, without changing the original data representation
format, such as blurring an image, changing pitch/tempo of
audio, or distorting numerical values by a small amount.

We used best practices in API design (e.g. [9]) to guide the
design of these operators. We started with a few use cases,
programmed them using our initial API, and iterated on the
API as we expanded the supported use cases. Based on the data
transform behaviors, we created sixteen operators grouped into
five categories (Fig. [3): provider, inference, filter,
network, and utility. Developers can specify the behav-
ior of an operator by configuring its associated properties.

Inferring and filtering target content. In contrast to the
binary all-or-nothing data access control, Peekaboo aims to
enable a new fine-grained semantic-based data access control,
which requires developers to declare when the app collects
data (e.g., when a baby is crying) and what data content would
be collected (e.g., face images, speech audios). To achieve this,
we introduce two sets of operators: inference operators
that can annotate data contents (e.g., the bounding boxes of
faces, the key points of a body pose), and £ilter operators
that filter based on the annotations. For example, HelloVisitor
first uses a detect operator to annotate the bounding boxes of
faces and then uses a select operator to crop the image based
on annotated bounding boxes.

We summarize inference tasks into three primitives: de-
tecting instances of objects, classifying the dominant content
category, and extracting derived data (e.g., audio frequency
spectrum). We also examined common privacy countermea-
sures [2], [18]], [36l, [43] to determine five types of filter
operators: spoof for replacing the payload with an artificial
replacement, noisify for injecting a configurable random noise,
select for keeping partial raw data, aggregate for summarizing
statistics, and retrieve for overwriting the payload data with
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Figure 4: A water leak detection app pulls an image from the

camera every 30 minutes, detects the floor area using image

segmentation algorithms, and sends the image containing only the floor to the server. The app protects users’ privacy by only

sending the floor pixels to the cloud.

derived data.

The abstractions of operators are somewhat analogous to
abstract classes in object-oriented programming, and devel-
opers can specify the exact data transformation they want
via configuring the properties of each operator. The runtime
then maps the manifest specification to the concrete subclass
implementations based on the properties. For example, the
detect operators in Figs. 2] and ] have different target content
properties, so they are mapped to two different data transfor-
mations. Further, there may be multiple face detection operator
implementations, and developers can let the runtime determine
which one to use or specify one explicitly. We enumerate
supported data transformations in Appendix Figure

The key property for the inference and filter operators is
target content (e.g., face in Fig. 2] and floor in Fig. ). The
target content is a type of semantic annotation supported by
integrated inference algorithms, which can then be filtered
accordingly using filter operators. Peekaboo currently provides
several built-in state-of-the-art inference algorithms using pre-
trained machine learning models, which support over 90 visual
categories [10], [50] (e.g., face, person, floor, table), 632 audio
classes [25] (e.g., baby crying), and many other individual
categories (e.g., body pose [51], heart rate [8]], audio frequency
spectrum, brightness). Developers can choose among these
options using a dropdown menu in the authoring interface
(Fig. [10).

Note that a Peekaboo runtime only supports a fixed set
of operators and property options enabled by the pre-loaded
implementations. We do not allow operators to be dynamically
loaded because we would not know the semantics of that
operator, and it may have undesired behaviors.

Collecting raw and relaying processed data. To install a
Peekaboo app, users need to bind the manifest to compatible
devices, similar to how users install a SmartThings App [67]]
today. Developers have to specify required device drivers in
provider operators (i.e., push and pull), so the hub runtime
can determine compatible devices.

Here, push and pull represent two styles of data access:
passively waiting for pushed data from drivers and actively
pulling from drivers. For example, HelloVisitor (Fig. [2) starts
with a push operator. When there is a significant change in the
visual scene, the Peekaboo runtime sends an image to the push
operator to trigger subsequent operators. In contrast, Fig [
shows the hub program of a water leak detection app, which
pulls an image from the camera every 30 minutes.

Finally, network operators are the only group of operators

that can send data outside. Peekaboo currently has three
operators: post for HTTP/S post, publish for MQTT Pub/Sub,
and stream for RTSP video streaming. Developers can con-
figure the provider and network operators to enable SSL
connections between the IoT devices and the hub, and between
the hub and remote servers, similar to the Network security
configuration in Android [15].

B. Chaining Operators Together

In this section, we present more details on how operators
are connected together.

Data model. Peckaboo uses a uniform data structure between
operators (see Figures [2] and ). The basic data structure (i.e.,
a Peekaboo data item) is a map, and the message transmitted
between operators is an array of such items. An example map
is shown below.

{“datatype” : “video | image | audio | tabular | scalar”,
“contenttype” : “raw| face|person|dog | speech|...”,
“inference” : [{.}| {...}| -],
“data” : {raw sensor data},
“process” : {devicein formation, operation history}}

A Peekaboo data item only stores one unit of the data (e.g.,
an image, audio file, tabular row, or scalar value), while the
inference field contains a list of annotations. Suppose the input
of HelloVisitor is an image with multiple faces. Here, detect
face will write multiple face annotations to the inference field,
and each face annotation is a tabular Peekaboo data item. crop
face will then generate a list of Peekaboo data items, where
each corresponds to one face image (Fig. 2).

Composing pipelines. To build a data pre-processing pipeline,
developers connect operators’ outputs to others’ inputs and
assemble them into a directed acyclic graph. All operators,
except join (described more below), take only input from one
prior operator. This design avoids synchronization issues since
the execution of operators is asynchronous.

In contrast, developers can connect an operator’s output
to multiple operators’ inputs. The preceding operator creates
a copy of the output message for each connection to avoid
interference and potential multithreading problems.

Supporting more complex logic. Figs. 2] and [ show two
simple pipelines. However, these linear pipelines are insuffi-
cient for many applications. Imagine a baby monitoring app
that only sends input audio to an external server when the hub
program detects a baby crying (Fig. [5). With a linear pipeline
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Figure 5: A baby monitoring app only sends audio containing a crying sound to the server. The retrieve operator replaces the
“data” field with the “inference® field. The join operator merges the outputs from wait for audio and retrieve crying, passing
its output onward when both input streams arrive. Finally, the post operator only sends the audio data item outside, since its

data type parameter is “audio”.

this is infeasible since when we use a retrieve operator to check
if the audio contains baby crying, the subsequent operators no
longer have access to the original data. More fundamentally,
this is a common constraint of many dataflow programming
models, where the data itself controls the program’s flow.

We address this limitation by introducing the join operator
to support AND, OR, NOT logic. Join is the only operator that
can take input from multiple operators and fuse asynchronous
data flows into one pipeline. A key property for join is whether
it is blocking or non-blocking. A non-blocking join forwards
incoming data whenever it becomes available, equivalent to an
OR logical operator. In contrast, a blocking join only merges
and forwards incoming messages if they meet specified criteria
(e.g., all the incoming messages arrive within a small time
window). Note that incoming messages can be from the same
prior operator. For example, a blocking join can block the data
flow until there are multiple “baby crying” events, to confirm
that a certain accuracy level is met.

C. Error Handling & Debugging Support

It is possible for the flow between operators to be Peekaboo
data items with different data types due to flow fusion. Without
careful design, connecting arbitrary operators together may
result in unpredictable errors. An essential property of our
API design is that each operator is associated with a target
data type. An operator only processes corresponding data items
selectively, so the operators will not try to detect faces in a
scalar value object.

Another important design issue is that inference and filter
operators handle unmatched data types differently. Inference
operators will leave unmatched items untouched, while filter
operators will filter them out. This design strengthens Peek-
aboo’s annotation capability since developers now can apply
multiple inference operators to the same data item. Meanwhile,
it enhances privacy as well: data can flow to the next operator
only if the developer matches the data type explicitly.

To help with debugging, developers can append a debug
operator after any operator, which will print output data to
a console window. We also incorporated example data (e.g.,
test videos, photos, audios, and tabular data) as options of the
pull operator and designed the inject operator to support both
manual and interval triggers, so developers can quickly test
pipelines within the editor without actual hardware.

V. ILLUSTRATING PRE-PROCESSING USING EXAMPLES

We present three example manifests to illustrate the use of
Peekaboo’s APIs.

Smart TV logs. A smart TV developer is interested in
collecting users’ viewing history for advertising purposes. This
smart TV stores viewing history in a simple tabular form.
Here, we assume developers want to do better with respect
to privacy, perhaps for legal compliance, market competition,
or because hubs like Peekaboo are widely adopted in the
future and companies want to assure customers that they
are only collecting minimal data. Fig. [6] shows an example
pipeline we built to show how a developer can compute
an aggregate view of video consumption on the hub, thus
sending out a less sensitive summary. This example also shows
Peekaboo’s support for database-like queries (e.g., SELECT,
AGGREGATE, JOIN, WHERE), which also work in other
tasks (e.g., counting people in an image).

Incognito voice assistant. Fig. [/| presents a manifest of a
smart voice assistant that we developed, which can offer a
speech anonymization feature that protects users from expos-
ing undesired voice fingerprints. In contrast to Google’s “Guest
Mode” [29], this manifest can assure users that their voice
fingerprint identities are protected.

Beyond database-like queries, Peekaboo introduces two
important extensions, content-based selection and explicit
noise injection, to accommodate the smart home context and
privacy-preserving goals. This example illustrates how the
combination of inference and filter operators can filter out non-
speech audio segments. Further, this example uses a noisify
operator to hide speaker identity, which changes the tempos
and pitch of the captured audio with a configurable random
variation (e.g., 5%).

Productivity tracking. PC Applications like RescueTime [66]]
help users be more productive by helping them understand
how they spend their time. As working from home becomes
increasingly common, we envision a smart home version that
track a person’s productivity beyond PCs. Implementing such
an app in a conventional cloud-based architecture can be
worrisome due to privacy concerns similar to those in the
voice assistant app. Fig. [§] presents an example pre-processing
pipeline of a productivity tracking app using a camera, which
transmits extracted poses to the cloud.
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This example shows use of Peekaboo’s flexible conditional
flow control. Peekaboo operators support an intrinsic condition
flow control similar to Unix Pipes. The runtime executes an
operator only if its input is ready, and the filter operators only
forward non-empty processed data to subsequent operators.
For example, if the retrieve pose operator (Fig. [8) cannot find
any extracted poses in its input, the flow stops propagating.
This simple design makes it easy for Peekaboo APIs to support
IFTTT-like trigger-action programs natively.

This example also shows how the output of a single operator
can be forwarded to multiple operators, similar in spirit to
Unix’s tee command. The blocking and non-blocking join
operators allow Peekaboo to accommodate distributed asyn-
chronous sensors, supporting smart home apps with complex
logic across distributed devices within the same home.

VI. IMPLEMENTING THE HUB RUNTIME

We implemented Peekaboo by leveraging Node-Red [33]],
a visual programming platform developed by IBM to wire
together devices using a library of customized blocks. The
notion of “blocks” and directional “connections” in the vi-
sual programming language are well suited to Peekaboo’s
chainable operators. We implemented Peekaboo operators as

a set of Node-Red compatible building blocks, so developers
can use a Node-Red web-based flow editor Ul as the pro-
gramming environment and leverage its built-in debugging
utilities (e.g., displaying images, playing an audio, printing
output data). The source code is available at https://github.
com/CMUChimpsLab/Peekabool

Operators: Each Peekaboo operator is written in JavaScript
and executed by a Node-red runtime once deployed. One
challenge in Peekaboo is the relative lack of support for ma-
chine learning algorithms in JavaScript. Our experiments with
multiple JS implementations (e.g., opencv4nodejs) showed
them to be slow and inaccurate. Instead, we design the Peek-
aboo runtime using a microservice architecture, where several
ML inference algorithms are hosted in containerized services
running on the Peekaboo hub, and only Peekaboo inference
operators can communicate with these services locally through
web sockets.

Drivers to obtain sensor data: Each Peekaboo hub program
gets data from hub runtime drivers rather than querying hard-
ware directly. Developers may implement customized runtime
drivers in arbitrary code, similar to HomeOS [17]. These
drivers retrieve raw sensor data (video, image, audio, tabular,
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connection grammar.

or scalar) from edge devices, format it (e.g., b64string for
images, bytes for video/audio, JSON for tabular data), and
publish the data in a local socket. The hub program can
either pull the latest data (e.g., retrieving a real-time photo)
from the driver or register a push subscription on the driver
(e.g., receiving a photo if there is a significant scene change).
Note that these runtime drivers handle device heterogeneity
and specifics of getting data from them, while the Peekaboo
operators are device-agnostic data stream operators.

Runtime: We deployed the Peekaboo runtime (i.e., Node-Red,
drivers, containerized inference services) on a Raspberry Pi 4B
(4GB), along with a Google Coral TPU and a Zigbee adaptor,
with a total cost of &~ $100 USD. Most of our deep-learning-
based inference tasks use pre-trained MobileNet [68] models
and are outsourced to the TPU.

End-to-end applications: We developed drivers for four
Peekaboo IoT devices, a customized smart camera and smart
speaker using Google AIY Kits [28], a simulated RESTFul
API that generates tabular smart TV logs, and an Aqara Zigbee
humidity sensor, covering the five data types in Table
(video, image, audio, tabular, and scalar).

We built five end-to-end applications using these devices:
video based heart rate measurement [8]], HelloVisitor (Fig. EI),
incognito Speech Assistant (Fig. [7), Smart TV logs collector
(Fig. [6), and humidity-based irrigation reminder. We built
customized cloud services and web Uls for all five apps.

VII. EVALUATION

This section presents detailed experimental evaluations of
the feasibility and benefits of Peekaboo. We first created 68
different manifests for all the 200+ smart home use cases
(Section . Note, these manifests only work with bare-bone
server implementations as we do not have proprietary backend
implementations from manufacturers. We then analyzed types
of pre-processing opportunities that can be enabled by these
manifests (§VII-A). We also investigated the feasibility of
balancing the tradeoff between privacy protection and utility

inference operator.

for each type of pre-processing (§VII-B). We later built five
end-to-end real-world Peekaboo apps, covering five data types
and used these apps to evaluate our system performance (i.e.,
latency and throughput) (§VII-C). Finally, we demonstrate
several hub privacy features that both developers and users
essentially get for free, which work across apps and devices

(YVILD).

A. Evaluating Peekaboo’s coverage of smart home scenarios

To validate the feasibility of Peekaboo, we authored mani-
fests to cover the use cases described in I

Method. A smart home use case can be realized through
different types of sensors. For example, a dedicated occupancy
sensor or a camera can enable an occupancy-based application,
although required data collection behaviors can differ. Two
authors collaboratively implemented one manifest for each
usage-sensor pair to explore different pre-processing oppor-
tunities. We found that many manifests could be reused for
multiple scenarios, and so this process resulted in 68 manifests.

Results. Of the 68 manifests, we only identified three that
always need raw data: a smart cooking device that uses a
camera to analyze ingredients, a smart toilet that analyzes poop
for diseases, and a microphone that performs spirometry [46].
For these kinds of apps, developers can directly connect a
provider operator to a network operator to send out the
raw data. While Peekaboo does not reduce data egress in these
cases, it still provides transparency of data collection (e.g.,
what data has been sent to the service provider, and how often)
and a binary on-off control.

For the other 65 manifests, Peekaboo APIs can enable at
least one of the following types of pre-processing: content
selection (e.g., cropping faces), conditional filtering (e.g., only
sending data if a person appears in the view), and explicit
noise injection (e.g., changing the pitch of an audio recording).
Table [llenumerates the breakdown of supported pre-processing
across all scenarios, as well as the unsupported reasons.



Table I: We implemented 68 unique manifests for over 200 smart home use cases, analyzed the types of pre-processing in
these manifests, and if the data needs for that use case could not be supported, we examined why.

’ Pre-processing ‘ #Scenarios supported

‘ Why Peekaboo could not support some of the scenarios

Content selection 64 / 68 e.g., hard to select content of interest, need to be used for online albums
Conditional filtering 57768 e.g., high-stake tasks, proprietary implementations, insufficient computing resources
Explicit noise injection | 51 / 68 e.g., high-stake tasks, injected noise may break the intended tasks

Always need raw data ‘ 3/68

the intersection of the three categories listed above

Content selection is the most common pre-processing (64
of 68 scenarios). Examples include cropping faces from im-
ages, extracting audio frequency spectrum, and aggregating
numerical values. We could not apply content selection to 4
apps for two reasons. First, the algorithms to select the content
of interest cannot run on a Peekaboo hub. For example, the
algorithm to recognize food ingredient is proprietary and may
require significant computational resources and frequent model
updates. Second, developers need raw data to fulfill the data
collection purpose. For example, automatic photography (e.g.,
Google Clips [3]]) needs to collect and store the original photo.

Conditional filtering is also common (57/68). Since many
smart home apps are event-driven, adding a local event filter
can significantly reduce data egress. For example, a manifest
that filters images based on the presence of faces can reduce
the number of outgoing images from a basic motion-activated
camera. However, one constraint of Peekaboo’s architecture is
that the open-source hub algorithms may not be as accurate as
their cloud counterparts. As a result, we cannot insert filters for
high-stake tasks, e.g., elderly fall detection. Another constraint
is that some conditional filters might be proprietary with no
current open source equivalent (e.g., water leakage detection).
Finally, some conditional filters may require extensive compu-
tational power and storage, which cannot run on a local hub
(e.g., wanted criminal search using smart doorbells).

While it is possible to inject explicit noise into the data pre-
processing pipelines, there is one crucial privacy-utility trade-
off: the injected noise may break the intended functionality
and reduce the service quality. So we cannot explicitly inject
noise to apps for high-stake tasks. Besides, many scenarios
collect only coarse data (e.g., binary occupancy) or need raw
data, where explicit noise injection is not applicable.

B. Privacy-utility trade-offs

While some data transformations are unlikely to affect
service quality (e.g., many kinds of tabular data aggregation),
others might have negative impacts. A main concern for
content selection and conditional filtering is that the open-
source inference models on the hub may be less effective
than large proprietary machine learning models on the cloud.
Furthermore, for explicit noise injection, that noise might
break intended functionalities. While the actual trade-offs
depend heavily on the applications, we used three example
apps to demonstrate the feasibility of using simple algorithms
to reduce privacy risks while having little impact on utility.

Method. We chose three pre-processing tasks to evaluate:
a face-only video doorbell (HelloVisitor, Fig. content-

selection), a person-activated camera (Fig. 8] conditional filter-
ing), and an incognito voice assistant (Fig. [/| noise injection).
We chose these tasks because they represent different types
of pre-processing, the availability of labeled ground truth
data, and the availability of publicly accessible cloud-based
baselines.

The face-only video doorbell can improve privacy by only
sending images of faces, although Peekaboo’s operator might
miss some faces that a more capable cloud algorithm could
detect. Similarly, the person-activated camera reduces unnec-
essary outgoing images, but it may miss images that potentially
contain a person. For these two apps, we quantified the privacy
benefits using the percentage of data egress reduction in bytes
and the impact on utility using F1 scores. Finally, our incognito
voice assistant protects speakers’ identity by changing the
tempo and pitch of the captured audio with small random
variations using the noisify operator (<10%). We quantify the
privacy benefit by measuring speaker recognition error and the
utility impact using speech recognition error. We measured
accuracy using the Levenshtein function [74] to compare the
recognized speech text with the ground truth text.

We ran the experiments with multiple benchmark data
sets. First, we used the ChokePoint dataset [/5], a person
identification dataset under real-world surveillance conditions,
to test the face-only video doorbell. Next, we selected 457
“home office” videos from an in-home activity dataset [70]
to evaluate the person-activated cameras. Finally, we used
speech recordings from the CMU PDA database [58] to test the
incognito voice assistant (6 unique speakers, 112 unique audio
files). For each speaker, we used half of the audio files (7-15
files) for speaker enrollment and the other half for speaker
recognition and speech recognition. We used state-of-the-art
cloud-based solutions from Microsoft Cognitive Services (i.e.,
face detection, person detection, speaker recognition, speech
recognition) as the baseline [7].

Results. Table |l presents the privacy-utility tradeoffs across
our three example apps. The face-only camera reduces data
egress from 1 million full-resolution images (12 GB) to 64,000
face images (200 MB), while the F-1 score of the local model
is only 1% lower than the Microsoft Azure API. The person-
activated app replaces 2868 images (62.8%) with less privacy-
sensitive pose key points and removes unnecessary background
pixels from 770 images (16.8%), resulting in a data reduction
of 95.7% (from 164 MB to 7 MB). Meanwhile, the F-1 score
of the local model is only slightly lower than the Microsoft
Azure API (93.2% v.s. 96.2%). The incognito voice assistant




80.1+18.2

Execution time (ms

o
heart rate extraction (video)

51.7+14.2

object detection (image)
body pose extraction (image)

70.4%6.6
62.7+6.4

22.2+4.8
15.8+3.6

4.2+0.7 1.6+0.3

acoustic event recognition

audio FFT

scalar comparison

image cropping

audio pitch shifts
tabular aggregation
inference retrieving

image blurring
audio segmentation

Figure 11: The execution times (in milliseconds) for transforming 1-second videos/audios (normalized), 800x600 images, and a
5-column table with 100 entries. Our low-cost setup can support 25 inference tasks and more than 100 filtering transformations
per second, which we believe is sufficient to support many smart home scenarios.

Table II: Simple pre-processing algorithms provide significant
improvement in the amount of potentially sensitive data sent,

while maintaining utility.

Privacy Metric

Utility Metric

Outgoing data F1 Score
Peekaboo face doorbell 6.0% 94.3%
Baseline doorbell 100% 95.3%
Peekaboo person camera 4.3% 93.2%
Baseline camera 100% 96.2%

Speaker Recog | Speech Word

Accuracy Error Rate
Peekaboo voice assistant 27.7% 11.88%
Baseline voice assistant 100% 9.27%

reduces speaker identification accuracy from 100% to 27.68%
(lower is better since it provides more anonymity) while only
reducing speech recognition accuracy by 2.61%. Our results
show that Peekaboo’s pre-processing (e.g., small random pitch
shifts, pre-filtering) can significantly reduce data egress with
minor adverse impacts on the intended tasks.

C. System Performance

Peekaboo’s architecture has two major constraints. The first
is that the hub has more limited computing resources than
cloud servers. Resource constraints on the hub may lead to
pre-processing of data taking longer, or limit the ability to
scale to many simultaneous pre-processing tasks in a smart
home. Second, the pipe-and-filter architectural style introduces
latency due to repetitive parsing and unparsing across filters.
We conducted experiments to quantify the computation load
(i.e., throughput) of data transformations and the end-to-end
latency of different pipelines. We note, however, that our
prototype is not highly optimized and is running on relatively
low-end hardware, so this evaluation is intended to provide a
rough lower bound on performance.

Method. We deployed the hub runtime to a low-cost setup
and used the four sensors as the edge devices, both described
in We also set up a cloud server on an AWS p2.xlarge
instance, in an AWS region close to the authors institution.
We first characterized the computation load of common data
transformations identified in §VII-A] including both inference
and filtering. For inference, we profiled object detection (e.g.,
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face, person, floor), audio event recognition (e.g., baby crying,
water dripping), audio frequency spectrum extraction, body
pose extraction, video heart rate extraction and scalar value
comparison. For filtering, we profiled object-based image
cropping, object-based image blurring, audio segmentation,
audio pitch random shifts, tabular data aggregation, and in-
ference results retrieving.

We used 3 videos from Intel’s IoT Devkit [34] (~2 min)
to test video transformations, 3 sound clips from Google
AudioSet [25] (~10 seconds) to test audio transformations,
10 images from the ChokePoint dataset [[76] (800x600) to test
image transformations, and a synthetic dataset containing 100
entries to test tabular data transformations. We then measured
the average computation time of 1000 repetitions.

Next, we compared the difference in latency when running
pre-processing tasks on the hub vs running them on the cloud.
With respect to the former, we measured the pre-processing
latency on the hub and the transmission time of sending the
processed data to the cloud. With respect to the latter, we
measured the transmission time of sending the raw data to the
cloud and the pre-processing latency on the cloud. We used the
dataset mentioned above to test 3 end-to-end apps described
in According to prior work [6], the frequency of network
events from typical sensors (e.g., sleep monitors, nest cameras,
switches) varies from a few per minute to a few per hour. We
stress tested the requests at an interval of 0.5 seconds and
measured the average latency of 1000 repetitions.

Results: Figure presents the individual completion times
on a Raspberry Pi 4B for common data transformations. Most
filtering tasks take 5 ms to 80 ms to complete, while the infer-
ence tasks on multimedia data are generally more expensive.
Although inference tasks (e.g., object detection) take around
80 ms to complete, they consume little CPU resources since
the core computation are outsourced to the TPU device, and
the operator runs asynchronously. On average, most of the
ML models we use (MobileNet [68]) take around 40 ms on
the TPU per inference. So we estimate that our low-cost setup
can support 25 inference tasks and more than 100 filtering
transformations per second, which we believe is sufficient to
simultaneously support many smart home scenarios.

Figure [I2] presents the average latency for different apps,
showing that Peekaboo can achieve a latency comparable to
conventional cloud-based approaches. The TV log app’s hub
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Figure 12: The latencies for the three apps are comparable to
the conventional cloud-based approaches. The pre-processing
times for TV logs are negligible. Although Peekaboo apps
spend more time pre-processing data on the hub than on the
cloud, they may spend less time on data transmission since
pre-processing can reduce outgoing data size.

program spends negligible time on log aggregation but reduces
the outgoing data size significantly, thus experiencing lower
latency with Peekaboo. Similarly, Peekaboo’s productivity
tracking app spends 210.2 ms (std=49.6 ms) to extract the
pose, reducing the network transmission time from 275.3 ms
(std=50ms) to 40.1 ms (std=11.1ms). The Peekaboo speech
assistant app takes 106ms more to pre-process and send a 10-
second sound clip to the cloud than the conventional approach
since the pre-processing in this case does not reduce the
outgoing data size. In summary, the latency for pre-processing
outgoing data on the hub is comparable to the conventional
cloud-based approach. Some Peekaboo apps have reduced data
transmission time due to the reduced size of outgoing data.

D. Hub Privacy Features

An advantage of Peekaboo’s chained operators is that their
structure and well-known semantics make it fairly easy to
analyze and modify app behavior. We developed four built-
in features to demonstrate the mechanisms.

We built a simple static analyzer to generate natural lan-
guage privacy descriptions based on the manifest automati-
cally, which can support users’ decision-making in installing a
new Peekaboo app. For any manifest, we can describe its data
collection behavior using a four-element template: [trigger],
the app sends [content data] to [destination], if [condition].
We derived a set of heuristics to annotate the above properties
for each edge in the pipeline based on the operator behavior.
For example, the analyzer annotates [content data] as face
images after processing by a cropping face operator. The
analyzer annotates the [condition] if there is a join operator
in the manifest and [frigger] based on the inject or push
operator. The analyzer stops the annotation when it traverses
the whole graph and uses the derived properties to explain the
data collection behavior of each network operator. Table [ITI]
enumerates explanations generated for apps in

Table III: Auto-generated explanations for 3 case studies
using a simple template. We highlight the properties of the
template using underlines: trigger, content data, destination
and conditions.

#2 | When the microphone detects a trigger phrase, the app
sends anonymized speech audios to www.abc.com.
#3 For every 30 minutes, the app sends extracted poses to
www.abc.com.
For every 30 minutes, the app sends cropped person
images to www.abc.com if the app cannot recognize
poses from the raw image.
join
(blocking)
pull classify retrieve
timestamp if in 5pm-7pm| not in range

Figure 13: By inserting the subgraph of time checking (high-
lighted in red boxes), the modified HelloVisitor manifest will
not send data outside between 5 pm and 7 pm.

We also implemented a time-based scheduling feature,
which can pragmatically modify a Peekaboo manifest by
inserting a subgraph of operators (highlighted in red boxes in
Fig. [T3)), so the app cannot send data outside at certain times.
Imagine that a family does not want their faces captured by
the video doorbell when they arrive home, and most family
members usually arrive between 5 pm and 7 pm. Based on
users’ time specifications, this feature can automatically insert
a time-checking branch (i.e., pull->classify->retrieve) to check
the time, and merge the two branches using a blocking join
operator. In doing so, the data flow can only reach the network
operator if the time condition qualifies.

Another feature we built is pull rate-limiting, which allows
users to control the frequency at which a smart home app
pulls data by modifying the operator properties. Figure 4]
illustrates a water leak detection app, which pulls an image
from an existing smart camera every 30 minutes. Using pull
rate limiting, the runtime can modify the “interval” property
of the inject operator from 30 minutes to 120 minutes, making
the app only pull images every two hours.

Lastly, as a proof of concept, we combined the 3 above
features to generate live “privacy nutrition labels” that summa-
rizes an app’s behaviors (Fig.[I4). Apple now requires iOS app
developers to fill in a form to create a self-reported “nutrition
label” for privacy disclosures. However, it can be hard for
developers to accurately fill out these forms. Furthermore,
Apple and third parties cannot easily verify these declared be-
haviors. In contrast, Peekaboo’s labels can be auto-generated,
thus requiring less effort from developers, and always reflect
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Peekaboo runtime automatically.

the actual data practice.
VIII. RELATED WORK

Manifest & operators: There are many examples of using
manifests to create a sandboxed environment to contain un-
trusted applications (e.g., Janus [27], Android permissions [5]],
MUDs [13]]). In contrast to most existing manifests, which
often confine applications’ access to system resources (e.g.,
network, storage, sensors), Peekaboo’s manifest confines ac-
cess to data content (e.g., face images, speech audio) in a
fine-grained manner. Due to the vast number of data granular-
ities, the traditional manifest representation (i.e., raw access
enumeration) is no longer feasible. Peekaboo addresses this
challenge by allowing developers to assemble desired APIs
by wiring together a fixed set of operators.

The design of Peekaboo operators is inspired by Unix pipes
and PrivacyStreams [49]. PrivacyStreams splits single-pipeline
Android data processing into a number of reusable SQL-like
operators (e.g., sortby, filter, groupby), which can make data
processing more transparent. The key innovations of Peekaboo
are the integrated designs (a manifest, a fixed set of operators,
and a trusted runtime with pre-loaded implementations) and
the demonstration of using a small and fixed set of operators
to support a large number of data pre-processing scenarios.
These two ideas allow Peekaboo to offer many features that
PrivacyStreams cannot offer, such as OS-level enforcement
(i.e., developers can only collect data they claimed in the
manifest), additional built-in privacy features, and explicit
declarations of fine-grained data granularity (e.g., conditions).
Privacy-sensitive software architectures: A number of
privacy-sensitive architectures for IoT have been proposed as
alternatives to conventional cloud-based designs. One example
is to process all sensor data at the “edge”, thereby avoid-
ing sending data to the cloud [77]. Another approach is to
use trusted cloud computingand perform data minimization
through technologies like DIY hosting [60], privacy-sensitive
machine learning [12]], [26l], [47]], [54]], and federated learning
techniques [42]. However, these approaches often come with
tradeoffs such as sacrificing computational efficiency [47],
[48]], development flexibility [26], [48]], or service quality [71].

In contrast, Peekaboo offers a hybrid approach that does
some pre-processing locally on the hub while also allowing
developers to use cloud services in a manner that they are
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accustomed to [31]]. Peekaboo’s hub is similar in spirit to
cloudlets [69], but the key difference is that the computation
running on the hub is structured and enforced using the
operator-based manifest. Peekaboo is also inspired by past
smart home hub/gateway/firewall projects [11l], [14], [41],
[53], [78]]. Peekaboo has two major differences. First, Peeka-
boo enables data minimization at the data content level (e.g.,
only sending face images), while existing projects can only
block individual outgoing network requests. Second, Peekaboo
requires developers to explicitly declare the data collection
behaviors, facilitating auditing and enforcement.

Privacy awareness and control: A complementary approach
to privacy is better mechanisms for notice and choice [2],
[L7], [32]], [52], [40], e.g. at runtime for mobile apps [16],
[57], often extended to smart home contexts [[17]. In the case
of IoT privacy, merely allowing or denying sensor access
is insufficient and this all-or-nothing access control either
exposes sensitive data or breaks the app functionality. In
response to this, recent efforts offer finer-grained control and
transparency, particularly on the fidelity of the data [1], [36],
(650, (73l

However, privacy support in these systems is often built
on an individual basis with no common structure, imposing
challenges for both app development and user privacy man-
agement. Third-party auditors also cannot easily verify if these
features work as claimed [56]], [[61]. Peekaboo addresses these
needs through a novel privacy architecture, which can enable
transparent and enforceable data collection, and offer centrally
manageable hub privacy features.

IX. DISCUSSION

Architecture adoption: Many requirements for the Peekaboo
hub are well aligned with the roles of recent commercial “hub”
products, which may facilitate adoption. For example, many
hubs (e.g., Philips Hue Smart Hub) serve as a central in-
home gateway to connect devices, mediating access between
the internal devices and the Internet. In addition, most hubs
(e.g., Nest Hub Pro) have a moderate amount of computing
power to pre-process out-going data and offer a centralized
hub user interface. A few hubs (e.g., Samsung SmartThings
Hub) even behave like an early app store.

Alternative implementations: Peeckaboo’s manifest is a new
program representation that offers more flexibility than all-or-
nothing access, while being more structural and verifiable than
arbitrary code (e.g., Java). Future work can also implement the
manifest in other flow-based programming frameworks (e.g.,
NoFlo, Pyperator) [45]. We chose Node-Red since it is popular
in the home automation hobbyist community, provides many
open-source device drivers, and has a mature user interface.

Design pattern adoption: The design of Peekaboo can be
generalized as a reusable design pattern for cases where first-
and third-parties are trying to access sensitive data, e.g.,
browser plugins, calendar APIs, and smartphones [64]. Our
core ideas of a fixed set of operators, a text-based manifest
where all outgoing data flows must be declared, and a trusted



computing platform with pre-loaded implementations can thus
be useful in these cases. For example, Google Calendar
only allows users to grant all-or-nothing access to third-party
developers. However, most apps (e.g., Zoom) do not need full
access. A future calendar API might offer a set of common
operators instead and allow developers to program their access
in Peekaboo-like manifests. This design pattern can make
data flows transparent, enforce data transformations, and allow
third-parties to build independent privacy features.

Role of users, developers, auditors in determining privacy-
utility trade-offs: Peekaboo has the potential to disincen-
tivize overcollection of data. We expect Peekaboo manifests
to be public, making it possible for app stores and third-
party auditors (e.g., Consumer Reports) to analyze manifests
programmatically at scale. Users can also see if the required
data granularity make sense, and flag items in a review if they
do not, block certain outgoing data, or choose not to install
an app. Altogether, this kind of transparency has the potential
for nudging developers to collect less data.

Hosting proprietary algorithms: Some of the best imple-
mentations of inference mechanisms such as keyword spotting,
keypoint tracking, and biometric authentication can be propri-
etary. Platform/hub builders may implement these algorithms
inside their hub drivers in the future, or hardware developers
can provide the functionality directly on the edge devices.

Extensibility: Peekaboo assumes a fixed set of operators and a
stable data model to support its data pre-processing pipelines.
Although the taxonomy in Fig. |3| may not be complete, we
anticipate that the list and semantics of operators will converge
quickly and remain stable for years. Further, platform builders
can extend the operator options by expanding supported data
transformations (e.g., removing all audible frequencies from
the audio [35]]) and adding new pre-trained models. Platform
builders can also develop new drivers to support more devices.

We expect the runtime to be updated over time, analogous
to getting a new version of Linux or Java. Also, similar to
Android’s manifest, a Peekaboo manifest will need to specify
a minimum required runtime version. We do not expect the
pre-loaded operators to grow into a large library of data
transformation functions. Instead, we believe a few simple and
common data transformations (e.g., tabular data aggregation,
image cropping/blurring) can cover many common scenarios
and go a long way towards improving privacy.

Benefits of Peekaboo: Peckaboo has three important advan-
tages over building data minimization features individually. (1)
Transparency. Individually built data minimization practices
are black boxes to outsiders. Indeed, even if developers open-
source their products or allow a third-party auditor to access
their codebases, inspecting the actual data collection behavior
is difficult. (2) Ease of development. Building data mini-
mization algorithms and user interfaces for privacy requires
significant effort. By authoring a Peekaboo manifest, Peekaboo
developers can leverage many built-in features for free. (3)
Centralized privacy management. If all developers build
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management interfaces individually, users would have to deal
with potential inconsistencies between these user interfaces
and their different semantics. In contrast, Peekaboo can offer
centralized, fine-grained features across devices.

X. FUTURE WORK & LIMITATIONS

End-to-end encryption: Peekaboo currently requires two
separate encrypted connections (i.e., devices-to-hub and hub-
to-servers) for its operation rather than end-to-end encryption
from device to server directly. While SSL proxy mechanisms
(e..g, [23], [39], [59], [63]) may provide a way to support end-
to-end encrypted connections with the ability to verify what
data is being sent, it is not clear whether they can support
Peekaboo’s operators that transform data. This is a current
limitation, and we defer this to future work.

More hub features: Beyond the four hub privacy features
introduced in §VII-D] further work may explore many other
hub privacy features by analyzing and rewriting the manifest
program. For example, the hub may aggregate the installed
manifests, make privacy nutrition labels interactive, enable
centralized privacy dashboards, and allow users to query
what/when/how data flows out. The hub can also potentially
allow users to apply global filters (e.g., blocking outgoing
face images) across manifests, e.g. to make guests more
comfortable with cameras around the house.

Manifests for other communication patterns: Peekaboo
focuses on whitelisting edge-to-cloud data flows to improve
privacy. A promising research direction is to generalize the
manifest for other communication patterns, such as device-to-
device, cloud-to-device, or even physical actuation. Ideally, we
may have a set of Peekaboo-like manifests for each [oT device,
whitelisting its interactions with the rest of the world in a
common, structured, useful, and understandable way. Such an
infrastructure can help users establish a correct mental model
of device behaviors, allow the hub to offer built-in protection
for the physical events (e.g., a bread toaster cannot run for
more than an hour), and ease software development.
XI. CONCLUSION

This paper introduces Peekaboo, a new IoT app develop-
ment framework to help developers build privacy-sensitive
smart home apps. Peekaboo offers a hybrid architecture, where
a local user-controlled hub pre-processes smart home data
in a structured manner before relaying it to external cloud
servers. In designing Peekaboo, we propose three key ideas:
(1) factoring out repetitive data pre-processing tasks from
the cloud side onto a user-controlled hub; (2) supporting the
implementation of these tasks through a fixed set of open-
source, reusable, and chainable operators; (3) describing the
data pre-processing pipelines in a text-based manifest file,
which only stores the operators’ specifications, but not the
operators’ actual implementation.
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APPENDIX
A. DESIGN FICTION INTERVIEW APPARATUS

We conducted design fiction interviews [19] with 7 participants (3 female, 4 male) across different age groups (min=21,
max=60, avg=32) to broaden our set of smart home use cases. Design fiction is a speculative design method, where participants
are asked to sketch diegetic prototypes in an imaginary story world. All participants had interacted with multiple smart home
products before. For the interview, we presented each participant with a hypothetical scenari(ﬂ and a floor plan of a home,
asking each participant to play the role of different family members and brainstorm different smart home functionality they
desired. We also asked participants to focus on the role’s needs, rather than feasibility of sensing or hardware availability.

The hypothetical scenario: Imagine a family of five members living in a single-family house. Jeff and Amy are husband
and wife respectively. Dave and Rob are their eight-year and seven-month-old kids. Jeff’s mother, Jen, helps look after the
baby, and Jeff’s brother Sam occasionally visits the house. The family plans to purchase a set of devices to enable different
smart home applications.

The role playing questions: If you are [JefflAmy\... ], what smart home usages do you want in the [basementlliving rooml...]?

"appname": "HelloVisitor",
o, App meta information (e.g., app name, app description, app developer)
"network-security-config": {},

"hubprogram": [ ———» Ahub program is stored as a list of operators and the connections.
‘ "id": "c3cb7854.b2e378" 7 Each operator is associated with a unique ID and an operator type,
"type": "push", since there may contain multiple operators of the same type.
"name": "wait for images", N .
"datasource”: "motion-detect-drivers", De\{elopers need to specify the properties of each operator
woowem during the hub program development.
"wires": [
"acb741fb.gef64", 1 Wires define the destination operators of all the output
"20eb4Sef . f232ba" ( connections using the unique id strings.
]
"— ,
"id": "ach741fb . aef64" | The next operator in the pipeline can be located by the

"type": "detect”, ' unique id in the wires field.

Figure 15: The manifest file of a hub program is stored in JSON format. The manifest file contains three types of information:
app meta information, security configuration, and the hub program presentation.

Table IV: Supported data transformation across data types.

H Data type | Operator Supported transformations H
Video Extract Extracting heart rates using [8§]]
Retrieve Keeping inference results but removing the video data
Image Detect Det?cting the boundipg box of 90 Common objgcts (Microsoft COCO [50]]) and faces, De-
tecting the segmentation areas of 20 common object segmentation (PASCAL VOC2012 [10])
Extract Extracting the brightness, body poses [31]]
Noisify Blurring an image
Select Cropping an image based on bounding boxes or a segmentation areas
Retrieve Keeping inference results but removing the image data
Audio Detect Detecting voice activity windows (i.e., starting time and ending time)
Classify Recognizing 632 audio events (AudioSet [25])
Extract Extracting frequency spectrum, speech text
Noisify Injecting a configurable random variation to the pitch and tempo.
Retrieve Keeping inference results but removing the audio data
Tabular Select Selecting a column with an optional where clause
Aggregate | Aggregating (i.e., sum, count, average) the tabular entries by one field and projecting the
output to a designated field.
Scalar Classify Comparing a value with a threshold
Aggregate | Computing the sum, count, average of matched scalar items.
Retrieve Keeping inference results but removing the original scalar data

2 Adapted from [17]
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Table V: A summary of collected smart home use cases drawn from the research literature and design fiction interviews
we conducted (§ITI). We obtained the initial list of use cases from the design fiction interview (Appendix §A), which asked
participants to brainstorm use cases in each room using a single-family house floor plan. We then augmented this list by
enumerating different sensors supporting these applications and potential data collections that developers may need. This list
is not exhaustive, but our goal is to have a large sample covering many common smart home use cases.

H ID ‘ Description (Location)

‘ Relevant sensors

#1 | Water leak detection on the floor (Basement, Kitchen, Garden, Bathroom) Camera, humidity, microphone
#2 | Home inventory tracking (Storage room, Closet) Camera, RFID
#3 | Toxic Gas Alarm (Basement, Kitchen) Specialized sensors
#4 | Temperature tracking across rooms (The whole house) Themometer
#5 | Garage usage detection (Garage, garden) Camera, occupancy, microphone
#6 | Street parking spots detection (Driveway) Camera, occupancy, radar
#7 | Home arrival recording/prediction (Entrance doors, Garage) Camera, RFID
#8 | Garden irrigation tracking (Garden, driveway) Camera, humidity
#9 | Soil health tracking (Garden, driveway) Specialized sensors
#10 | Bath room activity (e.g., toileting for elderly) tracking (Bathrooms) Humidity, occupancy, camera, pressure
#11 | Smart Speaker & Voice control TV (Living rooms, Bedrooms) Microphone, proximity
#12 | Room occupancy statistics (The whole house) Camera, occupancy, microphone
#13 | Automatic temperature control based on the occupancy/identity (The whole house) | Camera, occupancy, microphone
#14 | Office productivity tracking (Office room) Camera
#15 | Personalizing welcome message for visitors (Entrance doors, garage) Camera
#16 | Package delivery detection (Entrance doors) Camera
#17 | Fall detection for the elderly (The whole house) Camera, microphone
#18 | Automatic photography [3]] (Living room, Kitchen, Garden) Camera
#19 | Automatic lighting based on occupancy and light intensity (The whole house) Occupancy, light sensors, camera
#20 | Wanted criminal search on the street (Entrance doors) Camera
#21 | Detecting strangers when no one is at home (The whole house) Camera
#22 | Ice detection (Entrance stairs, driveway) Camera, specialized sensors
#23 | Sunshine tracking for plants (Terrace, garden) Camera, light sensors
#24 | Detecting messiness of the home and calling a cleaning service (Living room, | Camera
kitchen, closet)
#25 | Smart cooking (Kitchen) Smart appliances
#26 | Freezer ice cleaning reminder (Kitchen) Smart appliances
#27 | Appliances electricity consumption statistics (The whole house) Smart appliances and plugs
#28 | Sleep tracking and sleep quality measurement (Bedrooms) Camera, microphones, pressure sensors
#29 | Smart toilet recognizes butt and analyzes poop for diseases [62] (Toilets) Camera, pressure sensors
#30 | Detecting baby crying (The whole house) Camera, microphone
#31 | Laundry service reminder (Closet, the whole house) Camera, RFID
#32 | Ubiquitous bio-metric measurement (e.g., height, heart rate) ( the whole house) Camera, heart rate sensor, Wi-Fi
#33 | Pet barking detection (The whole house) Camera, microphone
#34 | Smart stylists that locates the clothes (Closet) Camera, RFID
#35 | Water activity detection (The whole house) Specialized sensors
#36 | Measuring lung function using a microphone Microphone
#37 | Acoustic ranging for games and cross-device interaction Microphone
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Table VI: What our team felt were reasonable outgoing data granularities for different smart home scenarios. We cluster these
scenarios by their input and the output. If the output is Original, it implies no pre-processing functions can be done on the
hub for these scenarios. The "(#scenario)" is the number of scenarios for each corresponding category, and the numbers in the
"scenarios" column refer to the scenario id in Table Since a use case may have multiple reasonable app designs, the use
case may be counted more than once.

Data type Pre-processed output .
(# scena};li)os) ?# scenarios) P Example usage Scenarios
Image/Video Original
(27 - raw video 1 | Enabling online security camera album #21
- raw image 3 | Enabling automatic photography (e.g. Google Clips [30]) | #18
Recognizing special activities (e.g., garden irrigation) #8, #29
Partial original
- only person/face 10 | Recognizing human relevant activities (e.g., fall, sleep) #7, #12, #13, #14,
#17, #20, #21, #28,
#30, #32
- excluding person 7 | Determining home messiness #1, #2, #5, #19, #23, #31,
#34
- particular objects 3 | Detecting certain objects (e.g., package) #16, #22, #33
Derived
- identity 2 | Personalizing the welcome message #7, #15
- pose 2 | Quantifying work activities #14, #17
- light intensity 2 | Determining the lightness of the environment #19, #23,
. Original
Audio (9) - raw audio 2 | Supporting signal processing at per-frame level #36, #37
1 | Supporting phone call, audio diary #11
Partial original
- voice audio 1 | Supporting speech interaction #11
- activity sound 3 | Detecting garage events #5, #28, #30
Derived
- speech text 1 | Recognizing command intents #11
- FFT/MFCC 2 | Detecting occupancy #12, #13
- audio events 3 | Sending notification to owners when the dog barks #12, #13, #33
Tabular (e.g., Original
Channel state | _ complete CSI 1 | Enabling fine-grained sensing tasks using the Wi-Fi signals | #32, #34
1r51format10n) Partial original
©) - only UUID 3 | Tracking the food/cloth inventory #2, #1, #30
Derived
- distance/positions 1 | Helping users find the item in home #34
Scalar (e.g. Original
temperature, - humidity 2 | Detecting water leakages using precise humidity records | #1 , #3
Eg?stiﬁilé) - water pressure 1 | Detecting in-home activity using precise humidity records | #35
(13/37) - misc Most scalar values are relatively safe to share #3, #4, #5, #6, #22,
#26, #27, #29
Partial original
- coarse humidity 1 | Detecting showering events in the bathroom #10
Derived
- out-of-town status 1 | Detecting if are users out-of-town to adjust the AC tem- | #13
perature
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