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Many modern smart building applications are supported by wireless sensors to sense physical parameters,

given the flexibility they offer and the reduced cost of deployment. However, most wireless sensors are pow-

ered by batteries today, and large deployments are inhibited by the requirement of periodic battery replace-

ment. Energy harvesting sensors provide an attractive alternative, but they need to provide adequate quality

of service to applications given the uncertainty of energy availability. We propose ACES, which uses rein-

forcement learning to maximize sensing quality of energy harvesting sensors for periodic and event-driven

indoor sensing with available energy. Our custom-built sensor platform uses a supercapacitor to store en-

ergy and Bluetooth Low Energy to relay sensors data. Using simulations and real deployments, we use the

data collected to continually adapt the sensing of each node to changing environmental patterns and transfer

learning to reduce the training time in real deployments. In our 60-node deployment lasting 2 weeks, nodes

stop operations only 0.1% of the time, and collection of data is comparable with current battery-powered

nodes. We show that ACES reduces the node duty-cycle period by an average of 33% compared to three prior

reinforcement learning techniques while continuously learning environmental changes over time.
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1 INTRODUCTION

Buildings are an essential part of modern society and benefit immensely from Internet of Things
(IoT) technologies [24]. Networked sensors are the bedrock of modern building services such as
security, fire safety, energy, and lighting. Pervasive sensors deployed across a modern building
can sense temperature, light, smoke, occupancy, and energy use; it is possible to have hundreds
to thousands of sensors in a modern office building [17]. Traditional buildings use wired sensors;
however, wireless technology is being increasingly adopted due to lower deployment cost and
flexibility of placement [19]. Much of the wireless sensors in the market are battery powered [43],
and manual battery replacement is a key limitation that inhibits large-scale deployments [27]. En-
ergy harvesting sensors provide an attractive alternative, but their design needs to ensure adequate
quality of service (QoS) given the limited and often uncertain energy availability. Many innovative
battery-free solutions have therefore been proposed in prior works [7, 8, 21, 47, 55].

Energy harvesting systems have to make a careful trade-off across sensing, communication, and
computation requirements to maximize application utility with available energy [14, 28]. These de-
sign trade-offs change depending on hardware, application requirements, and energy availability
in the environment. Prior works either perform manual configuration or use heuristics to identify
the operating points [15, 21, 49, 59, 65]. For example, EnOcean launched a commercial energy har-
vesting sensor in June 2019 that uses “a simple user interface consisting of one button and one LED
allows for simple configuration without additional tools” [65]. In our prior work, we designed the
Pible platform [21], with the goal of harvesting enough energy to last an entire day of operation.
However, the key limitation of Pible is that its operational configuration was static and configured
manually. It was therefore unable to adapt each sensor to the different environmental conditions
that affect the amount of energy harvested. Manual configuration does not scale and heuristics do
not generalize well to every context.

To overcome this limitation, we present our system ACES, which uses reinforcement learning
(RL) [54] to automatically optimize the operation of sensors nodes to maximize QoS under uncer-
tain energy availability. In RL, an agent interacts with an environment and learns to make intel-
ligent decisions with experience. A domain expert identifies the objective (i.e., reward function in
RL terminology) and the inputs (i.e., state) that affect the decisions (i.e., actions) of the agent. The
agent tries out different actions and learns from the feedback (rewards) received. RL algorithms are
good at learning sequences of actions that maximize the long-term expected cumulative rewards.
RL is an appropriate solution for this problem for several reasons [14, 22, 30]. A first reason is
automation, in which by learning directly from experience, RL can offer an alternative to heuristic-
based approaches. An agent starts by knowing nothing about the environment and the task to
be performed, but learns to make better decisions by interacting with the environment. A second
reason is optimization, in which Mao et al. [40] show that RL is comparable or better than ad hoc
heuristics. Given these attributes, RL is the perfect candidate to address the challenges presented
earlier since we want a system that can detect environmental patterns (i.e., human presence, indoor
lighting) whenever present and automatically configure sensors over longer periods of time.

Hence, in case of energy harvesting, the long-term objective ensures that it learns patterns in
energy availability across days, nights, and weekends. Energy availability is not perfectly pre-
dictable, especially in indoor conditions. The RL agent learns a strategy and is robust to noise (e.g.,
due to varying energy availability). However, learning an RL policy by directly trying out differ-
ent actions in the real world can be time consuming, convergence can take several weeks, and
exploratory actions can lead to poor QoS during training. ACES exploits a simulator that uses data
from actual deployments to reduce convergence time and show that the policies learned by the
simulator work demonstrably well once deployed in the real world at scale. Using an Intel Core-i7
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CPU clocked at 3 GHz, our algorithm converges in less than 30 minutes of wall-clock time, mak-
ing it feasible to use ACES in the real world for applications in which information dynamics vary
hourly/daily.

We implemented and evaluated ACES in a real deployment of energy harvesting sensors in
our computer science department building at the University of California, San Diego. We built a
Bluetooth Low Energy (BLE)-based energy harvesting sensor platform called Pible [21], which uses
a solar panel to harvest energy and a supercapacitor to store energy. We use the node to sense light
periodically and detect motion events with a PIR sensor. In smart buildings, having powered base
station relays is typical [2]. The node sends the data to the closest base station, and hence in this
work, we only target one-hop sensor networks. We categorize five types of indoor lighting con-
ditions and deploy a sensor node for each location type. We collect measurements such as light
intensity and supercapacitor voltage level. Using these data traces, we develop a simulator that
models the essential aspects of our sensor node in different environments. We use the simulator
to train the ACES RL agent using the Q-learning algorithm [63]. We then perform multiple de-
ployments for subsequent evaluations that traded off learning a one-time policy from historical
data versus learning a new policy each day to better detect environmental diurnal patterns. Our
real-world deployments show that ACES effectively learns from observing environmental changes
and appropriately configures each sensor node to maximize sensing quality while avoiding energy
storage depletion.

To the best of our knowledge, ours is the first real-world deployment that demonstrates an
RL-based sensing mechanism for energy harvesting sensors in indoor environments. We deploy
5 nodes, each exposed to different lighting conditions for 15 days, and use the light measurements
collected to learn a policy in our simulator. We then deploy the learned policy in the same nodes
and let the agent take action for 31 days. The nodes achieved a mean sampling period of 56 sec-
onds, opportunistically collecting up to 1.7x more data than battery-powered sensors when energy
is available, and had 0% dead time across nights and weekends. However, a one-time learning of
a policy requires a data collection phase and can be susceptible to changes in the environment.
Hence, we introduce a new training strategy that does not require any historical data. We start
with a default periodic policy on the first day and then train a new policy each day using data
collected from all previous days. This “day-by-day” training strategy learns a stable policy within
a few days and achieves near-zero dead time. To alleviate poor performance in the initial training
phase of a few days, we further reduce training time with transfer learning by training an initial
policy using data collected by sensor nodes in five different lighting conditions. Finally, we gen-
eralize ACES formulation to event-driven sensing. We deployed 45 nodes with PIR event sensing
and periodic light sensing for 2 weeks. ACES nodes could detect 86% of the events on average
compared to a baseline of battery-powered nodes that detected all events. We expanded our de-
ployment to 15 more nodes with periodic light sensing to validate the findings of our initial 5-node
deployment.

We compare ACES with three RL Q-learning-based methods proposed in prior works and a local-
mote heuristic algorithm. In a week-long simulation experiment, we show that ACES reduces the
node duty-cycle period by 33% on average w.r.t. prior RL techniques while continuously learning
environmental changes over time. ACES is open source, and all of the software is available online.1

2 RELATED WORK

A multitude of innovative energy harvesting solutions has been proposed in the literature [13,
46, 53, 58]. In several works, the sensors use up energy as it becomes available [8, 9, 13, 46]

1https://github.com/francescofraternali/ACES.git.
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(e.g., harvesting AC power lines for energy metering [13], RFID-based battery-free camera [46],
and thermoelectric harvesting–based flow sensor [41]). Backscatter sensors are a special case that
eliminate communication-based energy expenditure by using existing RF signals for both commu-
nication and harvesting [16, 36, 55]. However, sensing whenever energy is available is not ideal
for all applications—sensors may miss important events because they do not store enough energy
or send too much data when it is not needed [33, 37]. A solar panel powered temperature sensor
should work on nights and weekends even when energy availability is low, and a backscatter-
based motion sensor should capture events when there are no RF transmissions. Hence, these
sensor nodes need to be carefully configured to increase their QoS and compete with existing
battery-based solutions.

Other related work tackles the intermittent operation of battery-less energy harvesting sys-
tems themselves [25, 26, 38, 39]. In contrast, our work is looking to solve an orthogonal problem,
where we are optimizing our system to perform sensing, computation, and communication while
managing limited resources.

Reducing manual intervention for sensor configuration is an important task as underlined by
many works [10, 14, 21, 29, 31, 45, 57]. Adaptive duty cycling of energy harvesting sensors has been
used to achieve energy-neutral operations [28, 35, 45, 60]: nodes adjust their duty-cycle parame-
ters based on the predicted energy availability to increase lifetime and application performance
[53]. Moser et al. [45] adapt parameters of the application itself to maximize the long-term utility
based on future energy availability prediction. RL also predicts energy availability, but unlike the
preceding solutions, it also learns an optimal policy that maximizes the long-term reward. Hence,
it makes better decisions compared to utilizing heuristics as we show in our evaluation.

Several works have the goal to maximize the overall quality of monitoring (QoM) in wireless
rechargeable sensor networks (WRSNs) [12, 64, 66]. Dai et al. [12] and Yau et al. [66] investigate the
sensor scheduling problem aiming to maximize QoM for events capture. They solve a much harder
problem: detecting events with a collection of sensors. Although their work provides theoretical
guarantees, it either assumes events are completely random or have specific distributions. Results
are based on simulations, and the authors did not consider noise variability in real-world data. We
focus on a pragmatic solution for a collection of independent sensing nodes for periodic sensing
with harvesting. Our work is experimental, where we use real data and real sensors in a building.
Our RL algorithm is agnostic to the event distribution as the agent learns the distribution of events
based on past data. We have solved several issues in the deployment of RL in practice with day-
by-day learning and transfer learning.

Wei et al. [64] use RL to autonomously plan and adjust the charging path of mobile chargers,
to charge more efficiently in a sensor network. Our goal is orthogonal to this problem, as we only
rely on solar-based charging and do not need mobile chargers. We show that even without using
batteries, we can achieve almost 0% dead time, making it a much simpler and cheaper solution
than that of Wei et al. [64].

RL has been identified by several prior efforts as a mechanism to configure wireless sensors
and has shown promising results based on simulations [3, 14, 30, 67]. Hsu et al. [30] apply RL for
sustaining perpetual operations and satisfying the throughput demand requirements for energy
harvesting nodes (i.e., RLTDPM). However, their algorithm is built and tested in an outdoor envi-
ronment, where sunlight patterns are consistent throughout the day (light is available from sunrise
to sunset). We focus on indoor sensing where the daylight patterns are less well defined and the
light availability is affected by human occupancy. With respect to our work, RLTDPM is a one-
time learning, and even if it can adjust its sensing to an application’s requirements, it is not able to
learn changes in the environment over time. Shresthamali et al. [52] use solar energy harvesting
sensor nodes powered by a battery to teach an RL system to get energy-neutral operations. They
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use the SARSA algorithm [54] to study the impact of weather, battery degradation, and changes
to the hardware. However, their work is also limited to simulations of outdoor environments.

Simulation results by Dias et al. [14] optimize energy efficiency based on data collected over
5 days from five sensor nodes using online RL with Q-learning (i.e., On-Line RL). However, their
reward function does not depend on battery level or energy consumed and thus does not cap-
ture realistic conditions. We compared ACES with On-Line RL, showing that our system can re-
duce nodes’ duty-cycle period by up to 35%. They also assume a fixed 12-hour period as the time
needed by the Q-learning algorithm to learn the action-value function for the rest of the 4.5-day
experiment. However, a one-time training scheme is unable to capture all kinds of environmental
changes. In our work, we propose a periodic training method that maximizes system performance
even in the presence of environmental changes.

Aoudia et al. [3] present RLMan, which uses the actor-critic algorithm with linear function
approximation [23]. They use existing indoor and outdoor light measurements for simulations.
Although the authors claim their linear function approximations facilitate RL training in a wire-
less node, they do not deploy RL on a real node, nor do they report their memory and compute
requirements. Our formulation performs RL training on a local server and eliminates the need for
putting RL inside the node. We use the Q-learning algorithm, and our Q-table is only 25 kB in size,
and we demonstrate that it can be embedded in the sensor node as well. Our prior work [22] used
the Q-learning algorithm for adapting the sampling rate. The work focused on methods to scale RL
to large deployments and reduce training time. Using simulations, we showed that training a new
policy periodically based on real light data improved the adaptability to changing conditions. We
also showed that transfer RL works well and that it is possible to share the learned policies among
sensor nodes that share similar lighting conditions. However, all of our results were based on sim-
ulations from five sensor nodes in multiple lighting conditions and were not deployed or tested in
the real world. In this work, we show that these results transfer to the real world with multiple
large-scale deployments. We also extended our ACES RL formulation to event-driven sensors and
evaluate their performance in real deployments. In addition, we analyze the effect of changing the
state and action space and quantify the energy neutrality of the learned policies.

To the best of our knowledge, our work is the first to exploit RL for adaptive sampling in en-
ergy harvesting nodes in a real deployment. The RL design needs to take into account changing
environmental conditions, imprecise state estimates, and stochastic state transitions. We present a
formulation of our problem and perform simulation-based modeling to capture realistic conditions
that transfer to the real world. Furthermore, we extended our problem formulation to accommo-
date event-driven sensors such as PIR motion detectors. The sensor node needs to preserve enough
energy to communicate events as they occur. We show that ACES successfully learns typical event
firing patterns and curtails its sensing period to account for the additional energy use.

Table 1 reports the main differences between current state-of-the-art techniques including three
RL methods and ACES. As we can see, ACES is the only work that is tested in the real world while
using RL. It overcomes typical real-world problems such as continuously adapting to new changes
in the environment and reducing deployment time to almost zero due to transfer learning. Fur-
thermore, ACES can limit system failures due to network disconnections by executing the learned
algorithm inside the node (Section 6).

3 ACES DESIGN AND IMPLEMENTATION

3.1 Problem Statement

In buildings, sensors are used for applications such as environment control (e.g., air conditioning),
safety, security, or convenience. We broadly categorize the sensing as periodic (e.g., light intensity
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Table 1. Features Comparison of ACES w.r.t. Prior Techniques

Learn Deployment Algorithm Execution Tested in the
over Time Time in the Node Real World

Mote-Local [21] No ∼ 0 Yes Yes
RLMan [3] No Days Yes No

On-Line RL [14] No Hours No No
RLTDPM [30] No Days No No

WRSN [12] No ∼ 0 No No
ACES Yes ∼ 0 with TL Yes Yes

TL, transfer learning.

sensor) or event driven (e.g., motion sensor). For periodic sensors, the higher the frequency, the
more responsive the control systems and the better the QoS. For event-driven sensors, reducing
the number of missed events translates to higher QoS. However, the QoS is extremely poor if the
sensors are not operational for hours at a time—control systems will lose their feedback loop, and
event-driven applications will be non-functional. Hence, we define our objective as to minimize
the average duty cycle period while ensuring the energy harvesting nodes remain alive. As an
example, a sensor with an average duty cycle period of 10 seconds w.r.t. one with a 50-second
duty-cycle period will send five times more data.

Nodes can be placed in different locations in a building. Each sensor node will be subject to
different lighting patterns that are determined by human behavior (e.g., lights turned on and off)
or by natural light whenever the node is close to a natural source of light (e.g., window). Light
availability will vary from weekdays to weekends, from winter to summer, and with changes in
usage patterns (e.g., a conference room vs. a lobby). The sensor node needs to adapt itself to these
changing conditions to maximize the utility of its applications. A node placed near a window
and subject to a source of natural sunlight can still be considered as an “indoor” case for two main
factors: (i) indoor light can still impact the energy gathered, and (ii) blinds are common and reduce
outside lighting.

3.2 RL and Q-Learning

In a typical RL problem [54], an agent starts in a state s, and by choosing an action a, it receives
a reward r and moves to a new state s ′. This process is repeated until a final state is reached. The
RL agent’s goal is to find the best sequence of actions that maximizes the long-term reward. The
way the agent chooses actions in each state is called its policy π .

s
a→
π
r , s ′ (1)

For each given state s and action a, we define a function Q (s,a) that returns an estimate of a total
discounted reward we would achieve by starting at state s , taking the action a and then following
a given policy π until a final state is reached:

Qπ (s,a) = r0 + γr1 + γ
2r2 + γ

3r3 + ..., (2)

where γ � 1 is called a discount factor and it determines how much the function Q in state s
depends on the past actions (i.e., how long in the past does the agent see) since each member in the
equation exponentially diminishes the further they are in the past. Equation (2) can be rewritten
in a recursive form called the Bellman equation:

Qπ (s,a) = r0 + γ (r1 + γr2 + γ
2r3 + ...) = r0 + γmaxaQπ (s ′,a). (3)
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Fig. 1. RL communication process for energy harvesting sensors: block diagram.

The Q-learning algorithm starts with a randomly initialized Q-value for each state-action pair and
an initial state s0. An episode is defined as a sequence of state transitions from the initial state
to the terminal state. The algorithm follows an ϵ-greedy policy, where for each state it picks the
action that has the maximum Q-value with probability (1 − ϵ ) and a random action otherwise. The
reward obtained by selecting the action is used to update the Q-value with a small learning rate.
Under the conditions that each of the state-action pairs are visited infinitely often, the Q-learning
algorithm is proven to converge to the optimal function Q∗ [62]. The optimal policy π ∗ takes the
action that maximizes Q∗ in each state. The ϵ-greedy policy is used as an exploitation exploration
trade-off [54], where the occasional random actions encourage the agent to explore the state/action
space. It is typical to use a high value of ϵ at the start of training and gradually reduce it over time
to increase exploitation.

Between different RL algorithms, we choose Q-learning because it is easy to use when there is a
set of discrete states and actions. Q-learning is an off-policy algorithm, which means we can learn
a policy (and a Q function) with historical data when available. By exploiting the off-policy nature
of Q-learning, we introduce two additional variants to the algorithm to reduce convergence time:
day-by-day learning and transfer learning. In day-by-day learning, we learn a new Q function each
day based on data collected in the past day. The Q function gradually improves each day and can
accommodate changing environmental conditions. With transfer learning, we use a Q function
learned for another sensor node as an initial policy for a new node.

Q-learning is guaranteed to converge to an optimal solution under certain conditions: (i) we
accurately know the dynamics of the environment, (ii) we have enough computational resources
to complete the computation of the solution, and (iii) the Markov property. Hence, in our case,
Q-learning is not guaranteed to converge to an optimal solution since, as we show in Section 3.3,
there are several problems, such as (i) we discretize the state/actions and make assumptions on
the energy consumption of the components, and (ii) we have limited computational resources and
training time. Therefore, there could be some states that are not seen during training. Even with
these approximations, we show that our system can find a solution that outperforms state-of-the-
art results.

3.3 RL Problem Formulation for Energy Harvesting Sensors

Figure 1 shows an overview of our RL formulation for the configuration of energy harvesting
sensor nodes. A sensor node collects energy from a solar panel and sends sensor data to a com-
putational unit that runs the RL policy and determines the node sleep time (i.e., the time the node
stays in sleep mode). The computational unit can be the node, a base station, a local server, or
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in the cloud as long as they have enough computational power to train RL policies. We run the
training on the local server.

Objective and QoS. The objective of our problem is twofold:

—Maximize sensing (reduce duty-cycle period by reducing the node sleep time) so we cap-
ture periodic sensor measurements more frequently and minimize missed events for event-
driven sensors.

—Minimize dead time. If the sensor node dies, it enters a cold start phase and cannot send
data for hours.

Hence, we define quality of service as the duty cycle period averaged across a period of time
(e.g., 7 days):

Duty-cycle period =
1

τ

τ∑

t=0

Tsensinд + Tsleep , (4)

where Tsensinд is a constant and includes the total time the node remains active (i.e., the time the
node wakes up, reads sensor data, sends it over BLE, and goes back to sleep), Tsleep is the node
sleep time (i.e., MCU in sleep mode), and τ is the total number of duty cycles in a given period. For
event-driven sensors (e.g., motion sensor), a sensor is left awake during Tsleep until an interrupt is
raised due to an event. The RL agent decides the Tsleep period for both types of sensors. Another
metric commonly used in literature is the duty-cycle ratio [4]. We can compute the duty-cycle
ratio using the proposed duty-cycle period with the following equation:

Duty-cycle ratio =
Tsensinд

Duty-cycle period
. (5)

Agent. The agent is the program in the computational unit that takes in measurements from
the sensor, outputs the node sleep time (i.e., Tsleep ) to use, and updates the RL policy based on
rewards.

Environment. This is everything outside the agent, which includes sensor nodes, the wireless
channel, the lighting conditions, and events that trigger the sensors.

State. We use (i) light intensity, (ii) energy storage level, and (iii) weekend/weekdays. We dis-
cretize light intensity and energy storage levels to 10 values each. The discretization helps reduce
the state space and hence decreases the convergence time of the Q-learning algorithm.

Action. To change the duty-cycle period, from Equation (4), we can only act on Tsleep since
Tsensinд is dependent on the sensing characteristics and the communication mechanism. There-
fore, we discretize the node sleep time to meet typical commercial duty-cycle periods for IoT de-
vices in buildings, since they are in the order of minutes but can range from tens of seconds to an
hour [1, 18, 32]. We report our node sleep time discretization in Table 2. For periodic sensors, the
action selects the node sleep time to use (e.g., action 2 corresponds to a sleep time of 1 minute).
For event-driven sensors, we observe that once an event is triggered, a subsequent event within
a short amount of time is inconsequential. Hence, we keep the node alive until an event occurs,
after which it sends the event packet and sleeps for the period indicated by the action. Any event
during sleep time is missed.

State transitions. The agent observes state transitions and takes actions (i.e., sends commands to
change the node sleep time) every 15 minutes. A small timestep for state transitions increases
the communication overhead between the base station and sensor node, and a large timestep
misses the opportunity to tune the sensing rate in a fine-grained manner. We select a timestep of
15 minutes as a design trade-off between these factors. We use 24 hours as our episode, starting
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Table 2. Node Sleep Time Based on

Action Index

Action Index Node Sleep Time (s)
3 15
2 60 (1 min)
1 300 (5 min)
0 900 (15 min)

One of the objectives of our system is to re-

duce the duty-cycle period of the system by

reducing the node sleep time. With the duty-

cycle period, we indicate the time the node

stays in sleep mode (i.e., Tsl eep ) plus the

time it remains active (i.e., Tsensinд ), such

as waking-up, reading the sensors, and trans-

mitting the data using a wireless protocol.

when the node is turned on. We will consider dynamic transitions based on node sleep time as
future work.

Reward function. The reward function is a trade-off between maximizing sensing that consumes
energy while penalizing dead time. We assign rewards as follows:

—Reward = Action index (i.e., 0, 1, 2 or 3)
—Reward = –300 if energy storage level reaches 0.

If the energy storage reaches 0, the system should receive a negative reward that dissolves all of
the benefit of using the maximum index action available (i.e., action 3) since it could cause a dead
time lasting several hours. Therefore, with the preceding reward function, the negative reward
should be compensating for the maximum total reward in 24 hours. The following formula makes
this calculation:

Reward <= −(number of state transitions per day * max action = 24 ∗ 4 ∗ 3 = 288). (6)

Using Formula (6), we picked –300 as a negative reward. The general principle here is to identify
the objective function of the problem and formulate it as a reward function. Any constraints, such
as avoiding the depletion of energy in storage, can be expressed as a negative reward. Although we
use a heuristic (i.e., Formula (6)) to identify the negative reward coefficient, one can also identify
the coefficient automatically using Lagrangian relaxation [6]. Q-learning requires the use of dis-
crete states and actions, and the range of actions can be decided based on the desired application
requirements. Fine-grained discretization can lead to a better policy but increases convergence
time. We study the design trade-off between different discretizations in Section 4.2.2. Our problem
formulation can be easily adapted to different sensors, energy harvesters, and applications.

3.4 RL Algorithm

Algorithm 1 details the use of Q-learning in ACES. After initialization (lines 1–3), the agent receives
the node state—light, energy storage voltage, and current action index (line 4). The algorithm
starts the episode and selects an action following the ϵ-greedy policy (line 6). In the beginning,
ϵ is initialized to ϵmin , and the algorithm selects a lot of random actions in the first phase of the
learning since uniform() produces a random value uniformly distributed between 0 and 1. At each
timestep (15 minutes), ϵ is increased by Δ (lines 13 and 14), causing the action policy to select more
exploitative actions over time.
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ALGORITHM 1: RL Algorithm for Energy Harvesting Sensors

1: Initialize qtable as an empty set

2: Initialize control action a, state scurr , snext time passed = 0

3: ϵ = ϵmin

4: scurr ← Sense Environment

5: while time passed < episode_duration do

6:

a =
⎧⎪⎨
⎪
⎩

if (uniform(0,1) <= ϵ) take: arдmaxQ (scurr ,a
′)

otherwise: take a random action

7: wait for T time units, time passed += T

8: snext ← Sense Environment

9: r = reward(scurr , a, snext )

10: qpr edict = qtable [scurr ,a]

11: qtarдet = r + γ ∗max (qtable [snext , ∀ a])

12: qtable [scurr ,a]+ = α ∗ (qtarдet − qpr edict )
13: ϵmin = ϵmin + Δ
14: ϵ =min(ϵmax , ϵmin )
15: scurr ← snext

16: end while

The specific values of each variable used are given in Table 3.

The sensor node updates its node sleep time and sends its state again after T time units (lines 7
and 8). We calculate the rewards with the current state, action, and next state (line 9). We assume
our system has reached convergence when the mean of all values in the Q-table does not change
their value by more than 5%.

We progressively improved our policy training strategy to reduce time to convergence.
One-time learning. We train a policy in a simulator based on sensor measurements collected for

15 days. This is a typical setting used in prior works [3, 14].
Day-by-day learning. We train a policy every day based on the sensor measurements collected in

the past 24 hours. Each day’s training starts with the policy learned in the previous day. The policy
converges within a few days to achieve energy-neutral operations. The daily training also adjusts
the policy to changing environment conditions (non-stationary environments). This borrows from
batch RL methods in the literature [34].

Transfer learning. Instead of learning a policy from scratch, the initial policy is borrowed from
another node’s converged policy. We achieve 0% dead time from the first day of deployment with
transfer learning. We continue to use the day-by-day learning procedure for iterative improvement
of the policy.

Figure 2 shows an overview of one-time, day-by-day, and transfer learning methods. Day-by-day
learning assures continual learning to changing conditions and removes a separate data collection
period. Transfer learning reduces dead time during the initial phase of the deployment.

Table 3 reports the hyper-parameters used for the Q-learning algorithm for our simulations.

3.5 Hardware and Communication Process

3.5.1 Sensor Node. We developed a general-purpose energy harvesting battery-less sensor
(Figure 3) [20, 21]. We use a solar panel (AM-1454 [11]) as our energy harvester and store energy
in a supercapacitor [48]. Once the voltage reaches a usable level, an energy management board
powers the microcontroller (MCU) to start its operations. We use a 1-F supercapacitor with a 5.5-V
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Fig. 2. A comparative overview of the one-time, day-by-day, and transfer learning methods used in ACES.

Day-by-day learning assures continual learning to changing conditions and removes a separate data collec-

tion period. Transfer learning minimizes dead time during the initial phase of the deployment.

Fig. 3. General energy harvesting sensor node.

Table 3. Q-Learning Hyper-Parameters Used

for Simulations

Hyper-Parameter Value
Reward-decay (γ ) 0.99

Epsilon max (ϵmax ) 1
Epsilon min (ϵmin ) 0.1

Epsilon increment (Δ) 0.0004
Learning rate (α ) 0.1
Episode duration 24 hours

Wait time T 15 min
Training phase 15 days

nominal voltage. The MCU uses a high resistance voltage divider (10 MOhm) to minimize leak-
age current. We use BLE for communication, and the node has light and PIR sensors. The sensor
node achieves up to a week of lifetime without light when it sends one sensor measurement every
10 minutes.

3.5.2 Wireless Sensor Network Architecture. The base station uses BLE 4.2 gattool functions to
exchange data with the sensor nodes deployed around the building. As soon as a sensor node wakes
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Fig. 4. Our WSN architecture. The training happens at the local server, and the base station is used to

transfer the data from the sensor nodes to the local server and vice versa.

up, it starts advertising. The base station reads the advertisement, connects to the sensor node, and
exchanges data. During the connection, the base station communicates the next action to do to the
sensor node while the sensor node communicates the read sensor values (i.e., light, temperature,
PIR, SC voltage) to the base station. The base station stores and sends the data to a local server for
post-processing using a Wi-Fi connection. In this work, the base station is only used for passing
the data from the sensor nodes to the local server. The RL training is done at the local server, and
the sensor nodes execute the actions decided. Figure 4 shows all of the steps we just described. Due
to the nature of BLE 4.2 that we use, we can only target one-hop sensor networks. Our methods can
be easily extended to low bandwidth networks such as low-power wide-area networks (LPWANs).
From Mekki et al. [42], the maximum payload length for a typical LPWAN protocol ranges from
8 bytes (e.g., SigFox [42]) to up to 1,600 bytes (e.g., NB-IoT [42]). Therefore, our approach can be
extended to LPWANs since our bandwidth requirements are as low as transferring data of 6 bytes.
We leave empirical verification for future work. In our system, the base station is composed of a
Raspberry Pi equipped with a BLE USB dongle. In our deployment, we connected up to 15 nodes
to a single base station. To facilitate large deployments, the nodes do not remain connected to the
base station as in a typical Bluetooth connection, but they always disconnect and reconnect using
the advertisement. In this way, we are not limited by the number of simultaneous BLE connections.

4 SIMULATIONS

We use the simulator to speed up the RL training since it can take thousands of episodes to con-
verge. Our objective is to model the environment to sufficiently capture real-world characteristics
while keeping its complexity low to allow for fast simulations.

4.1 Modeling the Simulation Environment

When the agent acts on the environment, the simulation needs to respond with the next state and
reward defined in Section 3.3. To create a simulation environment, we need to identify how much
energy will be consumed and harvested under a given environment condition and sensing quality.
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Table 4. Sensor Node Current Features

Feature Current (µA)
Board Leakage + MCU in Sleep Mode 3.5

Read Light Sensor + BLE Transmission 199
Board + PIR and MCU in Sleep Mode 4.5

PIR Detection 102
Solar Panel at 200 lux 31
Solar Panel at 50 lux 7.75

For the sensing and transmission operations (e.g., Read Light Sensor

+ BLE Transmission), the current includes the sensor reading, the ad-

vertisement phase, the connection and transmission of the data using

BLE, and the final acknowledgment message.

We start with modeling the sensor platform, where we need to identify the energy consumed in
different modes of operations. The energy consumption can be calculated from the datasheet of
individual components used or by direct measurements in different operating modes [61]. We use
a combination of both. For more complex platforms where individual component analysis is not
feasible, we can fit a model based on power consumption in various modes of operation [50]. The
energy gained is a function of both the efficiency of the harvester module and the energy available
in the environment. We use raw light measurements collected by sensors in different settings to
capture environment characteristics.

4.1.1 Current Measurements. We use the power consumption of the solar panel and PIR from
their respective datasheets and measure the current consumption for the other components to
increase the quality of our simulator. We measure the current consumed by using the National In-
strument USB-6210 with MATLAB (16-bit datum per minute). Table 4 shows the power consump-
tion of the sensor node’s main components when using a supercapacitor charged at 3 V. For the
sensing and transmission operations (e.g., Read Light Sensor + BLE Transmission), the current in-
cludes all sensing and communications steps, such as the sensor reading, the advertisement phase,
the connection, the transmission of the data using BLE, and the final acknowledgment message.
Therefore, we include in this value all energy consumed by the node during its wake-up time.

4.1.2 Light Measurements. We placed a node in different types of locations and measured light
intensity and supercapacitor voltage at 5-minute intervals for 15 days. The locations are (i) a win-
dowless Conference Room where light is on only when people occupy the room; (ii) a Staircase

where internal lights are always on for security reasons; (iii) the Middle of an Office room, mainly
subject to internal lights; (iv) a node subject to natural light from a Window; and (vi) a node placed
close to the Door of an office room where light intensity is low.

4.1.3 Modeling the Energy Storage Level. The supercapacitor accumulates energy when light is
available and depletes energy with node operations.

Energy produced:

EProd = SolarPower ∗ LiдhtIntensity ∗TimePeriod (7)

From the solar panel (i.e., AM-1454 for indoor usage) datasheet [11], the current generation per
200 lux of light at 2.5 V is 35.2 μA. Hence, the approximate energy generated by the solar panel at
200 lux in 1 second is 88e-6J (35.2 μA * 2.5 V * 1 second). As we measure light intensity only once per
5 minutes, we miss light fluctuation events. We ignore solar plan inclination, the wavelength
of light, and reflection of lights to keep the model simple. Hence, the energy estimated is an

ACM Transactions on Sensor Networks, Vol. 16, No. 4, Article 36. Publication date: July 2020.



36:14 F. Fraternali et al.

Fig. 5. Supercapacitor discharge comparison between our simulator and the real world using different sens-

ing rates.

approximation. However, we show that the model is sufficient to learn a policy that works in
the real world.

Energy consumed:

ECons = ESend + ESleep (8)

ESend is the energy consumed to read and transmit a sensor data packet, and ESleep is the energy
consumed by the sensor node in between two transmissions.

4.1.4 Validation of Modeling. We validate our discharge model when no light is available.
Figure 5 compares the lifetime of the sensor nodes in simulations (black) and real data (red) us-
ing different sensing rates. The two trends capture the high-level characteristics well but show
small differences due to real-world events that are difficult to model. The sensor node lasts up to
9 hours by collecting data every 15 seconds, up to 34 hours at a 1-minute sending rate, and up to
6.25 days with a 10-minute sending rate. Hence, the RL agent needs to take the right action based
on the current environment state to maximize the sensing rate while avoiding energy depletion.
We validate our charging model with current measurements in different light conditions as shown
in Table 4.

4.1.5 RL Environment Setup. The simulator interacts with the RL agent as explained in Algo-
rithm 1. Equations (7) and (8) keep track of the energy voltage level, and the light intensity is taken
from real-world measurements. We model the environment state as follows:

Light intensity: We normalize the light intensity from a range of 0 to 10, where 0 represents no
light and 10 represents 2,000 lux or above. We select 2,000 lux as a maximum value after checking
typical indoor light intensity in buildings.

Energy storage level: We scale the energy storage voltage from 0 (min voltage 2.1 V) to 10 (max
voltage 5.5 V).

Weekend/Weekday: Buildings’ indoor lights patterns are strongly dependent on the presence of
people [7]. Hence, we consider a binary state to capture weekdays and weekends.

Once the supercapacitor voltage reaches less than 2.1 V, it terminates all of its operations and
energy recovery can take hours. To avoid long communication gaps between the sensor node and
the base station, we penalize the RL agent with high negative reward (–300) when supercapacitor
voltage is less than 3 V.

4.2 Simulation Results

We present the results of policies learned after deploying five different nodes in five different
lighting conditions. Each node collects light measurement data every 5 minutes for 15 consecutive
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Fig. 6. Simulation result on different lighting conditions. Results obtained by running ACES using 15 days

of lighting data traces.

days. We run five different simulations, one per node, with the respective data collected. Figure 6
shows the results of the simulation.

From Figure 6 (left) for the Conference Room case, we see that ACES uses the lowest node sleep
time (i.e., action 3) when lights are on and the energy storage is almost full (SC voltage level is 9),
but as soon as lights turn off, it increases the node sleep time (i.e., action 0) to save energy. The
conference room has no windows, has long periods of time with lights off, and hence light patterns
are sporadic. The system learns that to avoid energy storage depletion, it is better to save energy
as soon as lights turn off. When the lights turn on again and the energy levels are not full, ACES
switches between actions 2 and 3 to allow the energy storage to recover to full charge.

From Figure 6 (center) for the Stairs Access case, we notice that light is always on at level
1 (200 lux) due to security reasons, but the intensity is not enough to keep the supercapacitor
charged. Hence, ACES uses a higher node sleep time that allows slower charging of the super-
capacitor over time. When the voltage level reaches the maximum (level 10), ACES uses a lower
node sleep time (action 2 or 3). That drops the supercapacitor voltage and forces ACES to use lower
actions again.

From Figure 6 (right) for the Window case, we notice that ACES uses the lowest node sleep time
(action 3) when the light is on and energy storage is full, but it starts using lower actions as soon
as lights go off and the supercapacitor reduces its voltage. But compared to the Conference Room

case, the node sleep time increase is gradual as ACES learns light patterns from sunset to sunrise.
It switches to a lower node sleep time even when there are no lights, forecasting that the light will
become available in the next few timesteps.

4.2.1 Convergence Time. For each simulation, we collect the total reward obtained at the end
of each episode and average them to show the convergence of the algorithm over time. In Figure 7,
we show an example of the average reward convergence while running a simulation using α
equal to 0.1 in the Window location. The convergence happens around 12,500 episodes. The en-
tire simulation takes 30 minutes of wall-clock time using an Intel Core-i7 CPU with our Python
implementation.
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Fig. 7. Average reward simulation results for the Window location using α equal to 0.1. It takes less than

30 minutes for our algorithm to converge on a typical Intel Core-i7 CPU.

Table 5. Input Space Analysis

Door Stair Middle Conf Window Avg Rew Input Size
(Rew) (Rew) (Rew) (Rew) (Rew) (Rew) (no. of states)

SC 392* 723 322 551 1,310 670 11
SC-Week 179* 723 322 353 1,510 617 22
SC-Light 135 699 527 611 1,270 648 121
SC-Light

Week 161* 721 832 1,040 1,413 833 242
SC-Light

Week-Time 319 722 <0 <0 1,304 <0 5,808
SC, supercapacitor voltage; Time, hours of the day; Rew, reward.

Table 6. Action Space Analysis

Reward Door Stair Middle Conf Window Avg
Action = 2 81 147 607 240 1,359 486
Action = 4 161 721 832 1,040 1,413 833
Action = 8 435 1,097 649 1,235 1,923 1,068

4.2.2 Input/Action Space Analysis. The dimension of the Q-table is the product of the input and
action state. By increasing the number of states, (i) we can represent the input and output variables
more accurately, and (ii) we need more iterations for the Q-learning algorithm to converge to a
working solution. To better understand how this trade-off behaves in our system, Tables 5 and 6
show the rewards achieved while selecting different inputs and actions, respectively.

Table 5 reports the reward achieved by ACES when the input uses (i) only the supercapacitor
voltage (i.e., SC); (ii) the SC and Light measure; (iii) the SC and week/weekend day (i.e., Week);
(iv) SC, Light,and Week as for ACES; and (v) SC, Light, Week, and Time of the day that is expressed
in hours. For these simulations, we use an action space equal to 4. Simulations and rewards are
calculated on the same 15 days of light data as in Section 4.2, but only the first 7 days of data are
used for training. Using only the supercapacitor as an input state gives high reward on places where
light is low in intensity (Door, Stairs Access cases). Introducing Light as an input state increases
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Table 7. ACES Comparison Between Periodic Sensing Applications and Event-Driven Applications

Node Periodic Sense Event Driven Percentage
Placement (avg duty-cycle period in sec) (avg duty-cycle period in sec) (%)

Conference Room 39 40 98
Window 30 31 96
Middle 135 140 97
Door 128 171 72

Stairs Access 81 95 85

Results obtained after training and running ACES on the same 15 days of data lighting traces used for Figure 6.

rewards where light has high variability throughout the day (Conference Room and Window cases).
As an average of the five lighting conditions, the use of SC, Light, and Week is the one that brings
more rewards to the system. The increase in rewards comes at the cost of having as an average an
input space that is 22 times bigger (i.e., 242 in the table) compared to using only the SC (i.e., 11). In
the same table, we conducted another experiment to understand why the reward achieved by the
SC and SC-Week was higher than SC-Light-Week for the Door case: we ran the same experiment
for 2.5 months of data and noticed that SC-Light-Week achieves a higher reward in the long term
(9,371) w.r.t. SC-Week (9,176) and SC (8,186). With SC-Light-Week, ACES uses more information to
converge to a better policy, but it requires more data as it needs to learn the policy for all variations
that exist in the given observations. The use of the SC-Light-Week-Time as an input brings the
system to achieve a negative reward in two places. This is due to a very large input state, and hence
ACES could not converge to a good solution within 24 hours for which we ran the simulator. For
accommodating this larger state space, we would need to use function approximation algorithms
such as Deep Q-Networks [44].

Table 6 shows the effect of changing the action space. Since the reward collected is equal to the
action selected by the system at each step, for this experiment we normalized all rewards from 0
to 3. We use SC-Light-Week as the input state. Increasing the number of actions increases the final
reward on average. We use four actions in our real-world experiments to keep the Q-table small.

4.2.3 Event-Driven Applications. The PIR sensor adds to the sleep current of the node by 1 μA,
and each event consumes an additional 102 μA (Table 4) and lasts for 2.5 seconds. ACES needs
to account for this additional energy use when selecting the sensing rate. We simulate stochastic
events in the environment with an average of 50 events per day during weekdays and 20 events per
day during the weekends, a conservative estimate of daily events as reported by Agarwal et al. [2].
For these simulations, we use the same 15 days of data lighting traces as for Figure 6 so that a
comparison with previous results is fair. Again, each RL training uses lighting data collected by
one node.

Table 7 compares the data packets sent by the final policy with and without the PIR sensor.
In all of the scenarios, ACES successfully accounts for additional energy expenditure from event-
driven sensors and continues to maintain perpetual operation. When abundant light is available
throughout the day (i.e., windows, conference room, and center of office), the number of data
packets sent is similar to the baseline periodic sensing (95% to 98%). However, in the Stair Access

and Door cases, the light availability is low, and hence the number of data samples drops to 85%
and 72% respectively.

4.2.4 Complexity of the Proposed Methods. In Q-learning with ϵ-greedy exploration, the con-
vergence time of the algorithm has an upper bound of O(exp(number of states)). To keep the train-
ing time tractable, we discretize the state/action space and keep the number of states to a minimum.
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Fig. 8. Convergence of the Q-table values for one-time and transfer learning. The graphs are averaged for

the actions. Therefore, we have four curves, one for each action. It takes 12K episodes for Q-values to stabilize

in one-time learning. The transfer learning policy takes only 3K steps to converge as it starts training from

a general policy trained with data from multiple sensor nodes.

We limit our training time to 30 minutes with a single CPU. We can scale to more number of states
using deep RL techniques such as DQN [44], which we leave for future work. ACES uses three
variants of the Q-learning algorithm: one-time learning, day-by-day learning, and transfer learn-
ing. The number of states do not change between these algorithms, and hence the complexity of
the algorithm remains the same as Q-learning. All three versions are trained with our simulator
until Q-values stabilize or 30 minutes elapse. The primary difference between these algorithms
is the amount of external lighting data made available to the simulator, which in turn affects the
states that are given as input to the agent. The one-time learning policy is trained only once with
available data, whereas the day-by-day and transfer learning algorithms are trained periodically
every day. The first policy trained takes as much time to converge as one-time learning. However,
subsequent training converge faster as the data collected captures all scenarios in the environment
and Q-value estimates stabilize.

Figure 8 shows the convergence of the Q-table values for one-time and transfer learning. The
graphs are averaged for the actions. Therefore, we have four curves, one for each action. It takes
12K episodes for Q-values to stabilize in one-time learning. The transfer learning policy takes only
3K episodes to converge as it starts training from a general policy trained with data from multiple
sensor nodes.

5 REAL-WORLD EXPERIMENTAL RESULTS

5.1 One-Time Learning

We learn policies using the simulator. Each policy trains by using 15 days of light data collected
from the respective node. Then we use the resulting Q-tables to control the real sensor nodes in
the respective locations for 31 days. We continue to update the policies based on real-world data
while using ϵ = 0.9. The Q-learning updates use the parameters reported in Table 8, which also
indicates the training-time phase and deployment-time phase.

Notice that the only parameter change compared to the simulation experiment is that the ϵ is
now fixed and set to 0.9. Thus, the agent takes the majority of the actions based on learned Q-
values from the simulator but minimally takes random actions to learn changing patterns. If the
agent encounters a state not listed in the Q-table, it takes a random action.

Figure 9 shows the results of three of the five nodes. The behavior in real deployment is very
similar to the simulation results. There are several outliers in the sequence of actions due to ϵ-
greedy exploration. In the Door location (Figure 9 (left)), the light intensity is low during the day
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Table 8. Q-Learning Hyper-Parameters for One-Time Learning Experiment

on the Real World

Hyper-Parameter Value Parameter Value
Reward-decay (γ ) 0.99 Observations State of charge,

light intensity,
week/weekend

Epsilon-fixed (ϵ) 0.9 Actions 15 s, 60 s,
300 s, 600 s

Learning rate (α ) 0.1 Node “death” 3 V
threshold

Wait time T 15 min Q-table <5% change
convergence in mean Q-value

Episode duration 24 hours Training phase 15 days
Deployment phase 31 days

The only parameter that changes compared to the simulation experiment is the ϵ that

here is fixed and set to 0.9.

Fig. 9. ACES real-world results in different lighting conditions. As a first experiment, we use the ACES learned

policies (i.e., Q-tables) from the simulator to drive the same five nodes used to collect the 15 days of lighting

data traces. We leave ACES driving the nodes for 31 days. We use ϵ equal to 0.9 to leave the system exploring

in the real world. This is why we can see several outliers in the middle of a constant sequence of actions.

(it reaches level 3 at most) and ACES gradually selects higher actions when enough light is avail-
able. For the Stairs Access case (Figure 9 (middle)), the light availability is low, and hence ACES
picks lower actions (i.e., 0 or 1).

For the Window location (Figure 9 (right)), ACES uses the lowest duty-cycle period (action 3)
during the day and decreases the action to 2 when the light goes down. However, the action is
never lowered to action index 1 as observed in simulations because the energy storage level never
drops to less than 6. Upon further digging, we found that the communication between the sensor
node and the base station on average took more time than in simulation. Hence, data is exchanged
less frequently (every 17 seconds instead of 15) and the power used is lower as well. The policy
automatically adjusted to this difference in the environment to maximize its rewards.
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Table 9. Placement-QoS Comparison Between a Battery-Powered System and ACES

Node Battery Power ACES Percentage Dead

Placement (avg duty-cycle period in sec) (avg duty-cycle period in sec) (%) Time (%)

Conf. Room 60 62 96 0

Window 60 35 170 0

Center Office 60 82 73 0

Door 60 136 44 0

Stairs Access 60 122 49 0

The Center of Office results is similar to the Door node results since it has similar light patterns.
The Conference Room node also performs close to the simulation results.

5.1.1 Comparison with Fixed Periodic Sensing. Table 9 compares the data sent by ACES with
a fixed sensing period of 1 minute used commonly in buildings. ACES outperforms the average
duty-cycle period compared to a fixed duty-cycle period when there is a consistent amount of light
as the agent learns the daylight patterns and uses a duty-cycle period of 15 seconds when the light
is available (Window case). The average duty-cycle period is similar (96%) for the node placed in
the conference room. This value is closely related to the amount of light available and the presence
of people in the environment. Percentages are lower for Center of Office, Door, and Stairs Access

cases as the light available is lower. Even for these locations, sensor nodes send data approximately
every 2 minutes (Stairs Access: 49%; Door: 44%). All five nodes avoided battery depletion and have
0% dead time throughout the 31-day real-world experiment.

5.2 Day-by-Day Learning

Instead of learning from the simulator just once with several days of data, we switch to learning a
new policy from the simulator every day. Each policy is learned by using lighting data traces of the
respective node. For this experiment, we deploy five nodes in five different lighting conditions for
15 days. In our one-time learning deployment, we observed that by leaving the RL to explore (i.e.,
ϵ = 0.9) a new sequence of actions can decrease the QoS of applications when it takes a random
action once in a while. Hence, it is better to avoid exploration while running the sensor node in
the real world.

On the first day, we start with a fixed policy of collecting data every 15 minutes. At the end of
the day, the collected data is used to learn a new Q-table in the simulator by running Algorithm 1
with the hyper-parameters reported in Table 3. The learned Q-table is used to collect data the next
day with ϵ set to 1. The hyper-parameters used to collect the data for day-by-day learning are
presented in Table 10.

The only hyper-parameter that changes when the system takes actions in the real-world com-
pared to the simulation experiment is the ϵ that is fixed and set to 1 during deployment.

From the second day, the training starts from the previous day’s Q-table that summarizes the
learning until that day. Thus, the Q-table updates day by day from the first day of the deployment.
For this experiment, we leave ACES driving five nodes in five different lighting conditions for
15 days.

Figure 10 shows the rewards obtained by the five nodes placed on the five different lighting
conditions for 15 days. The figure cuts off with a value of –10, which indicates the nodes died
because of energy storage depletion. Three of the 5 nodes deployed (i.e., Middle Office, Window,
and Stairs Access cases) had 0% dead time, whereas two nodes (i.e., Conference Room and Door cases)
depleted their energy in the first days of the experiments. The lighting energy in the latter case
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Table 10. Q-Learning Hyper-Parameters for a Day-by-Day Learning Experiment

on the Real World

Hyper-Parameter Value Parameter Value
Reward-decay (γ ) 0.99 Observations State of charge,

light intensity,
week/weekend

Epsilon max (ϵmax ) 1 Actions 15 s, 60 s,
(for simulation) 300 s, 600 s

Epsilon min (ϵmin ) 0.1 Node “death” 3 V
(for simulation) threshold
Epsilon-fixed (ϵ) 1 Q-table <5% change

(during deployment) convergence in mean Q value
Learning rate (α ) 0.1 Episode duration 24 hours

Epsilon increment (Δ) 0.0004 Training phase Repeat every 24 hours
Wait time T 15 min Deployment phase 15 days

To avoid exploration in the real world, we set and maintain the ϵ value to 1.

Fig. 10. ACES real-world results in different lighting conditions using day-by-day learning: instead of learn-

ing from the simulator just once with several days of data (i.e., 15 days in our previous experiment), we switch

to learning a new policy from simulator every day. For this experiment, we leave ACES driving five nodes in

five different lighting conditions for 15 days.

is mainly subjected to human behavior (i.e., turning on lights or blinds) that can change between
days. ACES needs some time to understand those patterns and adapt to them. However, the nodes
that maintain continuous operations are the ones that are mainly subject to a constant light
pattern—light is available from sunrise to sunset for the Window node and the light is always on for
security reasons near the Stairs Access node. For this experiment, we experience a dead time of 4%.

To increase the validation of day-by-day learning, we further deployed 10 more nodes for
15 days. We upgrade our boards to use a 1.5-F supercapacitor to extend node lifetime in case there
is no light available. The nodes achieve 0% dead time in 15 days of deployment.
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Table 11. ACES Results After Adopting Transfer Learning After the First

3 Days of Deployment

Avg Duty-Cycle Period in Sec Empty General Percentage
(Num Node Died) Q-Table Q-Table (%)
Conference Room 98 (1) 64 (0) 151

Avg Light (lux) 520 455 89

Window 25 (0) 26 (0) 98
Avg Light (lux) 4518 3888 87

Middle Office 101 (0) 90 (0) 108
Avg Light (lux) 281 340 121

Door 348 (2) 301 (1) 115
Avg Light (lux) 117 99 85

Stairs Access 90 (0) 93 (0) 97
Avg Light (lux) 184 181 98

Between parentheses, we show the number of times the nodes died during

deployment.

5.3 Transfer Learning

We speed up the learning process for a multi-node deployment with transfer learning [56].

5.3.1 General Q-Table. We use a week of lighting data collected for the day-by-day experiment
(Section 5.2) for all the five different lighting conditions (a total of 5 weeks of light data) to run
a single ACES simulator and build a general Q-table. Then, we place five new sensor nodes in
similar lighting conditions as the previous nodes, i.e. a node close to a window, a node in another
conference room and so on. We run ACES on the new nodes while starting them with the general
Q-table instead of learning everything from scratch.

Table 11 reports the average duty-cycle period in seconds for the five different places for the
first 3 days of deployment by starting ACES using a general Q-table versus an empty one. Between
parentheses, we report the number of times the nodes died. By using a transfer learning approach,
the nodes perform better as indicated by a decrease in the average duty-cycle period. The nodes
subject to easy-to-predict patterns (Stairs Access and Window cases) have similar results regardless
of an empty table or a general table, ACES can find the best sequence of actions after only 1 day. The
situation is different for the placements subject to human occupancy patterns (Conference Room,
Middle Office, and Door cases): in these cases, the general Q-table helps speed up the learning
process. The node placed in the conference room sent up to 1.5x more data. Most importantly, the
general Q-table helps the nodes reduce dead time: in the Conference Room case, this is reduced
from 1 to 0, whereas in the Door case this is reduced from 2 to 1.

5.3.2 Similar Lighting Q-Table. We also tried transfer learning by starting five different nodes
while using a Q-table already generated by nodes running in similar lighting conditions (e.g., Win-

dow to Window). All of the nodes benefited from the initial policy and achieved 0% dead time across
2 weeks of deployment.

5.4 Comparison with State-of-the-Art Solutions

We compare the average duty-cycle period for periodic sensors used by ACES using a day-by-day
learning policy with (i) an energy manager based on RL for energy harvesting wireless sensor
networks (RLMan [3]), (ii) a rule-based power management algorithm that was tuned to maxi-
mize the sensing rate while avoiding energy depletion on energy harvesting battery-less motes
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Table 12. Average Duty-Cycle Period (Lower Is Better) Comparison Between Different Methods

w.r.t. ACES on Different Indoor Lighting Conditions

Placement Window Conf. Middle Door Stairs Avg Without ACES

(Avg Duty-Cycle Period in sec) Room Office Access Door Improvement

Battery-powered 60 60 60 60 60 60 +18 %

baseline [43]

Mote-Local [21] 57 149 128 337 94 107 –34%

RLMan [3] 30 133 150 411 136 112 –37%

On-Line RL [14] 69 165 103 / 98 109 –35%

RLTDPM [30] 30 124 117 / 129 100 –29%

ACES 24 123 99 328 63 71

/, node died during experiment.

(i.e., Mote-Local [21]), (iii) a reinforcement Q-learning-based throughput on-demand provisioning
dynamic power management method (RLTDPM) for sustaining perpetual operation and satisfying
the ToD requirements for energy harvesting wireless sensor nodes [30], (iv) a dynamic sampling
rate adaptation scheme based on RL (Q-learning), able to tune sensor sampling interval on-the-fly
(On-Line RL), according to environmental conditions and application requirements [14]; and (v) a
battery-powered system that sends data every minute [43]. We consider these five architectures
since they include current solutions (v), literature heuristic (ii), and RL-based methods (i, iii, iv).

RLMan uses an actor-critic algorithm with function approximations and learns a policy based
on historical data with only the energy storage level as states. We use the same state, but use the Q-
learning algorithm to learn a policy. We run the algorithm until it converges in the simulator, and
hence the change in algorithm will not affect the final policy learned. To simulate the Mote-Local
method, we used the power management algorithm described in earlier work [21]: the system
increases the duty-cycle period if the lighting is available and the supercapacitor is increasing the
voltage with time and decreases the sensing rate when the light is off or the voltage is decreasing
or maintaining the same value with time.

For this experiment, we use a week of lighting data collected for the day-by-day experiment
(i.e., Section 5.2). RLTDPM is a one-time learning method. To compare it against ACES, we limited
the learning of the environment from the simulator to the first half of the week and let the agent
take actions in the remaining half. In the work of Dias et al. [14] (i.e., On-Line RL), the system can
only take three actions: increase, decrease, or maintain the current duty-cycle period. Therefore,
we modified the simulator accordingly. On-Line RL [14] also uses one-time learning. Therefore, in
a week-long experiment, we considered On-Line RL training using only the first half of the week
data.

Table 12 shows the comparison for each lighting condition.
ACES outperforms the average duty-cycle period compared to the RLMan, RLTDPM, On-Line

RL, and Mote-Local techniques. ACES beats the Mote-Local technique as it learns the impact of
each action it takes with rewards received, the formulation teaches the agent to forecast conditions
based on historical data and optimize for lower duty-cycle periods. ACES beats RLMan because
it uses additional state information such as light intensity and weekday/weekend. Hence, these
additional states we include in ACES make a measurable impact on the performance of the node.

From the Stairs Access case, the duty cycle that RLTDPM can achieve is only 129 seconds,
whereas ACES reaches 63 seconds. Our system obtains better rewards because of day-by-day learn-
ing. Therefore, ACES continuously learns from the environment and adapts its performance over
time even in critical low lighting conditions (e.g., Door case). We put a slash (/) in the Door case since
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Table 13. Summary of the 45 Nodes We Deployed for PIR Event Detection

Node Avg Avg Peak Avg Dead Node
Placement Light PIR PIR Sensing Time Dead

(lux) (event) (event) (sec) (hours) (num)
Conference 1,139 43 83 119 24 1

Window 4,301 83 199 79 0 0
Middle 423 61 175 107 0 2†
Door 554* 33 85 110 0 0

Stairs/
Corridors 479 81 154 149 0 1†

* Two nodes out of 9 in the ceiling near internal lights.
† Three nodes died in the Middle and Corridor cases due to hardware defects.

Nine nodes were deployed for each lighting condition. Numbers are the average per day during

a 2-week experiment.

the node died during the simulation. On-Line RL reaches larger duty-cycle periods than ACES in
every condition due to the incapacity of the system in selecting an intermediate duty-cycle period
when needed (i.e., actions 1 and 2). On-Line RL also depletes its energy storage in the Door case
due to its inability to consider changes in the environment over time. Our system avoids energy
storage depletion thanks to day-by-day learning, which reduces dead time to near 0.

5.5 Real-World PIR Event + Periodical Sensing

We deployed 45 nodes with a PIR sensor to evaluate ACES in the real world for 2 weeks. We placed
nine nodes for each of the five lighting conditions. The nodes send both PIR events and light in-
tensity data. Forty nodes use a day-by-day learning policy, and five nodes use a transfer-learning
policy. As event sensing nodes remain awake much of the time, we increased the supercapacitor
size to 1.5 F to account for additional energy expenditure. A node now lasts up to 9.6 hours when
it sends a packet every 15 seconds with the PIR always on. It lasts up to 8 days with a 10-minute
sensing period. Table 13 reports a summary of the nodes deployed in the different lighting condi-
tions, including the number of times the nodes die and the time in hours that they were off. For the
Door case, we placed two of the nine nodes close to the ceiling near a source of light to facilitate the
detection of people entering or leaving the room, and hence the average light the nodes achieve
in this location is higher than other averages.

Three nodes died in the Middle and Corridor cases. Upon investigation, we found that the nodes
were defective and did not charge even when lights were on. For the Conference Room case, most
nodes performed well, but one of the nodes ran out of energy for about 24 hours. Upon checking
its historical data, we found that the light in the room remained off for several days and the nodes
died during the weekend. After people entered the room and turned on the light, the node resumed
operations in just 15 minutes. Results are positive for the Stairs/Corridor case where nodes detect
as an average of 81 events per day and sent light data every 149 seconds. The Window location is
the most performant one since sensors can send data on average every 79 seconds with 199 motion
events captured.

5.5.1 PIR Detection Accuracy. To evaluate how many events are missed by ACES, we placed 15
battery-powered nodes as ground truth for the events detected. We count at most one motion event
every 2 minutes for both the ACES and ground truth sensor nodes. Table 14 compares the events
detected in the different lighting conditions w.r.t. to the ground truth nodes. The table reports the
average events per day. The table also shows that for the Window case, the number of data sent
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Table 14. Event Detection Comparison Between ACES and

Ground Truth Nodes

Node Ground Truth ACES Percentage
Placement (events) (events) (%)

Conference Room 52 48 91
Window 110 109 99
Middle 125 98 79
Door 63 54 86

Stairs/Corridors 154 112 73

Events averaged per day.

Table 15. Energy-Neutral Operations After Consecutive Days for

Different Lighting Conditions

Node Midnight Day 1 Midnight Day 2 Difference
Placement (SC Volt in %) (SC Volt in %) (num)
Conference

Room 93 100 7
Window 88 87 1
Middle 88 87 1
Door 67 68 1

Stairs/Corridors 91 91 0

from ACES w.r.t. to a battery-powered node is 99%. This is not surprising as the majority of events
happen during the day. Conference Room nodes also get 91% of the events since as soon as people
enter the room, the supercapacitor gets fully charged in a few minutes. The Corridor case is the
most challenging, where there is a continuous stream of events due to people moving and ACES
catches only 73% of them (mean of 112 events per day). This can be mitigated with a different
event detection strategy, such as reward events detected every 10 minutes, for locations with large
activity.

5.5.2 Continuous Operation and Morning First Event Detection. Barring the three defective sen-
sors, 41 nodes of the 42 deployed maintained continuous working operations. More importantly,
they were operational throughout the night and detected the first PIR event in the morning when
people come into their office. The first morning PIR event is important for convenience as users
expect a fast response from building systems when they enter their office. ACES detects 99% of
these events, and only one was delayed by 15 minutes.

5.5.3 Transfer Learning. We deployed five of the nodes using transfer learning with a Q-table
from a node in a similar lighting condition described in Section 5.3.2. All of the nodes benefited
from the initial policy and achieved 0% dead time.

5.6 Energy-Neutral Operations

It is possible that the ACES nodes perform well in our multi-week deployments but are consuming
incrementally more energy than is available and die out in a longer deployment. We evaluate the
energy neutrality of ACES nodes by monitoring the supercapacitor voltage level of five randomly
picked nodes in each type of location. If the supercapacitor voltage level steadily decreases over
time, ACES nodes will die more frequently in longer deployments. Table 15 shows the superca-
pacitor voltage percentage at midnight after 2 consecutive days for the five nodes.
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Fig. 11. Energy neutral operations for the Stairs case. The light is almost constant throughout the day, and

ACES adapts the actions to maintain a constant voltage level. At the end of 2 consecutive days, the super-

capacitor voltage level percentage remains the same.

For four of the five nodes, the voltage level in the supercapacitor stays within 1% after 24 hours.
All four nodes have voltage levels at less than 100%. Thus, the ACES agent learns to modulate its
duty-cycle period such that it neither expends too much energy nor is it saving too much energy.
Figure 11 shows energy-neutral operations for the Stairs case. In this case, the light is almost con-
stant throughout the day, and ACES adapts the action accordingly to maintain a constant voltage
level. At the end of 2 consecutive days, the supercapacitor voltage level percentage remains the
same.

For the Conference Room case, the situation is different and the supercapacitor voltage percent-
age reaches 100%. In this case, the ACES agent was conservative in spending its energy and did not
send as much data as it could have. The conservative strategy may work better in the conference
room because of its unpredictable changes in light conditions.

6 REAL-WORLD EXPERIENCE AND LIMITATIONS

We have demonstrated that ACES can successfully set the sensing rate of energy harvesting devices
according to light availability. Our simulation and real deployment results are promising. Our
current deployment consists of 60 nodes across our department floor building with 15 nodes for
periodical light sensing and 45 for PIR event detection. We use 15 additional battery-powered nodes
as a ground truth reference for the PIR nodes. Figure 12 shows the floor map and the position of
the nodes. Based on our experience, we highlight the pertinent future research directions for using
RL at the edge.

RL problem formulation. The key to the success of RL is to formulate the states, actions, re-
wards, and state transitions to capture the essence of the problem. We empirically tried several
formulations before finalizing the current design. This is a one-time effort that can be applied to
the deployment of numerous sensors and is much better than manually configuring each sensor.
However, tools to assist domain experts in the problem specification will be immensely useful to
adopt ACES-like solutions.

Safe exploration in real-world deployments. In our one-time learning policy, we kept ϵ = 0.9 to let
the system explore during the day. Sometimes the randomly chosen action can drastically reduce
the QoS. We avoided exploration by using the day-by-day learning strategy, where we learn the
policy in the simulator. We can do this because the effect of our actions on the environment were
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Fig. 12. Sixty nodes deployed across our department building floor. Forty-five nodes send both PIR events

and periodic light measurements, and 15 nodes only sense light periodically. All of the nodes use day-by-day

learning, and 10 nodes were initialized with transfer learning policy.

relatively easy to simulate. If that is not the case, we need a safe way to explore the real-world
deployment [5].

Accommodate larger state space. We carefully designed our states and actions to limit the search
space of the Q-learning algorithm and make the problem tractable. However, in realistic IoT de-
ployments where nodes can have tens of parameters, we may need to accommodate large state
spaces and action choices. Recently proposed deep RL algorithms such as DQN [44] and TRPO [51]
can accommodate such large state spaces. As our agent resides in the power socket–connected base
station, it has enough computation power to deploy these algorithms. In future work, we plan to
explore the computation versus performance trade-offs among these algorithms.

Speeding up learning. In our current setup, we initially learned a new policy for each sensor
node from scratch. To scale to thousands of sensors, we can learn a single policy that generalizes
to many different contexts. We showed how transfer learning can be used to speed up the learning
process. However, we can learn a single policy by expanding the state space to include contextual
features so that the RL agent learns the actions that maximize the long-term rewards in a context-
specific manner. For our use case, we could add different states to include different information
such as the type of room (conference room vs. lobby), if the room has a window, and so forth. A
single policy can learn from data collected by all of the sensor nodes and hence will also speed up
learning significantly.

Managing network failures. Communication between the nodes, the base station, and the com-
putational unit can fail in the real-world environment due to unexpected events. During our de-
ployment, our department network was subject to IP address reconfiguration of IP addresses by
the network building manager and the local server running ACES failed to communicate the ac-
tions to the base stations and hence to the nodes. Three nodes died during a 4-day disconnection.
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To limit network failure consequences, the Q-learning policy can be executed inside the node. The
memory and compute requirements are low. The CC2650 MODA that is included in the board
has 128 kB of programmable flash, and the Q-tables we learned are at most 25 kB. As a proof of
concept, we implemented a full Q-table inside one node, and the node could modulate its sensing
period without the need for an external computational unit. Note that the node’s computational
capability is not enough for our RL training with the simulator. However, we can recover from
network failures by running the Q-table from the sensor node itself as it only takes up to 25 kB of
memory.

Simulation and real-world differences. Although in the simulations the best sequence of actions
is learned by considering all of the nodes behaving identically, during our real-world deployment
we discovered several factors that can differ between the nodes while severely impacting the node
behavior. The factors are: (i) current leakage variability, (ii) environmental interference, distance
from the base station causing disconnections and more power needed for the node to reconnect.
Taking into account those differences can increase nodes’ performance. Furthermore, those dif-
ferences become non-negligible in a large-scale deployment. When we increased our deployment
from 5 to 60 nodes, the disconnections in the network increased at a rapid rate. On average, 1 of
20 packets is affected by disconnections and the node needs to reconnect with the base station
causing increased energy consumption.

Placement of nodes. One node never reached normal working functionalities because the light
available was never enough for the node to charge. The node was placed in a corridor, and only
60 lux was available during the day. After moving it closer to the source of light (110 lux on av-
erage), the node started working as expected. Hence, the placement of nodes should take into
consideration the minimal energy required to operate the node.

7 CONCLUSION

Battery replacement of wireless sensors is a major bottleneck toward the adoption of large-scale
deployments in buildings. We show that energy harvesting sensors provide a credible alternative
when we optimize their operations using RL. Our system ACES uses RL to configure the sampling
rate of solar panel–based energy harvesting sensor nodes. Our sensor node uses BLE for communi-
cating data to a nearby base station and senses both periodic measurements such as temperature
and event-driven ones such as motion. Using both simulations and real-world deployments, we
show that our Q-learning algorithm–based RL policy learns to adapt to varying lighting condi-
tions and sends sensor data across nights and weekends without depleting available energy. We
explored deploying a one-time policy learned from historical data and learning a new policy based
on data collected each day. Both of these strategies achieved perpetual operations in real-world
deployments. We also showed that transfer learning can be used to effectively reduce the initial
percentage of node dead time in real deployments.
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