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ABSTRACT
Modern Internet of Things (IoT) applications, from contextual sens-
ing to voice assistants, rely on ML-based training and serving sys-
tems using pre-trained models to render predictions. However,
real-world IoT environments are diverse, with rich IoT sensors and
need ML models to be personalized for each setting using relatively
less training data. Most existing general-purpose ML systems are
optimized for specific and dedicated hardware resources and do
not adapt to changing resources and different IoT application re-
quirements. To address this gap, we propose MLIoT, an end-to-end
Machine Learning System tailored towards supporting the entire
lifecycle of IoT applications. MLIoT adapts to different IoT data
sources, IoT tasks, and compute resources by automatically training,
optimizing, and serving models based on expressive application-
specific policies. MLIoT also adapts to changes in IoT environments
or compute resources by enabling re-training, and updating models
served on the fly while maintaining accuracy and performance. Our
evaluation across a set of benchmarks show that MLIoT can handle
multiple IoT tasks, each with individual requirements, in a scalable
manner while maintaining high accuracy and performance. We
compare MLIoT with two state-of-the-art hand-tuned systems and
a commercial ML system showing that MLIoT improves accuracy
from 50% - 75% while reducing or maintaining latency.

CCS CONCEPTS
• Computer systems organization → Client-server architec-
tures; • Computing methodologies→ Artificial intelligence.
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1 INTRODUCTION
There is widespread interest in Internet-of-Things (IoT) enabled
environments with the expectation that it can revolutionize health-
care, smart homes/buildings, and manufacturing. This vision is
enabled by IoT sensors with rich sensing capabilities [39, 49], cloud
platforms like AWS and Azure, and rapid advances in ML soft-
ware stacks[4–6]. In the context of smart homes and buildings,
in particular, the goal is to sense the rich context and activities
of the occupants and to detect the events/states of the appliances
and equipment in the space [32, 38, 39].However, supporting the
diversity of IoT use cases, differences in user and application re-
quirements, as well as the dynamic environments that these de-
vices are deployed in, requires machine learning platforms that can
be customized and adapted to the IoT domain. Doing so enables
compelling applications such as sensing Activities of Daily Living
(ADLs) for the elderly [10, 18, 22] or make smart assistants [3, 27]
context driven and more capable.

To detect activities and events in smart environments usually re-
quires machine learning on a variety of IoT sensor data sources. The
holy grail is to “train” a generalized MLmodel once and then “serve”
or deploy it to make predictions. In fact, several general-purposeML
serving-only systems exist, [5, 14, 51, 66, 67] including those for IoT
relevant audio data [38] or image sources. These systems relying
on pre-trained models do not work well for IoT settings for several
reasons. First, each IoT deployment/environment is different requir-
ing ‘in-situ’ (re-)training based on the sensors and events in that
setting. For example, multi-modal sensor [39, 49] or audio-based
context recognition [21, 38] is affected by the physical space charac-
teristics and changes to the ambient environment. Second, accurate
pre-trained models, such as ImageNet or YoLo, need a significant
amount of labeled training data, and computation resources, which
is atypical in IoT scenarios. Third, these systems are optimized for
specific, and often dedicated hardware resources, and do not adapt
to changes in resource availability, for example, an edge compute
hub (for privacy) as compared to a server on the cloud. Recent work,
proposes programming by demonstration (PbD) [39, 49], to enable
users to train personalized models ‘in-situ’ in a specific IoT envi-
ronment. However, these approaches use a single ML model and
do not adapt to model drift over time with environmental changes,
which requires models that need to be retrained and optimized.
Furthermore, these systems are not contextualized to IoT and do
not identify which common ML techniques like dimensionality
reduction (DR) or hyper-parameter optimizations (HPO) work in
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practice. Most importantly, most of the prior works are not “end-
to-end” ML systems for IoT scenarios with closely coupled (re-),
training and serving components.

To address these limitations, we designed and implemented
MLIoT, an end-to-end machine learning system tailored for IoT
use cases, supporting the entire lifecyle of initial training, serving,
and retraining processes.MLIoT adapts to (heterogeneous) compute
resources by performing device selection based on user expressed
preferences (policies) and benchmarking device capabilities. MLIoT
adapts to different data sources and tasks by automatically training,
optimizing, and serving models based on expressive preferences
(policies). MLIoT adapts to changes to the IoT environment or com-
pute resources by re-training, and updating the served models on
the fly, while maintaining accuracy and performance. MLIoT per-
forms these adaptations dynamically for multiple tasks, each with
their own training-serving pipelines and requirements.

In this paper, we make the following contributions:
(1) We present the design and implementation of MLIoT, an

extensible end-to-end Machine Learning system contextual-
ized for IoT scenarios. MLIoT provides flexible policy-driven
selection of hardware platforms, ML models, and various
optimizations for closely coupled training and serving tasks.

(2) We propose numerous optimizations for training and serv-
ing and report on their efficacy in an IoT context. These
include (a) hyper-parameter optimization and dimensional-
ity reduction of models; (b) lazy training to increase accuracy
over time, while reducing latency to start serving; (c) model
adaptation to account for drift using corrective feedback
from users; and (d) two-stage serving that increases accu-
racy while improving serving latency.

(3) We evaluate MLIoT on several hardware devices and across
a set of expressive IoT benchmark datasets (image, audio,
multi-modal sensor data). Our results show that MLIoT is
able to service different policy objectives, balancing load
across devices while maintaining accuracy and latency. Fur-
thermore, we compareMLIoTwith two state-of-the-art hand-
tuned systems and a commercial ML system showing that
MLIoT improves accuracy from 50% - 75% while reducing or
maintaining similar latency.

2 APPLICATIONS AND CHALLENGES
Tomotivate the challenges unique to IoT settings we present several
example IoT applications and their data sources. We then identify
the unique challenges forML systems in IoT settings, which existing
general purpose training [17, 63, 66] and serving [14, 51] systems
fall short on.

2.1 IoT Application Workloads
Activity Recognition usingMulti-Modal sensors: There is rich
history of activity and event detection in IoT enabled environments,
using non-intrusive ambient sensors [32, 37, 39, 49], or direct in-
strumentation [8, 64], and even in-direct sensing [12, 30, 57]. These
systems use labelled data from sensors such as Accelerometers,
Gryoscopes, Microphones, Temperature and Humidity to explic-
itly train ML models for specific events and test their accuracy on

live data. Recent systems[39, 49], incorporate as many as 13 differ-
ent hardware sensors, extracting over 2,000 features, on a single
package. They propose a Programming-by-Demonstration (PbD)
approach to train a single ML model to predict the occurrence of
various events. Their interface allows end users to add more train-
ing data, and retrain the ML model if desired. Given the diversity of
IoT relevant hardware sensors present on this platform, we collect
and use multiple datasets from the Mites to evaluate MLIoT, as well
as compare our accuracy and performance to this state of the art
system.

Audio Based Activity Recognition: Given that many activi-
ties have an audio signature (e.g. appliances running, faucets being
turned on) Ubicoustics proposes using audio only for activity detec-
tion, particularly by building a generalized a pre-trained deep model
[38]. Their system collects audio, processes it into VGG-16 network
with 6144 features, and then trains a large DNN. We collect a set of
audio benchmarks and compare MLIoT with Ubicoustics.

Object Recognition using Image Data: Several emerging IoT
applications apply computer vision algorithms on images, to detect
objects, adding labels and bounding boxes[55, 56]. To evaluate
MLIoT for image data, we use the popular MNIST dataset which
has labelled images for handwritten digits [40].

2.2 Challenges for ML systems in IoT settings
Motivated by the above IoT application and workloads, we identify
key challenges for ML Systems geared towards them.

Adapting to Different IoT Application requirements: IoT
applications requirements can differ substantially. Deep learning
based computer vision applications often need hardware accelera-
tors with significant memory[55]. Activity recognition, using classi-
cal models, often need to run on edge gateways such as a Rasbperry
PI [54] or a SmartThings Hub, [58] with modest compute resources
for faster latency and to alleviate privacy concerns. Developers
of these applications themselves may have different requirements
such as accuracy, latency, cost (cloud vs local inferences), models to
use, and even different priorities between their different IoT tasks.
MLIoT provides an expressive policy driven mechanisms to balance
user requirements with the available resources.

Adapting to Device Capabilities and Resource Availabil-
ity: The inherent heterogeneity in individual device capabilities
(CPU complexity, number of cores, memory, bandwidth, accelera-
tors) affect the performance (training and serving) of ML algorithms.
It is essential to thus estimate the comparative performance of the
devices available, which MLIoT achieves by benchmarking devices
in different conditions and using that information for device selec-
tion. Furthermore, the resources available on individual devices also
change as different IoT ML tasks run on them, each with their own
requirements. MLIoT provides load balancing and various dynamic
adaptation mechanisms such as changing the models served, for
meeting these requirements.

Adapting to Changes in Environmental Context: Existing
ML systems [5, 14, 51, 66, 67] often rely on generalized ML mod-
els, which are infeasible in IoT settings since each environment is
unique and models needs to be contextualized to that environment.
Furthermore, IoT systems are also affected by changes in the ambi-
ent environment, both temporary or permanent (e.g. changes to the
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physical layout of a home, affecting audio based sensing). MLIoT en-
ables both the initial training, and retraining and re-optimizations
of the models based on user driven corrective feedback.

Customization to IoT data types: There are well known tech-
niques to improve the accuracy and the performance of ML systems,
such as hyper parameter optimization, creating model ensembles,
dimensionality reduction, multi-stage models. However it is un-
clear which of these techniques (and specific algorithms) work on
IoT data types, either individually or in combination. In MLIoT we
apply all these techniques on a variety of IoT data types showing
their efficacy and the associated tradeoffs.

Need for an End-to-End ML service for IoT: Supporting the
lifecyle of an IoT application comprises of multiple key steps: ini-
tial training (e.g. using a PbD approach), model evaluation and
optimizations, model serving, adapting and retraining models with
additional data or changes to resources, and then managing multi-
ple concurrent IoT applications. While individual pieces to support
this lifecyle exist, to the best of our knowledge none of them provide
an end-to-end solution like we envision with MLIoT.

3 RELATEDWORK
We organize the prior work onMachine Learning systems into three
categories: Serving-only (§3.1), Training-only (§3.2), and hybrid
training-serving (§3.3). We refer to [44] [16] for an extensive survey
of this topic and also compare and contrast several prior works
with MLIoT in Table 1.

3.1 Large-scale ML Serving Systems
There are several general purpose prediction serving systems from
the industry and academia which aim to facilitate model deploy-
ment [14, 15, 38, 51, 65, 67]. These systems place the trained models
in containers and optimize model inference requests. Clipper [14]
aims to deploy pre-trained ML models in containers and optimizing
serving performance using request batching and caching to reduce
latency. It also employs user feedback to select and combine the
output of one or more deployed models to improve accuracy. In-
ferline [15] provisions and executes prediction pipelines subject to
latency constraints, leveraging adaptive batching and autoscaling to
reduce latency. TensorFlow Serving [51], a commercial grade serv-
ing system, is designed to deploy models as TensorFlow pipelines
[24] which are executed in black box containers. Other serving
systems have focused on applications content recommendation
systems [67], speech recognition [41] and activity recognition [38]
all of which have highly customized, application specific models.
Several commercial systems targeted towards IoT also exist such
as Amazon AWS IoT greengrass [5], Google Cloud Vision AI [26],
Amazon Rekognition [4] or Azure IoT [47]. Some of them leverage
edge and cloud resources to serve models with low latency, and
to save costs. These commercial systems are vertically integrated,
focusing on serving predictions from a single model or framework,
or specific hardware only. These systems fail to address one or
more key requirements for IoT scenarios: focus on serving static
pre-trained models, no adaptation to environmental changes, do
not support heterogeneous devices, or have limited, if any, support
for policies.

3.2 Large-scale ML Training Systems
Most of the training focused systems [11, 17, 63, 66] optimize for
deep neural network models with many hyperparameters, which
is very resource and time intensive. Project Adam [11] investigates
distributed training based on available resources while Helix [66]
and KeystoneML [63] use various techniques to optimizes the ML
training workflow.

Commercial systems such as Google Vizier [23], similarly op-
timize DNNs, focusing on a variety of techniques to ‘tune’ the
network parameters to improve accuracy and performance. Google
AutoML [25] views learning to build a network itself as a machine
learning problem, applying techniques such as reinforcement learn-
ing for the task. These systems are geared towards producing high-
quality and complex deep networks for domains such as object
recognition, and translation. These training only systems assume
large corpus of training data for an expensive, infrequent, training
tasks and optimize for efficient distributed model training. In con-
trast, in IoT scenarios the available data is sparse to train complex
models, the trained models need to be specific to the sensor sources,
environmental context, application requirements and thus need
more closely coupled (re-)training and serving systems.

3.3 ML Training/Serving Hybrid Systems
Several recent efforts aim to simplify ML development through a
general-purpose machine learning system with both training and
serving of models [2, 5, 6, 13, 15, 26, 34, 35, 42, 68, 69]. Some of
these systems that share similar goals of MLIoT are the end-to-
end “ML Platforms” that run at commercial settings. Systems such
as Uber’s Michelangelo ML [35] and Facebook’s FBLearner Flow
[34] serve as ML-as-a-service platform which is optimized for their
internal use cases. Uber’s Michelangelo ML is optimized for their
real-time requirements, allowing production models to use features
extracted from streams of live data. FBLearner Flow allows reusable
ML workflow that allows ML models to be modified and reused in
different products. On the other hand, Google’s TFX [6], provides
Tensorflow-based [24] toolkits for data preparation, periodic model
evaluation to improve performance and reliability and extends
TensorFlow Serving [51] to serve the models with TensorFlow-
based learners. Such systems generally run on the cloud incurring a
higher cost for better workload environments and restrict users to a
specific set of algorithms or libraries, so users are on their ownwhen
they step outside these boundaries. Similarly, Other commercial
IoT tailored systems such as Google’s Cloud IoT [26], Microsoft’s
ML.net [2] and AWS IoT Greengrass [5] are in-house proprietary
systems focused on specific hardware andML algorithms. Academic
approaches such as Velox [13] and InferLine [15] propose managing
the lifecycle of model training, serving, and updating but they are
intended towards modeling efficient execution of ML pipelines to
reduce cost or meet the SLO constraints. They are not designed
to adapt to unpredictable operational environments. Ultimately,
many of these systems do not address the challenges specific to IoT
applications as mentioned earlier in Section §2.

Differentiation of Our Approach: Our MLIoT vision and ap-
proach differs from prior work along several key aspects, with a
summary provided in Table 1. MLIoT is designed as an end-to-end
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Table 1: Comparing expressiveness of MLIoT with prior work on Machine Learning systems. While some systems do address some of the
requirements of IoT scenarios, to the best of our knowledge MLIoT is the only one that supports all of them.

Related Work Requirements in IoT
Approach Sources Adaptive

Model
Selection

Expressive
Polices

Adaptation to
Heterogeneous
Hardware

Adaptation
to Environ-
ment

End-to-
End

Ac
ad
em

ic
Sy

st
em

s

Clipper [14] Serving Any Src ✓ ◆ ✗ ✗ ✗

InferLine [15] Hybrid Any Src ✓ ◆ ✓ ✗ ✗

Ubicoustics [38] Serving Audio ✗ ✗ ◆ ✗ ✗

Helix [66] Training Text ✗ ✗ ✓ ✗ ✗

Project Adam [11] Training Image ✗ ✗ ◆ ✗ ✗

KeystoneML [63] Training Text ✗ ✗ ✗ ◆ ✗

Mites [49] Hybrid Multimodal ✗ ✗ ✗ ✓ ✓

Velox [13] Hybrid Any Src ✗ ✗ ✗ ✓ ✓

Laser [67] Hybrid Text(Ads) ✗ ✗ ✗ ◆ ✓

Co
m
m
er
ci
al TensorFlow Serving [51] Serving Any src ✗ ◆ ✗ ✗ ✗

AWS IoT Greengrass [5] Serving Any Src ✗ ✗ ✓ ✗ ◆

Microsoft’s ML.Net [2] Hybrid Any Src ✗ ✗ ✗ ◆ ✓

Google’s Cloud ML [26] Hybrid Any Src ✗ ✗ ✗ ✓ ✓

Google’s TFX [6] Hybrid Any Src ✓ ✗ ✗ ✓ ✓

MLIoT Hybrid Any Src ✓ ✓ ✓ ✓ ✓

✓: Available ✗: Not Available ◆: Partial features available

IoT focused ML training-serving system. MLIoT is flexible to sup-
port wide variety of IoT data sources, train personalized models
that can be optimized and re-trained over time. MLIoT supports
expressive policy-driven device and model section for both training
and serving based on application and user requirements. It is ex-
tensible allowing new ML frameworks and algorithms to be added
and can leverage heterogeneous hardware platforms.

4 SYSTEM DESIGN AND ARCHITECTURE
The overall architecture of MLIoT is illustrated in Figure 1. It com-
prises of two logical components, the Device Selection Layer (DSL)
and Training-Serving Layer (TSL). The DSL has several key roles.
It serves as the central authority that manages all the devices or
compute resources available to it for scheduling ML tasks. It is
also responsible for handling any new request for ML tasks and
based on the policy specified by the IoT application, selecting the
appropriate resource to serve that task. The DSL also maintains
configuration data for each training-serving task, which includes
the application training data, the trained ML models, and several
other parameters for serving those models. This functionality is
important since the same task can be interrupted, or restarted, and
can resume serving from where it left off using the state available
at the DSL, including running on a different device. We describe
the DSL in further detail in §4.1.

The Training-Serving Layer (TSL), is responsible for instantiating
the Training-Serving Workers (TSW) for each ML task sent to it.
The TSL is also responsible for allocating and managing resources
(CPU and memory limits) to individual TSWs. The training-serving
workers are responsible for training models, optimizing them, and
selecting the set of models for serving based on the specified policies.
TSWs are also responsible for keeping track of performance and
adapting the models to changes to the resource availability on the
device they are running on, or on receiving corrective feedback.
Individual TSWs report back metrics like model performance, CPU
and memory usage, etc to the DSL which has a holistic view of all

Figure 1: Overall System Architecture of MLIoT

the tasks it is managing and the devices they run on. We describe
the TSL and the functionality provided by the TSWs in further
detail in §4.2.

4.1 Device Selection Layer (DSL)
IoT application tasks comprise of training and serving ML models.
How well these tasks run depends on the device capabilities such
as the number of cores available for parallel execution, the amount
of memory available, the relative performance of the cores (x86 vs
ARM vs an accelerator), etc. Furthermore, IoT applications them-
selves may have different requirements. For example, an application
that senses audio at home may need the ML predictions to be done
locally on an in-home hub like a Raspberry-PI or a Samsung Hub.
An intrusion detection application [20] may require low latency
predictions, while an application that detects falls for the elderly
requires high accuracy predictions to reduce false positives. Ac-
tivity detection scenarios [38, 39] similarly need to be responsive,
implying fast training times, to reduce user annoyance of having to
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wait. Ultimately, the DSL needs to holistically manage and monitor
the compute resources at its disposal and schedule IoT tasks on
different devices.

4.1.1 Benchmarking Device Performance: There are numer-
ous devices and platforms that MLIoT can run on, often with dif-
ferent characteristics. These include inexpensive platforms like a
Raspberry Pi, or Hardware accelerators for ML such as Google
EdgeTPU [28], Nvidia Jetson [50] (or) Intel Neural compute [33]. Al-
ternatively, MLIoT can also run on traditional VMs in the cloud on
Google’s Cloud Platform [26], or Amazon AWS [4]. To characterize
their relative performance, MLIoT needs to benchmark each device.
Since the IoT application workloads are not known apriori, we col-
lect and use three different representative IoT datasets described in
Section §2.1 and Table 2 - audio based activity recognition, a multi-
modal sensor based activity recognition, and an image recognition
application. Our insight is that the relative performance of devices
on these representative datasets can be used for device selection of
new IoT tasks. For these benchmarks, we train and serve a set of
classical ML models as well as deep learning models (as applicable),
on each device measuring several key metrics:

• CPU and Memory Utilization: We collect the average
CPU and memory utilization over the entire benchmark
execution and normalize the values between 0 and 1.

• Prediction Latency: We measure the average time taken
by a training serving worker running on a device to receive
a prediction request and respond to it for each benchmark.

• Training Time and Accuracy: We measure the training
time and accuracy for a set of models, for each benchmark.

Notably, we collect these metrics when instantiating a Training-
Serving Layer on each device. The overhead of collecting this data
for device selection is low and to ensure that it does interfere with
any other tasks, we reserve a fraction of the compute resources
(10%) for benchmarking only.

4.1.2 Device Selection Policy: The DSL considers several as-
pects while scheduling tasks on devices. It uses the benchmark
metrics from devices as mentioned above, as well as device meta-
data such as the number of cores, memory, as well as the presence
of accelerators. Since the available resources on a device change
based on other co-located tasks on it, the DSL captures run time
metrics periodically such as the CPU load (C), Memory (M) and Load
Average (LA). This information is provided by the TSL running on
each device, to the DSL periodically (every 1s). For these metrics, we
calculate an Exponential Weighted Moving Average (EWMA) for a
window size of 10 samples to reduce transient noise. Based on the
benchmark metrics, the runtime metrics, and the device metadata
the DSL exposes several policies for IoT developers to specify their
application requirement. These policies are either Static, based on
static values such as CPU core count etc., or Dynamic based on
metrics that change such as the CPU load.

• Static Policies:
– GPU-CPU: Use a machine with GPU (or) a CPU.
– Max-Min: Select devices with the maximum or minimum
of number of CPU cores, Memory or Load.

– Locality: Select devices based on locality, such as an trusted
edge device for privacy concerns or optimizing latency.

– And-Or: Select devices based on a logical combination of
different metrics mentioned above.

• Dynamic Policies:
– Threshold: Select devices based on specifying Atleast, At-
most or Equal threshold conditions. e.g. Latency Atmost
40ms.

– Best Effort: When no application requirements are speci-
fied, the best effort policy chooses the device with the most
available resources across the runtime and benchmarking
metrics.

The DSL compares the metrics it collects from different devices,
with the policy requirements of each IoT application, evaluating
them in order of arrival. If the application policy can be satisfied,
the appropriate device is selected. However, in case the available
resources cannot meet the policy requirements of an IoT application,
the DSL sends a negative response back to the application.

4.1.3 LoadbalancingTraining andServingworkers: Inmany
cases, the DSL may be able to choose from multiple devices to meet
individual IoT application requirements. In these scenarios, espe-
cially with an increasing number of concurrent applications, it is
important to efficiently load balance tasks across devices. The DSL
uses real-time metrics (e.g. CPU and Memory usage, and Load) as
inputs to a dynamic load balancing algorithm based on resource
weights [62] to address this challenge.

More formally our load balancing algorithm works as follows.
Let’s assume there are ‘n’ devices in a MLIoT deployment. The
TSL on each of these ‘n’ devices reports its current system perfor-
mance metrics periodically (1s). We calculate the load state using
the following formula:

𝐿𝑖 = 𝑤𝑐𝑝𝑢𝑖 × 𝑐𝑝𝑢_𝑢𝑠𝑎𝑔𝑒𝑖 +𝑤𝑚𝑒𝑚𝑖 ×𝑚𝑒𝑚𝑜𝑟𝑦_𝑢𝑠𝑎𝑔𝑒𝑖
+𝑤𝑙𝑜𝑎𝑑𝐴𝑣𝑔𝑖 × 𝑙𝑜𝑎𝑑𝐴𝑣𝑔𝑖

(1)

• 𝐿𝑖 is the Load state of ith Training and Serving Layer.
• 𝑐𝑝𝑢_𝑢𝑠𝑎𝑔𝑒𝑖 ,𝑤𝑐𝑝𝑢𝑖 is the percentage CPU utilization with its
corresponding weight.

• 𝑚𝑒𝑚𝑜𝑟𝑦_𝑢𝑠𝑎𝑔𝑒𝑖 ,𝑤𝑚𝑒𝑚𝑖 is the percentage Memory utiliza-
tion with its corresponding weight.

• 𝑙𝑜𝑎𝑑𝐴𝑣𝑔𝑖 ,𝑤𝑙𝑜𝑎𝑑𝐴𝑣𝑔𝑖 is the system average load with its cor-
responding weight.

We calculate the weight dynamically at each fixed cycle to calculate
load state precisely. To get the weights we find the minimum value
of themetric and divide it by themetric value of the currentmachine
as below:

𝑤𝑐𝑝𝑢𝑖 =
𝑚𝑖𝑛(𝑐𝑝𝑢_𝑢𝑠𝑎𝑔𝑒1, 𝑐𝑝𝑢_𝑢𝑠𝑎𝑔𝑒2, ....𝑐𝑝𝑢_𝑢𝑠𝑎𝑔𝑒𝑛)

𝑐𝑝𝑢_𝑢𝑠𝑎𝑔𝑒𝑖
(2)

The DSL then selects the device with the least load for the par-
ticular IoT application.

4.2 Training-Serving Layer (TSL)
The Training-Serving Layer (TSL) runs on each device in a MLIoT
deployment. The TSL spawns a separate manager process to create,
monitor and manage a pair of Training Workers (TWs) and Serving
Workers (SWs) for each IoT application as shown in Figure 2. The
TSL uses Linux CGroups (control groups) [9] to allocate and enforce
the resource usage for each Training and Serving worker. The
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Figure 2: Overall architecture of the Training and ServingWorkers.
The Training Worker is responsible for training models in paral-
lel, and optimizing hyperparameters, using the input training data.
Based on different policies, an ensemble of models is selected and
sent to the Serving Worker. The Serving Worker uses the ensemble
to make predictions using certainty estimation while aggregating
serving side data for feedback from the user.

Training Worker is responsible for the initial model training using
labeled data, as well as retraining models when corrective feedback
is provided by users to improve accuracy. The Serving Worker
obtains the trained models from the TW, creates a model ensemble
and performs online predictions. The SW also collects user feedback
on the ensemble-based predictions and forwards them to the TW.
This close coupling of the TW and the SW for each IoT application is
critical to improve accuracy and performance over time, and adapt
to dynamic IoT environments. We discuss the Training Worker in
§4.2.1 and Serving Worker in §4.2.1.

4.2.1 Training Worker (TW) . A key goal of a TW is to stream-
line model training to provide high-quality ML models that are
tailored to the specific IoT task. The TW uses generic ML model
definitions to enable extensibility and allow use of multiple com-
mon ML frameworks and their algorithms. The TW selects models
and applies various optimizations (discussed below) based on the
device resources for faster training, and low latency serving.

Dimensionality Reduction (DR): Dimensionality reduction
(DR) is a common technique used in numerous domains to reduce
the feature space, reduce model size and complexity, and identifying
the most relevant features.

We investigate different DR techniques with the goal of (a) pro-
viding better classification accuracy with different types of high
dimensional IoT data sources; (b) explore the hyperparameters
for various DR algorithms for their efficacy, and finally (c) test
whether DR performs efficiently during training. To address these
requirements, we evaluate DR methods such as Principal Compo-
nent Analysis(PCA) [36], Manifold Learning (t-SNE,Isomap,UMAP)
[43, 46, 60] and Kernel Principal Component Analysis (Kernel PCA)
[48]. PCA [36] captures variations present in the linear subspaces of
the original data and computes principal components based on the
transformed space with lower dimensions. Though the computation
of PCA is inexpensive, it is limited to linear transformations only

and thus is ineffective with nonlinear higher dimensional IoT time-
series data. Unlike PCA, other DR approaches based on Manifold
learning [43, 46, 60] creates a complex nonlinear mapping of the
training data based on the overall structure and distribution of data
under different distance metrics. t-SNE [43] uses a non-parametric
method that does not compute a transformation in the serving data
once it is run on the training data. In contrast, Isomap and UMAP
are parametric methods with tunable parameters that can be ap-
plied to the serving data as well. However, the tunable parameter
space is large which leads to a need for an increase in the number
of iteration for hyperparameter tuning which takes a longer time
than PCA and they converge to different results for every iteration
reducing its accuracy.

Kernel PCA [48] overcomes these problems by introducing a
kernel function in the PCA algorithm with nonlinear data trans-
formations like UMAP. We compared these DR techniques with
different IoT application workloads and found that Kernel PCA
with Cosine Kernel was robust at preserving information relevant
to the prediction tasks and balanced accuracy and computational
overhead (Results in §6.2.2).

Hyper-parameter optimization (HPO): Most ML models ex-
pose a rich set of hyperparameters that can be tuned for accuracy
and performance. In MLIoT we wanted to explore the efficacy of
hyperparameter tuning, especially in combination with DR tech-
niques, for representative IoT data sources. Since the space of hy-
perparameters for each model can be large and often continuous,
it is impractical to enumerate and test all combinations. We ex-
plored several techniques like Grid Search, Random Search [7]
and Bayesian Search [61] that efficiently reduce the Hyperparam-
eter combinations to search to identify the best hyperparameter
to generate a model with high accuracy. We compared the above
parameter search techniques and found that Grid Search methods
provide better accuracy across different IoT workloads through
being computationally expensive.

Figure 2 illustrates the training worker where we perform hyper-
parameter optimizations for each model, and also do dimensionality
reduction for the IoT data itself. We evaluate various combinations
of DR and HPO optimizations and report the results in Section
§6.2.2. Our results show that DR and HPO used in combination
leads to computationally efficient and high accuracy ML models
for our representative IoT workloads.

Lazy training: On the serving side, MLIoT uses an ensemble of
ML models [19] for better accuracy than using individual models
alone. However, using model ensembles requires longer training
times to train and optimize all models, leading to higher latency
to start serving the first request. To address this, in MLIoT we
use a lazy training strategy with a time bound (T) to start serving
requests. The parameter T limits the time taken for training models,
such that if certain complex models take longer to train they are
transferred to a separate training worker to train in the background,
in a lazy manner, using residual compute resources. To start serving
within the specified time bound T, the TW sends the models which
have completed to the SW. When the models being trained lazily
complete training, the ensemble is re-evaluated. This lazy training
strategy increases the accuracy over time while reducing latency
to start serving (evaluated in Section §6.2.2)
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Model Definitions:MLIoT supports using models from popular
ML frameworks such as Scikit Learn [53], TensorFlow [1], PyTorch
[52], etc. To enable this extensibility, we designed a flexible Model
Definition with a common abstract interface to expose details nec-
essary for both training and serving. This capability allows the
use of different frameworks, with uniformity across models while
enabling model customization.

TW Model Selection: Similar to Device Selection policies in
Section§4.1.2 the training worker selects models based on applica-
tion policy specification around metrics such as model accuracy and
latency, as well as performance metrics such as CPU and memory
usage. The goal with TW model selection is to create an ensemble
of models to send to the Serving Worker. An example policy can
choose three models with the lowest latency, to send to a SW. The
TW handles all training related tasks, performing model selection
and training, and then continuous model adaptation over time.

4.2.2 Serving Worker (SW) . The Serving Worker performs on-
line predictions using models received from the Training Worker,
under the IoT application’s policy constraints. The SW also pro-
vides a certainty estimate for each prediction based on the models
included in the ensemble, for higher accuracy. It also supports a
two-stage serving system that is specifically optimized for IoT en-
vironments, to improve accuracy due to environmental noise and
reduce latency. The SW is also responsible for collecting corrective
feedback to send to the TW for model adaptation.

Two-Stage Serving:Most continuous serving IoT scenarios are
dominated by periods where no interesting events happens. For
example, for activity detection, for 8 hours a day an occupant is
likely asleep and in a specific room. In these cases, the IoT ML
pipelines are essentially detecting ambient “background”. Current
IoT systems[39, 49] thus explicitly train for large amounts of back-
ground as one of the classes. Furthermore, transient “noise” in the
sensor data, is also often misclassified as one of the trained events.
Ultimately, this leads to higher latency since all models are evalu-
ated for background and noise events, and lower accuracy when
there is noise.

In MLIoT we propose a two-stage serving system. The First Stage
is a binary classifier with two classes, namely the “Background”
and all the other classes of interest for the IoT application. We
empirically evaluate several MLmodels for the first stage and report
results for different IoT workloads in Section §6.2.2. We show that
Logistic Regression (LR) [45] works best as the first state binary
classifier, balancing accuracy and latency. The Second Stage uses
the model ensemble obtained from the Training Worker and uses it
for serving predictions. MLIoT’s Two-Stage Serving reduces overall
latency when events like background or noise occur.

Ensemble Based Model Prediction: After model selection,
the SW uses the final set of models for weighted ensemble predic-
tion, determining model weights based on validation accuracy.

Let the final list of models selected be𝑚1,𝑚2, ..𝑚𝑛 . We calculate
the final ensemble based prediction as:

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐 (
𝑛∑
𝑖=1

𝑤𝑖 (𝑖 𝑓 𝑓 (𝑥)𝑚𝑖
= 𝑐)) (3)

where 𝑓 (𝑥)𝑚𝑖
is the predictionmade bymodel𝑚𝑖 for input 𝑥 and𝑤𝑖

is the weight for𝑚𝑖 . The static weights𝑤1,𝑤2, ..𝑤𝑛 for the models

𝑚1,𝑚2, ..𝑚𝑛 are calculated as:

𝑤𝑖 = 𝑒𝑥𝑖 (
𝑛∑
𝑗=1

𝑒𝑥 𝑗 )−1 (4)

where 𝑥1, ..𝑥𝑛 is the validation accuracy of model𝑚1, ..𝑚𝑛 .
Prediction Certainty Estimation: In several IoT use cases, es-

pecially those that actuate devices or send notifications based on
ML predictions, knowing the confidence of the predictions can be
very useful. To support this, MLIoT provides ensemble-based cer-
tainty estimates for each predictionby taking the weighted average
of the probability of each class for each model.

𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑖𝑒𝑠 = (
𝑛∑
𝑖=1

𝑤𝑖 𝑓𝑚𝑖 ,𝑐1 (𝑥),
𝑛∑
𝑖=1

𝑤𝑖 𝑓𝑚𝑖 ,𝑐2 (𝑥), ...,
𝑛∑
𝑖=1

𝑤𝑖 𝑓𝑚𝑖 ,𝑐𝑚 (𝑥))

(5)
where 𝑓𝑚𝑖 ,𝑐1 (𝑥) is the probability that the model𝑚𝑖 predicts for
the class 𝑐 𝑗 on the input 𝑥 . The estimates are calculated by taking
the square magnitude.

Model Adaptation: IoT environments are subject to changes in
the ambient environment that affect model accuracy. In addition,
users may want to update models with additional training data,
including adding a new class or give corrective feedback for an
incorrect prediction. MLIoT, performs model adaptation by sending
this data to the TrainingWorker to retrainmodels. However, naively
re-training all models with HPO and DR is expensive and poten-
tially time-consuming. To overcome this challenge, we re-tune each
of the models in the ensemble with new data. This significantly
reduces the training time and is computationally less expensive.
This feedback-based model adaptation allows us to account for
changes to the environment and provide better results than using
static models.

5 IMPLEMENTATION
We had several goals when implementing MLIoT. We wanted to
ensure cross-platform support to run on different devices, extensi-
bility to add different models and frameworks, maintainability of
the codebase, and making it scalable and efficient. We implemented
MLIoT in Python 3 given its popularity and the availability of sev-
eral well supported and popular ML frameworks and libraries. To
have efficient communication between the different components,
in a distributed setting, we tested a number of RPC libraries, se-
lecting Google’s gRPC given its maturity, efficiency, scalability, and
cross-platform support[29]. Various components in MLIoT also
exchange data and models among themselves and we use gRPC
Protocol Buffers (Protobuf) extensively for this purpose, again due
to its maturity. Additionally, each component is authenticated with
each other using gRPCs built-in security primitives. The Device
Selection Layer(DSL) also uses a MongoDB data storage layer to
store persistent models, training data, and any other state about
individual Training Serving Workers. This DB also stores device
metrics and other metadata received from the Training Serving
Layers. Overall, our implementation of MLIoT is 28,241 lines of
code in Python.
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6 EVALUATION
We evaluate MLIoT on a set of representative IoT benchmarks,
hardware platforms, and varying application requirements. We
measure metrics such as accuracy, latency, and resource usage. We
describe our experimental setup in Section §6.1. In Section §6.2 we
characterize performance across different hardware platforms and
compare the efficacy of different training (DR and HPO) and serving
(lazy training and two-stage serving) optimizations. In Section §6.3
we present end-to-end evaluations ofMLIoT formultiple concurrent
IoT benchmark scenarios, using example policies to show how our
system load balances and scales while maintaining high accuracy.
Finally in §6.4 we compare and evaluate MLIoT with two academic,
application-specific, machine learning systems and a commercial
general-purpose machine learning system.

6.1 Experimental Setup
Machine Learning Models: We choose several popular ML algo-
rithms and frameworks to show that MLIoT is extensible to use a
variety of models. To evaluate MLIoT we select five traditional mod-
els (KNN, Ridge Regression, RandomForest, SVM-Linear, SVM-RBF)
and two Neural Networks (MLP & XGboost). We integrated the
implementations of these algorithms from SKLearn [53], Tensor-
Flow [1], and PyTorch [52] into MLIoT. In our evaluations we use
top-1 accuracy, which compares the model’s top label choice and
assigns a score of 1 for a correct prediction and 0 for an incorrect
prediction with no partial scores.

IoT Benchmarks: For our evaluations, we create several rep-
resentative IoT benchmarks summarized in Table 2. These bench-
marks represent IoT applications with labeled data for initial train-
ing of models and separate test data (with labels) for calculating
accuracy and performance. We chose MNIST, a popular image-
based object recognition dataset for the first benchmark[40]. For
activity recognition based on rich multi-modal sensors, we col-
lected data using the Mites.io [39, 49] platform with 13 hardware
sensors for a set of 16 common residential activities (classes). The
Mites.io platform converts the sensor data into 1172 statistical and
spectral features. Finally, for activity recognition based on audio
we collected and labeled data from a laptop with a microphone,
for 14 common residential activities. We use the same features pro-
posed in Ubicoustics[38] wherein audio data from non-overlapping
frames (960𝑚𝑠 each) is converted to a spectral representation to
provide log-Mel spectrogram patches of 96 × 64 bins that form the
input to all classifiers [31].

Creating IoT Application workload Traces: Using these IoT
benchmarks, we create a set of “application traces” to emulate actual
IoT application workloads that each use MLIoT to initiate separate
Training-Serving Workers. For these traces, we train all seven ML
models using the training data for each benchmark. We then divide
the testing data into six parts to create six ‘testing application
traces’ (T1 - T6). For example, every trace for Audio-based activity
recognition trains all seven models using 2633 training samples and
then uses a subset of the testing samples data (1734/6 = 289) for
testing. We use these application traces to evaluate the performance
of MLIoT (accuracy, latency) and the efficacy of MLIoT in terms of
scheduling to different devices based on application policies and
the system workloads (Section §6.3).

Table 2: Summary of IoT Benchmark Data Characteristics
Dataset Data Type Features Training

Samples
Testing
Samples

Classes

MNIST [40] Image 28*28 42000 18000 10
Mites [49] Multimodal 1172 25787 16735 16
Microphone Audio 96 * 64 2633 1734 14

Table 3: Hardware platforms used in our experiments
Device Type Processors Memory Average

RTT
Local
/Cloud

M1 Raspberry-Pi 4 4 x ARM A72 4GB ~3ms Local
M2 Intel NUC 4 x i5-5250U 8GB ~14ms Local
M3 Virtual Machine 2 core 4GB ~128ms Cloud
M4 Virtual Machine 8 core 16GB ~64ms Cloud
M5 Virtual Machine 16 core 32GB ~84ms Cloud

Testbed Hardware Platforms: To evaluate MLIoT we set up a
five machine testbed (M1-M5 in Table 3) with different hardware
configurations, resources, and network latencies (Average RTTs)
representing both local (edge) and cloud compute resources. M1
is an inexpensive Raspberry Pi4 (RPI4) [54] with 4 Cores, 4GB
RAM, and 3ms RTT, augmented with the Google’s Coral Hardware
Accelerator[28] for testing our Device Selection Layer (Section §4.1).
M2 is an Intel NUC desktop with 4 cores, 8GB RAM, and a 14ms
RTT . Notably, M1and M2are “local” devices since they are in the
same LAN as the client, behind a NAT. M3, M4, M5 are Virtual
Machines (VMs) running on different physical servers. M3 has 2
Cores, 4GB RAM and 129 ms RTT,M4 has 8 Cores, 16GB RAM and
64ms RTT and M5 has 16 Cores, 32GB RAM and 84ms RTT. Our
test client machine, which executes all IoT Application traces is a
Mac with a dual-core i7 processor and 16 GB RAM.

RTTCalculation:MLIoT uses the Round Trip Time (RTT) from the
client to each device, and the prediction latency for the application
on each machine for in the device selection layer (Section §6.4).
Since our test devices are in the same city, the RTT values were
similar. To emulate diversity in RTTs for the test-bed devices we
add additional delay during packet network transmission using
VirtNet [59].

6.2 Baseline Performance and Accuracy
We first evaluate the different components of MLIoT, to measure
their impact in isolation. Specifically, we highlight the differences
in model accuracy and performance on different devices used in
the Device Selection Layer. We also evaluate our optimizations in-
cluding DR, HPO, and Lazy-training and compare them to baselines
configurations without them.

6.2.1 Device Selection Layer (DSL). The Device Selection Layer
(DSL) executes representative IoT benchmarks to collect a set of
metrics from each device in a MLIoT deployment. These metrics
provide an assessment of each device’s relative capabilities and in
combination with policies guide device selection. Figure 3 shows
the overall CPU usage, memory utilization and training time for
all seven models on three different machines (M1, M3, and M4) for
three different IoT application workloads. The CPU and memory
usage are normalized (Max 1.0) due to different hardware configu-
rations.

We observe that some models (e.g. MLP and Ridge) can better ex-
ploit multiple cores to reduce training time. Training time, CPU and
memory usage vary widely based on the models, and the relative
performance of models is also different per machine. The model
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Figure 3: Comparison of machine learning model performance
across different data sources. These metrics allows better selection
of device and adapting to changing resource environment for the
IoT machine learning application.

Figure 4: Benchmarking latency across devices.

performance is also dependent on the source data type, for example
the Audio data benchmark uses more resources than the others.

Figure 4, breaks down the end-to-end serving latency across
machines with more capable devices exhibiting lower values. The
latency for a RPI4 with Coral [28] was very high (average 3500ms)
despite being optimized for EdgeTPU models, since Coral requires
quantized data which consumes significant CPU resources. Thus,
we removed Coral from further evaluations. Overall, our results
motivate why benchmarking is important for device selection.

6.2.2 Training-Serving Layer (TSL). Next, we evaluate the impact of
variousMLIoT optimizations on the trainingworker (DR, HPO, Lazy
training) and the serving worker (Two stages, Model Adaptation)
by benchmarking them on the testbed hardware machine (M4) with
8 cores and 16GB RAM.

Dimensionality Reduction & Hyper-Parameter Optimiza-
tion: Figure 5 shows the training time, accuracy and serving latency
of using DR and HPO individually, and when used together. The
effect of these optimizations are shown for different IoT data types
and training set size (200-800 samples) using all the MLmodels from
Section §6.1. We measure training time by training all the models
in parallel, while the accuracy and latency values are based on the
ensemble based prediction mentioned in Section §4.2.2 measured
across different test samples. Individually, DR or HPO provides
some benefits. For example, for Audio “HPO-only” provides high

Figure 5: Comparing Training time, Accuracy and Latency using Di-
mensionality Reduction (DR) (or/and) Hyper Parameter Optimiza-
tion (HPO) techniques with different training/testing samples for
different workloads. Enabling DR and HPO produce models with
lower training time and higher accuracy compared to the baseline.

Figure 6: Change in accuracywith Lazy training. The latency to start
serving is reduced while accuracy improves as the ensemble is up-
dated with more models trained in the background.

accuracy while reducing serving latency, while “DR-only” reduces
training time but increases serving latency due to its computational
overhead. Overall, DR and HPOwhen used together reduce training
time, increase accuracy and reduce serving latency across the board
as compared to the baseline (“without DR and HPO”).

Lazy Training: Figure 6 shows the benefit of lazy training for
a sample benchmark (Audio Dataset). MLIoT starts serving quickly,
similar to a system serving a single model. Over time MLIoT lazily
trains other models and adds them to the ensemble, improving
accuracy, with higher serving latency (not shown).

Two-Stage Serving MLIoT uses a two-stage serving system.
The 1st stage is a binary classifier to detect the background vs.
other classes, while the 2nd stage uses the full ensemble. In Figure 7
we evaluated several binary classifiers for the 1st stage (left) accross
different IoT workloads. We also explore the effect of increasing
the number of classes in the audio dataset (middle) and the training
examples (right). Logistic Regression (LR) [45] works best across
the workloads, with low latency and high accuracy. Figure 7 also
shows that LR is unaffected by class imbalance (middle) or increase
in the number of samples (right). For an example IoT workload,
we measure an average serving latency of 65ms with the 2-stage
system enabled, as compared to 105ms without it while maintaining
the same accuracy.

In Figure 8, we illustrate an audio application IoT workload with
two-stage serving enabled and without it as a baseline. Here, the
Stage one is a binary classifier trained to just detect “background”
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Figure 7: Two-stage serving: Comparing Accuracy and Prediction
Latency for different Stage-1 classifiers on differentworkloads (left).
For Audio dataset, we show effect of increase in classes (middle) and
Samples (right). Logistic Regression performs best.

Figure 8: Effect of Two-stage serving on the End-to-End Latency of
MLIoT and the corresponding stage where the prediction is made
(green line). The Two-stage system’s binary model classifies back-
ground with lower latency when compared to baseline.

or not, while the Stage two is the normal ensemble-based model
prediction. We observe that the average latency with a two-stage
system is 65ms, compared to the average latency of the baseline
system of 105ms. Furthermore, the prediction accuracy for the two-
stage system for this scenario is comparable (close to 100%) to the
baseline system without the two stage serving (accuracy graph not
shown due to space constraints).

Model Adaptation Next we evaluate how MLIoT adapts to
changes in the environment, receiving corrective feedback, and
dynamically updating models. We use an audio based activity recog-
nition task, trained on a data set of activities,and then tested on an
example activity (“Shaver running”), while introducing different
types of background noise into the system. Figure 9, shows the
timeline of this application, annotated with times when noise is
introduced and the user provides corrective feedback. With correc-
tive feedback (denoted with a blue line) the models in the ensemble
are updated and MLIoT is able to predict the activity accurately. In
contrast, the accuracy for the baseline case (denoted with an orange
line) without model adaptation drops with background noise.

6.3 System Adaptation and Scaling
To assess the overall performance and adaptability of MLIoT, we
evaluate MLIoT with different IoT application workloads and policy

Figure 9: Effect of corrective feedback (dashed lines) on accuracy
when additional noise (dotted lines) occur in an IoT environment.

Figure 10: Execution Timeline of MLIoT with six latency-bound ap-
plication traces (Ts) with four policies having Latency threshold val-
ues ranging from 10ms, 30ms, 70ms and 90ms which are executed
for three iterations.

requirements Section §6.3.1. We then compare MLIoT with other
academic and commercial ML systems.

6.3.1 System Adaptation: An overarching goal of MLIoT is to ef-
fectively schedule different IoT applications, that are concurrent,
on different devices given their individual policy requirements. We
categorize three typical application policy requirements: (a) strictly
latency bound, with specified thresholds; (b) those that require
“edge” devices in their local network for low latency and for pri-
vacy (e.g. speech recognition or activity recognition); and (c) those
with more complex requirements as a function of latency, and re-
source usages and accuracy. For this evaluation, we create a set
of machine learning tasks using the six IoT application workload
traces described in Section §6.1 , each with different representative
policies attached (as discussed in Section 4.1.2). We use four devices
(M1, M2, M4, M5) with different RTT values and configurations
emulating an example MLIoT deployment (details in Table 3).

Figure 10 shows the execution timeline of a set of latency bound
application traces on our test MLIoT deployment. We have three
iterations of six application traces (T1-T6, T7-T12, T13-T18), with
each trace specifying a policy with a latency threshold of either
10ms, 30ms, 70ms or 90ms. The groups of six traces are spawned at 3
different time intervals as annotated in the graph as (1, 2, and 3). At
1 , T1 with a policy of < 10𝑚𝑠 is spawned (denoted as T1:P1), and
theDSL schedules it onM1 since the RTT from the client toM1 is the
lowest (~3ms) among all the devices that met the policy requirement.
MLIoT also ensures that there are sufficient residual resources on
M1 to run a new ML task using the benchmarking process for
each device.As more application traces (T2:P2; T3:P3; T4:P4;) are
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Figure 11: Execution timeline of MLIoT for six latency-bound appli-
cation traces (Ts) with some traces having additional requirement
to run on local devices (M1 and M2).

spawned, MLIoT schedules them on different devices depending on
their individual policy requirements and resources available on the
device. In the second iteration, denoted as 2 , we see that most
other traces are deployed on devices based on the load balancing
metrics adapting to the current resource in the system. For example,
T10:P4 has a latency policy such that all the devices qualify but,
MLIoT picks M5 (as shown by the Ranks [M5>M4>M2>M1]) due to
its hardware configuration. Notably, MLIoT schedules application
trace T12:P6 on M4 since the benchmarking values show higher
latency values for T12:P6 on M5, M2, and M1 due to the resource
consumption of the previous traces. At iteration 3 , all other traces
have completed and traces T12-18 are thus scheduled on the same
devices as those for T1-T6.

Figure 11 shows the execution timeline of application traces
with hybrid latency policies.Similar to Figure 10, in Figure 11 we
have three iteration of six traces (T1-T18). Some traces come with
policies (P1, P3, P5) with latency requirements of < 10𝑚𝑠 , < 70𝑚𝑠 ,
and < 80𝑚𝑠 and an additional preference to run locally when
possible. Traces with policy P2 restricts picking only local devices
(for privacy). The remaining traces with policies P4 and P6 are best
effort with no restrictions on latency or locality. At time 1 , the
first iteration of traces T1 - T6 are spawned and they are scheduled
similar to the previous graph; MLIoT picks M1 for T1:P1, M2 for
T2:P2, M4 for T3:P3, and M5 for T4:P4, based on latency constraints
and available resources. At iteration 2 traces T7-T12 are spawned
and we see that the device selection changes due to traces with a
local policy. MLIoT tries to pick devices which are local (M1, M2)
despite other device satisfying the latency constraint. For example,
MLIoT selects M2 over M4 to run the application trace T11:P5 to
run the traces locally.

Figure 12 shows application traces with further diverse policy
requirements based on on locality, compute resources, and latency
metrics. These policy requirements include select devices with
available CPU percentage (e.g. > 50%) or a device with maximum
available memory. At 1 , we see that MLIoT selects M2 over M1
for T1:P1 to satisfy the locality constraint without a latency re-
quirement. T4:P4 is executed on M4 as the load average for M4 was
less than 20 and similarly, T5:P5 is run on M4 as the available CPU
resources was more than 50. This is indicated by the rank list for
T4:P4 as R = [M4,M5 and M2] and T5:P5 as R = [M4>M5>M1>M2].
In the 2nd iteration 2 , we see that T11:P5 is run on M5 instead of

Figure 12: Timeline of the six application traces (Ts) where all the
traces have diverse policy requirements. Traces have policy con-
straints on latency, resource and best effort.

M4 based on the available resources. Traces (T6:P6, T12:P6, T18:P6)
with policy of picking a device with maximum available memory
is always executed on M5 given its 32GB RAM configuration.

6.3.2 System Scaling: Finally, we evaluate the scalability and adap-
tation of MLIoT with an increasing number of co-located IoT tasks
and their effect on the end-to-end serving latency. We create these
co-located IoT machine learning tasks using the Audio IoT applica-
tion workload trace described in Section §2.1. For this evaluation,
we use three devices (M1, M3, M4) with different device config-
urations. We also remove any delays that we added in the prior
experiments to emulate different RTTs. As a result, the end-to-end
latency values for this evaluation are due to the co-located IoT tasks
on the same device. We execute 1 to 10 co-located tasks with and
without a latency threshold policy (<250ms) for serving on each
device. For each IoT task, we initialize both the training and serving
instances, load all the models for serving, and then send the data
for predictions so as to remove the initial overhead of loading the
models in the memory.

Figure 13 (top) shows that as the number of concurrent training
serving instances increases from 1 to 10, the average latency also
increases almost linearly across all devices. Notably, the standard
deviation of the serving latency is low, depicting that the different
tasks share the resources on each device fairly. Next, we instantiate
the same number of IoT tasks, from 1 to 10, but with a latency
threshold policy of (<250ms) for each task (Figure 13 (bottom)).
Our results show that MLIoT (DSL) does not schedule any more
additional tasks on a machine since servicing them would lead to a
higher serving latency than the threshold of 250ms as per the policy.
This illustrates how MLIoT adapts to the requirements for the IoT
tasks and their policies. For example, the DSL does not schedule
more than 4 IoT tasks on M1, or more than 7 tasks on M3, since the
average latency would exceed the policy limit of 250ms (for each
task) with additional co-located tasks.

6.4 Comparison with other ML Systems
We compare and evaluate MLIoT with two academic, application-
specific, ML systems and a commercial general-purpose ML system.
For our comparison with application-specific ML systems we use
two state-of-the-art activity detection systems, Ubicoustics [38]
which uses a pre-trained model for audio data and Mites.io [39,
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Figure 13: Scalability of MLIoT with an increasing number of co-
located IoT tasks on different devices, M1, M3 andM4. The IoT tasks
are scheduled without a policy (top), and with a latency threshold
policy of < 250ms (bottom).

49] which uses supervised model for multi-modal sensor data. We
then compare MLIoT with Google’s TensorFlow Extended (TFX)
framework [6], a general purpose machine learning system that
extends TensorFlow Serving [51] to serve models. We compare the
MLIoT with the above systems with two different policies - Lowest
Latency and Best-Effort to show the flexibility of MLIoT. The results
of the comparison are shown in Table 4.

For fair comparison between these systems we ensure that the
testing and training data are the same for each system and they run
on the same or similar hardware configuration if running on the
cloud. To compare MLIoT with Ubicoustics, we used the pre-trained
model that comes with it[38] and for MLIoT, we train all the models
with labelled audio data as mentioned in Section §6.1 and Section
§2. For both Ubicoustics and MLIoT, we use the same test data for
serving. We observe that the “MLIoT-Best Effort” policy improves
accuracy to 89% over Ubicoustics (52%), albeit with slightly higher
latency: 0.1s (MLIoT) vs 0.08s (ubicoustics). Our “MLIoT-Low La-
tency” policy picks a 3 model ensemble to reduce latency to 0.06s
with comparable accuracy to the best effort policy. To compare the
commercial TFX system with MLIoT, we choose similar system
configuration as M4on the cloud (8 Cores, 16GB RAM), and trained
and tested using the same audio data. For TFX, we chose Tensorflow
based classical models, which are the same as the one MLIoT for a
fair comparison noting that both systems can be extended to use
more complex deep models. We note that the TFX accuracy for this
dataset is lower (67%) than either MLIoT best effort or low latency
policies, with significantly higher prediction latency of 0.35s. To
compare MLIoT with the Mites IoT based activity recognition sys-
tem, we collected, trained and tested both the systems using the
same multimodal sensor data described in Table 2 on the same 8

Table 4: Comparing MLIoT with other ML systems: Ubicoustics [38]
Mites.io [49] and a general-purpose system: TensorFlow Extended
[6]. Numbers in parenthesis are percentage increase/decrease in ac-
curacy (higher is better) or latency (lower is better).

System Top 1 Accuracy Latency (s)
Audio Data

Ubicoustics [38] - Pretrained Model 0.52 0.08
MLIoT- Best Effort (7 ensemble) 0.89 (+71%) 0.1 (+25%)
MLIoT- Low Latency (3 ensemble) 0.86 (+65%) 0.06 (-25%)

TFX [6] - General Purpose 0.67 (+29%) 0.35 (+337%)
Multi-modal Sensor Data

Mites [49] - Supervised Model 0.48 0.05
MLIoT- Best Effort (7 ensemble) 0.84 (+75%) 0.09 (+80%)
MLIoT- Low Latency (3 ensemble) 0.72 (+50%) 0.04 (-20%)

core machine M4. We observe that the “MLIoT-Best Effort” policy
improves prediction accuracy to 84%, compared to the Mites base-
line accuracy of 48%, although at a higher latency of (0.09s vs 0.05s).
“MLIoT-Low Latency” further reduce latency to 0.04s with accuracy
dropping somewhat to 72% as compared to the MLIoT best effort
case, but still better than the Mites baseline. Overall, these results
show that MLIoT is significantly more accurate than these hand
tuned systems[38, 49], while being comparable or better in terms
of serving latency.

7 CONCLUSION
In this paper, we design and implement MLIoT, an end-to-end Ma-
chine Learning System tailored towards supporting the entire lifecy-
cle of IoT applications from training, efficient serving to re-training
based on user feedback. MLIoT integrates multiple distributed com-
ponents and optimization techniques making our system adaptive,
dynamic, and well suited to handle the diversity of IoT use cases.
MLIoT provides flexible policy driven selection of hardware plat-
forms, ML models, and various optimizations for closely coupled
training and serving tasks. Our evaluations of MLIoT on several
hardware devices, and for a set of expressive IoT benchmarks, show
that MLIoT is able to service different policy objectives, balancing
load across devices while maintaining accuracy and latency.
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