A General Purpose Graphics Processing Solution to Quadtree Creation

Joshua Gluck, advisor: Andrew Danner; Swarthmore College, PA

*Get hi-resolution spatial data from Light Detection
and Ranging (LIDAR) technology

* Leverage high computational throughout of General
Purpose Graphics Processing Units(GPGPUs) and
minimize overhead costs with CUDA for rapid
computing of a Quadtree from LIDAR data

-Codify the optimizations used in GPGPU Quadtree

creation for other problems RS

A Quadtree is a data structure used to spatially index
points in R?

‘No Quadtree node can contain more than a user
defined K points. Nodes with more than K points
divide into 4 sub-nodes, and the points are stored in
the sub-node in which they would be located

Searching a Quadtree for a given point is
considerably more efficient than searching an
unsorted array of points.

- An array based Quadtree
- Each node consists of a start indices and length

* Points within a node are stored in its segment of
the array

* Does not require copying the point data from CPU to
GPU more than once

*Allows hundreds of threads to execute in parallel,
while avoiding conflicts over shared resources

°No limitations on the depth of the tree

Tree Representation of a Quadtree. Gray nodes are
non-leaf nodes

The array implementation of the above Quadtree

12

GPU Speed UP
N EEN (@] (00) 3

(@)

CPU vs GPU Quadtree Generation

i

0 10 20 30 40 50 60 70 80 90
Number of Points (millions)

Speed Up

10 20 30 40 50 60 70 80 90
Number of Points (millions)

o

 Utilize both block and thread level parallelism on the
GPU for maximum speed gains, toggle between thread
and block implementations based on problem
characteristics

*Generate specific read indices for each thread based
on its thread ID and block number to prevent read
overlaps

*Generate unique offsets for each thread in a block
based on the offset of the thread just before it to
prevent write overlaps

‘Based on general statistics, remove child nodes
which do not need further processing, using RADIX
sort

* The results above show the strong gains, 4x to 10x,
that an efficiently implemented GPGPU system can
have over a CPU based approach

‘Due to GPU memory limits, larger experiments
require more CPU & GPU communication, limiting
speed up.

* Tested GPGPU implementation on a Nvidia Quadro
1000M GPGPU against single core CPU approach

‘Tested on data sets ranging from 2 million to 85
million LIDAR points

*The computation time gained from using the GPGPU
solution here showcases the overarching utility of
GPGPU solutions to non-graphics and non-
embarrassingly parallel problems.

‘Future Work will include the expansion of this
system into a distributed framework for even greater
computational gains, as well as techniques to reduce
the effects of GPU memory constraints

-Zhang, Jianting, Simin You, and Le Gruenwald. "Indexing large-scale raster geospatial data using
massively parallel GPGPU computing." Proceedings of the 18th SIGSPATIAL International Conference
on Advances in Geographic Information Systems. ACM, 2010.

*M. Kelly, A. Breslow, Quad-tree Construction on the GPU: A Hybrid CPU-GPU Approach




