
P3: Tribbler
15-440/640 Fall 2021

Start Early for P3!

● Checkpoint is due on Tuesday Nov 23 (6 days from now)
● Final project due on Friday Dec 3 (~2.5 weeks from now)
● Contact Han (Head TA) if you don’t have a partner yet

A 3-Tier Architecture for P3

Send requests Process requests Store data

Client Layer (Already implemented!)

● Calls TribServer RPCs to forward requests to application layer
○ CreateUser
○ AddSubscription
○ RemoveSubscription
○ GetFriends
○ PostTribble
○ DeleteTribble
○ ModifyTribble
○ GetTribbles
○ GetTribblesBySubscription

● All RPCs in P3 are real RPCs: they use the net/rpc package

Application Layer (You implement this!)

● A Libstore struct is embedded in a TribServer
○ TribServer RPCs registered in provided NewTribServer method

● The TribServer handles RPCs sent from the TribClient
○ Replies with one of five Statuses (rpc/tribrpc/proto.go)

● The Libstore provides transparent access to persistent storage
○ Libstore must register LeaseCallback RPCs
○ TribServer calls regular Libstore methods, not StorageServer RPCs

■ E.g. Get, Put, Delete, GetList, AppendToList , RemoveFromList
○ Libstore serves two additional functions: Request Routing + Caching (see later)

Libstore: Request Routing

● Route a request to correct storage server based on its key
○ Assume multiple StorageServers can exist, one of which is the Master
○ On initialization, set up Consistent Hashing ring with Master Node
○ Contact all available StorageServers and cache connections

■ You’ll need those for request routing later
○ Generate key using util/keyFormatter.go , Partition using StoreHash

● Call StorageServer RPCs defined in rpc/storagerpc/rpc.go
○ GetServers (see above)
○ Get, GetList, Put, Delete, AppendToList , RemoveFromList

Libstore: Lease-Based Caching

● Keep a local cached copy of data (in some hash table)
● Return data from cache if it holds a valid lease
● Otherwise, contact appropriate StorageServer

○ Get, GetList, Put, Delete, AppendToList , RemoveFromList…
● Handle RevokeLease RPC calls from StorageServers

Storage Layer (You implement this!)

● Each server is either Master or Slave
○ Each has its own uint32 VirtualIDs for Consistent Hashing
○ Register RPC handlers in NewStorageServer (consult TribServer / TribClient)

● Master server coordinates slave servers on initialization
○ Handle RegisterServer RPC’s from slave servers
○ Replies with OK and list of servers if all Slaves have registered
○ Report status when Libstore calls GetServers

● Slave Servers register with Master via RegisterServer
○ Wait for OK reply from Master
○ Else, sleep for 1 second and retry

● Master server knows how many servers to expect
○ Assume this number is static

Consistent Hashing

● Generate keys using util/keyFormatter.go, partition with StoreHash
○ E.g. Generate new UserKey with FormatUserKey , Get uint32 after hashing

● Form token ring with the VirtualIDs of each StorageServer
● Match hashed key to StoragerServer with “successor” VirtualID
● Examples

○ Key(1100) → Slave 1 (2000)
○ Key(2000) → Slave 1 (2000)
○ Key(3500) → Master (4000)
○ Key(6001) → Master (1000)

Master

Slave 2

Slave 1

1000

5000
4000

6000

2000

3000

Token Ring

More on Leases (Libstore)

● Frequent READs are faster with caching
● LeaseModes: Always, Never, Normal - see libstore_api.go and

NewLibStore specification
● What is Normal?

○ Ask for lease when you receive QueryCacheThresh queries within QueryCacheSeconds
● Cache entry for LeaseGuardSeconds

○ Delete from cache once the lease expires
○ Delete from cache when lease is revoked by StorageServer (next slide)

● Forward WRITEs and DELETEs directly to StorageServer

More on Leases (StorageServer)

● Grant lease on a READ request if
○ WantLease (in GetArgs) == true
○ The lease is not currently being revoked

● Revoke all existing leases on WRITE/DELETE
○ Stop granting new leases
○ Call RevokeLease (part of Libstore API) on leaseholders and block until

■ Every leaseholder has responded, OR
■ LeaseSeconds and LeaseGuardSeconds have elapsed

○ Do not grant new leases, do not allow concurrent updates

Atomicity and Consistency

● Each update should be atomic (all or nothing)
○ Operations should block until they have either succeed or failed

● When an update returns successfully, future reads should reflect that update
● Don’t worry about “cross-key consistency”

Checkpoint: Hints and Advice

● Support only a single StorageServer
○ No Request Routing/ Consistent Hashing
○ Every request goes straight to the Master Server

● Don’t worry about lease-based caching
○ Test suite sets LeaseMode = Never

● Use keyFormatter.go for simplicity
○ Store a user’s Subscriber List and Tribble List under respective keys
○ Store users and tribbles individually (not as lists)

● Note that P3 is more modular than P1
○ Each part correct → Should be correct overall
○ Test cases are also more modular

Final Submission: Hints and Advice

● Now you have to worry about routing and hashing
○ Write utility functions, don’t repeat yourself
○ “sort”/ “time” packages may be helpful
○ Number of RPC calls/ bytes transfers will be checked
○ Use LeaseMode = Always for debugging
○ Wait as little as possible when revoking leases (else stresstest can time out…)

● Think about maintaining consistency without hindering performance
○ How to handle lease conflicts?
○ How to revoke multiple leases at once?
○ More granular locking on users/ tribbles/ other shared data?

Questions

