
Diego Ongaro and John
Ousterhout Stanford
University

Presentation adapted from the Standford CS244b slides and 440 F17-F18 slides

P2 Recitation
Raft: A Consensus

Algorithm for Replicated
Logs

Slide 1

15440/640 Fall 2021 TAs

Logistics
Checkpoint
- Leader election and heartbeats
- Due on 11/6 11:59PM EST

Final
- Log replication
- Due on 11/13 11:59PM EST

Late policy
- Maximum of 2 late days allowed

Other notes
- Individual project!
- 15 Gradescope submissions per checkpoint
- Hidden tests!

Slide 2

BEFORE YOU DO ANYTHING

Raft Illustrated

http://thesecretlivesofdata.com/raft/

● Leader election
▪ Implement raft state machine for election
▪ RequestVote RPC used for requesting leadership votes

● Heartbeats
▪ Leader periodically sends empty AppendEntries RPC
▪ Timeouts used to detect leader failure to trigger re-election

● Tips
▪ Be careful of the values chosen for timeouts and the interval

chosen for heartbeats.
▪ Keep clean separation of the code for the follower, leader and

the candidates.
▪ Randomize the timeouts to prevent synchronization, leading to

election failure.
Raft Consensus Algorithm Slide 3

Checkpoint

Local Testing

Slide 4

● Logging and debugging
▪ We provide a logger class in raft.go
▪ Must have clear, readable logs when seeking help in Piazza / OH

● How to write your own tests:
▪ See raft_test.go for test structure / setup

● Useful functions to write tests:
▪ cfg.checkOneLeader() checks for a leader’s successful election

and gets leader’s ID
■ Used in TestInitialElection2A

▪ cfg.one(value, num_servers) starts an agreement
■ Used in TestFailAgree2B

▪ cfg.disconnect(server_id) to disconnect servers
▪ cfg.connect(server_id) to connect servers
▪ Call Start() on one of the Raft peers by using cfg.rafts

What is Consensus?

● Agreement on shared state (i.e. single system
image)

● Failures are a “norm” in a distributed system

● Recovers from server failures autonomously
○ If a Minority of servers fail - No Issues

○ If a Majority fail - must trade off availability and consistency, but:
■ Retain Consistency, lose Availability
■ Retain Availability, Consistency lost → Don’t want for a consensus

algorithm

● Key to building large-scale, consistent storage
systems

Slide 5

● Replicated log => replicated state machine
▪ All servers execute same commands (stored in logs) in same order

● Consensus module ensures proper log replication

● System makes progress as long as any majority of servers are up

● Failure model: fail-stop (not Byzantine), delayed/lost messages

Goal: Replicated Log

Log
add jmp mov shl

Consensus
Module

State
Machine

Log
add jmp mov shl

Consensus
Module

State
Machine

Log
add jmp mov shl

State
Machine

Servers

Clients

shl

Consensus
Module

Raft Consensus Algorithm Slide 6

Two general approaches to consensus:
● Symmetric, leader-less:

▪ All servers have equal roles
▪ Clients can contact any server
▪ Example: Paxos

● Asymmetric, leader-based:
▪ At any given time, one server is in charge, others accept its

decisions
▪ Clients communicate with the leader

● Raft uses leader-based
▪ Decomposes the problem (normal operation, leader changes)
▪ Simplifies normal operation (no conflicts)
▪ More efficient than leader-less approaches

Approaches to Consensus

Slide 7

1. Leader election:
▪ Select one of the servers to act as leader
▪ Detect crashes, choose new leader

2. Normal operation (basic log replication)
3. Safety and consistency after leader changes
4. Neutralizing old leaders

Raft Consensus Algorithm

Raft Overview

Slide 8

March 3,
2013

Raft Consensus Algorithm

Server States

Candidate Leader

start
timeout,

start election
receive votes from
majority of servers

● At any given time, each server is either:
▪ Leader: handles all client interactions, log replication

● At most 1 viable leader at a time
▪ Follower: completely passive (issues no RPCs, responds to

incoming RPCs)
▪ Candidate: used to elect a new leader

● Normal operation: 1 leader, N-1 followers
timeout,

new election

discover server with
higher termdiscover current server

or higher term

Follower
“step
down”

Slide 9

Terms

Term 1 Term 2 Term 3 Term 4 Term 5

time

Elections SplitNormal Operation
Vote

● Time divided into terms:
▪ Election
▪ Normal operation under a single leader

● At most 1 leader per term
● Some terms have no leader (failed election)
● Each server maintains current term value
● Key role of terms: identify obsolete

information
Slide 10

March 3, 2013 Raft Consensus Algorithm Slide
7

Invoked by candidates to gather votes.

Arguments:
candidateId term candidate requesting vote
lastLogIndex candidate's term
lastLogTerm index of candidate's last log entry

term of candidate's last log entry
Results: term
voteGranted

currentTerm, for candidate to update itself
Implementation: true means candidate received vote

1. If term > currentTerm, currentTerm ← term (step down
if leader or candidate)

2. If term == currentTerm, votedFor is null or candidateId,
and candidate's log is at least as complete as local log,
grant vote and reset election timeout

RequestVote RPC

Invoked by leader to replicate log entries and discover
inconsistencies; also used as heartbeat .

Arguments:
term leaderId leader's term
prevLogIndex so follower can redirect clients

index of log entry immediately preceding
prevLogTerm new ones
entries[]term of prevLogIndex entry
commitIndex log entries to store (empty for heartbeat)

last entry known to be committed
Results:
term success

currentTerm, for leader to update itself
true if follower contained entry matching
prevLogIndex and prevLogTerm

Implementation:
1. Return if term < currentTerm
2. If term > currentTerm, currentTerm ← term
3. If candidate or leader, step down
4. Reset election timeout
5. Return failure if log doesn’t contain an entry at

prevLogIndex whose term matches prevLogTerm
6. If existing entries conflict with new entries, delete all

existing entries starting with first conflicting entry
7. Append any new entries not already in the log
8. Advance state machine with newly committed entries

AppendEntries RPC

Raft Protocol Summary
Followers

• Respond to RPCs from candidates and leaders.
• Convert to candidate if election timeout elapses without

either:
• Receiving valid AppendEntries RPC, or
• Granting vote to candidate

Candidates
• Increment currentTerm, vote for self
• Reset election timeout
• Send RequestVote RPCs to all other servers, wait for either:

• Votes received from majority of servers: become leader
• AppendEntries RPC received from new leader: step down
• Election timeout elapses without election resolution:

increment term, start new election
• Discover higher term: step down

Leaders
• Initialize nextIndex for each to last log index + 1
• Send initial empty AppendEntries RPCs (heartbeat) to each

follower; repeat during idle periods to prevent election
timeouts

• Accept commands from clients, append new entries to local
log

• Whenever last log index ≥ nextIndex for a follower, send
AppendEntries RPC with log entries starting at nextIndex,
update nextIndex if successful

• If AppendEntries fails because of log inconsistency,
decrement nextIndex and retry

• Mark log entries committed if stored on a majority of servers
and at least one entry from current term is stored on a
majority of servers

• Step down if currentTerm changes

Persistent State
Each server persists the following to stable storage
synchronously before responding to RPCs:
currentTerm latest term server has seen (initialized to
0

on first boot)
votedFor candidateId that received vote in

current term (or null if none)
log[] log entries

Log Entry
term term when entry was received by leader
index position of entry in the log
command command for state machine

Slide 11

● Servers start up as followers
● Followers expect to receive RPCs from leaders

or candidates

● Leaders must send heartbeats (empty
AppendEntries RPCs) to maintain authority

● If electionTimeout elapses with no RPCs:
▪ Follower assumes leader has crashed
▪ Follower starts new election
▪ Timeouts for each server are random to reduce the chance

of synchronized elections and are typically 100-500ms

Raft Consensus Algorithm Slide 13

Heartbeats and Timeouts

● Increment current term
● Change to Candidate state
● Vote for self
● Send RequestVote RPCs to all other servers, retry

until either:
1. Receive votes from majority of servers:

● Become leader
● Send AppendEntries heartbeats to all other servers

2. Receive AppendEntries RPC from valid leader:
● Return to follower state

3. No-one wins election (election timeout elapses):
● Increment term, start new election

Raft Consensus Algorithm Slide 14

Election Basics

● Safety: allow at most one winner per term
▪ Each server gives out only one vote per term (persist on disk)
▪ Two different candidates can’t accumulate majorities in same

term

Elections, cont’d

Servers

● Liveness: some candidate must eventually win
▪ Choose election timeouts randomly in [T, 2T]
▪ One server usually times out and wins election before others

wake up
▪ Works well if T >> broadcast time

Voted for
candidate A

B can’t also
get majority

Raft Consensus Algorithm Slide 15

Log Structure
1 2 3 4 5 6 7 8
1

add
1

cmp
1

ret
2

mov
3

jmp
3

div
3

shl
3

sub
1

add
1

cmp
1

ret
2

mov
3

jmp
1

add
1

cmp
1

ret
2

mov
3

jmp
3

div
3

shl
3

sub

1
add

1
cmp

1
add

1
cmp

1
ret

2
mov

3
jmp

3
div

3
shl

log index
leader

followers

committed entries

● Log entry = <index, term, command>
● Log stored on stable storage (disk); survives crashes
● Entry committed if known to be stored on majority of servers

▪ Durable, will eventually be executed by state machines

term

command

Raft Consensus Algorithm Slide 16

● Normal Operation:
1. Client sends command to leader
2. Leader appends command to its log
3. Leader sends AppendEntries RPCs to followers
4. Once new entry committed:

■ Leader passes command to its state machine, returns
result to client

■ Leader notifies followers of committed entries in
subsequentAppendEntries RPCs

■ Followers pass committed commands to their state
machines

● Crashed/slow followers?
▪ Leader retries RPCs until they succeed

● Performance is optimal in common case:
▪ One successful RPC to any majority of servers

Normal Operation

Slide 16

● If a given entry is committed, all preceding
entries are also committed

Raft Consensus Algorithm Slide 18

Log Consistency

High level of coherency between logs:
● If log entries on different servers have same

index and term:
▪ They store the same command
▪ The logs are identical in all preceding entries

1
add

1
cmp

1
ret

2
mov

3
jmp

3
div

1
add

1
cmp

1
ret

2
mov

3
jmp

4
sub

1 2 3 4 5 6 log index

AppendEntries Consistency Check

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

1
cmp

1
ret

2
mov

leader

follower

● Each AppendEntries RPC contains index, term of
entry preceding new ones

● Follower must contain matching entry; otherwise
it rejects request

● Implements an induction step, ensures coherency
1 2 3 4 5

1
add

1
cmp

1
ret

2
mov

3
jmp

1
add

1
cmp

1
ret

1
shl

leader

follower

AppendEntries succeeds:
matching entry

AppendEntries
fails: mismatch

Raft Consensus Algorithm Slide 19

● At beginning of new leader’s term:
▪ Old leader may have left entries partially replicated
▪ No special steps by new leader: just start normal operation
▪ Leader’s log is “the truth”
▪ Will eventually make follower’s logs identical to leader’s

Raft Consensus Algorithm Slide 20

Leader Changes

Safety Requirement

Once a log entry has been applied to a state machine,
no other state machine must apply a different value
for that log entry

● Raft safety property:
▪ If a leader has decided that a log entry is committed, that entry

will be present in the logs of all future leaders

● The following steps guarantee safety:
▪ Leaders never overwrite entries in their logs
▪ Only entries in the leader’s log can be committed
▪ Entries must be committed before applying to state machine

Committed → Present in future leaders’ logs
Restrictions on

commitment
Restrictions on
leader election

Raft Consensus Algorithm Slide 21

Picking the Best Leader

1 21 1 2

● Can’t tell which entries are committed!
1 2 3 4 5

1 1 1 2

1 1 1 2 2
unavailable during
leader transition

● During elections, choose candidate with log
most likely to contain all committed entries

▪ Candidates include log info in RequestVote RPCs(index &
term of last log entry)

▪ Voting server V denies vote if its log is “more complete”:
(lastTermV > lastTermC) ||
(lastTermV == lastTermC) && (lastIndexV > lastIndexC)

▪ Leader will have “most complete” log among electing majority

committed?

Raft Consensus Algorithm Slide 22

Committing Entry from Current Term

1 2 3 4 5

s1 1 1 2 2 2

s2 1 1 2 2

s3 1 1 2 2

s4 1 1 2

s5 1 1

● Case 1 out of 2: Leader decides entry in
current term is committed

6
 Leader for term 2

AppendEntries just
succeeded

Can’t be elected as leader
for term 3

● Safe: leader for term 3 must contain entry 4
Raft Consensus Algorithm Slide 23

● Entry 3 not safely committed:
▪ s5 can be elected as leader for term 5
▪ If elected, it will overwrite entry 3 on s1, s2, and s3 which is BAD

since we don’t ever want to overwrite previous commits!
▪ Need commitment rules in addition to election rules

Committing Entry from Earlier Term

s1
s2

s3

s4

s5

1 1 2 4

1 1 2

1 1 2

1 1

1 2 3 4 5 6
 Leader for term 4

● Case 2 out of 2: Leader is trying to finish
committing entry from an earlier term

AppendEntries just
succeeded

1 1 3 3 3

Slide 23

● For a leader to decide
an entry is committed:

▪ Must be stored on a majority
of servers

▪ At least one new entry from
leader’s term must also be
stored on majority of servers

● Once entry 4 committed:
▪ s5 cannot be elected leader

for term 5
▪ Entries 3 and 4 both safe

New Commitment Rules

1 1

s1 1 1 2 4

1 2 3 4 log Index
 Leader for

term 4
1 1 2 4

Raft Consensus Algorithm Slide 25

1 1 2 4

Combination of election rules and commitment rules
makes Raft safe

1 1 3 3 3

s2
s3

s4

s5

Leader changes can result in log inconsistencies:

Log Inconsistencies

1 1 1 4 4 5 5 6 6 6

1 2 3 4 5 6 7 8 9 10 11 12log index
leader for
term 8

1 1 1 4 4 5 5 6 6

1 41 1

1 1 1 4 4 5 5 6 6 6 6possible
followers

1 1 1 4 4 4 4

1 1 1 4 4 5 5 6 6 6 7 7

1 1 1 2 2 2 3 3 3 3 3

(a)

(b)

(c)

(d)

(e)

(f)

Extraneous
Entries

Missing
Entries

Raft Consensus Algorithm Slide 26

March 3, 2013 Raft Consensus Algorithm

Repairing Follower Logs

log index

leader for term 7

1 1 1 4

1 1 1 2 2 2 3 3 3 3 3

(a)

followers
(b)

● New leader must make follower logs consistent with its own
▪ Delete extraneous entries
▪ Fill in missing entries

● Leader keeps nextIndex for each follower:
▪ Index of next log entry to send to that follower
▪ Initialized to (1 + leader’s last index)

● When AppendEntries consistency check fails, decrement
nextIndex and try again:

Slide 27

nextIndex

12111 2 3 4 5 6 7 8 9 10

1 1 1 4 4 5 5 6 6 6

● When follower overwrites inconsistent entry, it
deletes all subsequent entries:

March 3, 2013 Raft Consensus Algorithm Slide
23

Repairing Logs, cont’d

1 1 1 4 4 5 5 6 6 6

log index

leader for term 7

1 1 1 2 2 2 3 3 3 3 3

nextIndex

1 2 3 4 5 6 7 8 9 10 11

Slide 28

follower (before)

follower (after) 1 1 1 4

● Deposed leader may not be dead:
▪ Temporarily disconnected from network
▪ Other servers elect a new leader
▪ Old leader becomes reconnected, attempts to commit log entries

● Terms used to detect stale leaders (and candidates)
▪ Every RPC contains term of sender
▪ If sender’s term is older, RPC is rejected, sender reverts to

follower and updates its term
▪ If receiver’s term is older, it reverts to follower, updates its term,

then processes RPC normally

● Election updates terms of majority of servers
▪ Deposed server cannot commit new log entries

Raft Consensus Algorithm

Neutralizing Old Leaders

Slide 28

Visualization

Raft Visualization

https://raft.github.io/raftscope-replay/index.htm
l

Slide 29

http://thesecretlivesofdata.com/raft/
https://raft.github.io/raftscope-replay/index.html
https://raft.github.io/raftscope-replay/index.html

1. Leader election
2. Normal operation
3. Safety and consistency
4. Neutralize old leaders

Raft Consensus Algorithm Slide 31

Raft Summary

● Extended Raft paper:
○ https://raft.github.io/raft.pdf

● Visualization:
○ Raft Visualization

○ https://raft.github.io/raftscope-replay/index.html

● Original source for Raft recitation slides:
○ https://raft.github.io/slides/raftuserstudy2013.pdf

Raft Consensus Algorithm Slide 32

Useful Links Summary

https://raft.github.io/raft.pdf
http://thesecretlivesofdata.com/raft/
https://raft.github.io/raftscope-replay/index.html
https://raft.github.io/raftscope-replay/index.html
https://raft.github.io/raftscope-replay/index.html

