
P1 : Distributed Bitcoin Miner

15-440/15-640

Fall 2021

Overview

• OH/Piazza Policy Reminder

• P1 Part B

• Q&A

• Appendix: P1 Post-checkpoint Unit Tests

OH/Piazza Policy Reminder
• You do have a partner to work together! Make sure to discuss

with your partner when you are blocked.

• Review the slides from debugging recitation and make sure
you follow the everything listed there + check out FAQ and
other posts on piazza.

• Provide context when asking questions on Piazza or during
OH.

• If you do not make enough effort before asking for help, the
TAs can refuse to help you.

• Please do not make private post about debugging questions.

P1 Part B

• Implement a distributed mining

infrastructure on top of the LSP you

develop for part A

Mining

Architecture

Miner 1 Miner 2

Server

Client 1

JoinJoin

Request

Architecture

Miner 1 Miner 2

Server

Client 1

Request

ComputeCompute

Request

Architecture

Miner 1 Miner 2

Server

Client 1

Result
(partial)

Result
(partial)

Combined Result

Handling Failures
• When a miner loses contact with the server it

should shut itself down.

• When a request client loses contact with the

server, it should print Disconnected to

standard output and exit.

Handling Failures
• When the server loses contact with a miner, it should

reassign any job that the worker was handling to a

different worker. If there are no available miners left, the

server should wait for a new miner to join before reassigning

the old miner’s job.

• When the server loses contact with a request client, it should

cease working on any requests being done on behalf of

the client (you need not forcibly terminate a job on a

miner—just wait for it to complete and ignore its results).

Scheduler
•You should design the server so that the processing
time per request is proportionate to the request size.

•This means that the server should respond quickly to
small requests and can respond slowly to larger
ones.

• If the server gets a very large request, and a small
one right afterward, your design should ensure the
small request completes fast and does not wait for
the larger one to finish first!

Scheduler (continue)
•On the other hand requests should be given some
priority based on when they are received.

•We have purposefully not given you the design of the
scheduler in the handout. You should brainstorm to
find scheduling techniques that satisfy this
requirement.

•Your code should clearly document how you
implemented scheduling in your server. -> the
documentation will be considered in the style
grading.

Questions I know you will ask
• Are there hidden tests in part B?

• Yes, stests are not provided to you, we also have hidden mtest and ctest.

• Does passing the public test mean we can pass the hidden tests?

• No, not even close

• If we fail the hidden tests on Gradescope, can we get useful hints on what is

wrong?

• Barely. Don’t waste 15 submission attempts on debugging. So write good

tests!!

• Also make use of the miner, client, and server binary

• How can we split the work?

• It depends.

• Total LOC of bitcoin implementation in our reference solution: ~360

• Total LOC in hidden tests: >700

• Write good tests from day 1!!! or at least try to test your implementation.

APPENDIX: P1
Post-checkpoint Unit Tests

• TestServerFastClose*
• TestServerToClient*
• TestClientToServer*
• TestRoundTrip*
• TestVariableLengthMsgServer
• TestVariableLengthMsgClient
• TestCorruptedMsgServer
• TestCorruptedMsgClient
• TestCAck*. TODO(natre)

• TestSendReceive*
• TestRobust*
• TestWindow*
• TestExpBackOff*
• TestMaxUnackedMessages*
• TestServerSlowStart*
• TestServerClose*
• TestServerCloseConns*
• TestClientClose*

TestSendReceive*
• TestSendReceive* test that all messages

sent from one side are received by the

other (without relying on epochs to

resend any messages)

•Window size = 1

•Otherwise similar to TestBasic*

(Do not need window)

TestRobust*
• TestRobust* test robustness by inserting

random delays in between client/server reads

or writes, and by increasing the packet loss to

up to 20%

• Window size up to 10

• Client count up to 5

• (Need epoch, does not intentionally test on

window implementation)

TestWindow*
• TestWindow1~3 test the case that …

• The sliding window has reached its maximum capacity.

• TestWindow4~6 test the case that …

• Messages are returned by Read in the order they were

sent (i.e. in order of their sequence numbers).

• If messages 1-5 are dropped and messages 6-10 are

received, then the latter 5 should not be returned by Read

until the first 5 are received.

• Need Epochs implemented to work!

TestMaxUnackedMessages*
• TestMU1~3 test the case that …

• The maxUnacked has reached its maximum capacity.

• TestMU4~6 test the case that …

• Messages are returned by Read in the order they were

sent (i.e. in order of their sequence numbers).

• M =10, W = 20

• If messages 1-5 are unacked, then 6-10 are acked, then

10-15 should be sent, 15-20 should not.

• Need Epochs implemented to work!

TestExpBackOff*
• TestExpBackOff* test that the number of messages

sent due to exponential back-off falls within a

reasonable range

• We sniff messages sent through lspnet

• Up to 10 clients

• Up to 15 messages

• The test is not comprehensive (we set up a range of

acceptable answers, which is not “precise”), so

design the epoch part carefully.

TestServerSlowStart*
• TestServerSlowStart* test that a client is able

to connect to a slow-starting server

• if the server starts a few epochs later than a

client, the presence of epoch events should

ensure that the connection is eventually

established

• Up to 3 clients

• Timeout after 5 epochs

TestServerClose*
TestServerCloseConns*
TestClientClose*

• Check that the client/server Close methods work correctly

• Pending messages should be returned by Read and pending

messages should be written and acknowledged by the other

side before Close returns

• CloseConn should return immediately without blocking

• Check that no extra messages are received on the

client/server

• After close is called, Read() and Write() should return an error

or block indefinitely.

TestServerFastClose*

•Streaming messages in large

batches and the network is

toggled on/off (i.e. drop

percent is set to either 0% or

100%) throughout.

TestServerFastClose* (Cont.)
• Test procedure at high level (the test case log also records this procedure)

1. Wait for all servers and clients to be ready

2. Shut down network

3. Client application starts writing…

4. Turn on network and delay (server-client communication resumed)

5. Shut down network

6. Server application starts reading…

7. Server application starts writing…

8. Start closing server (pending messages need to be ready for send)

9. Turn on network and delay (server-client communication resumed)

10. Shut down network

11. Client application starts reading…

12. Start closing client

TestServerToClient*
TestClientToServer*
TestRoundTrip*

•Variants of

TestServerFastClose*

• For more details, read

lsp4_test.master()

TestVariableLengthMsgServer
TestVariableLengthMsgClient

•Check that server/client…

•Can read normal length message

•Truncates long messages

•Doesn't read short messages

TestCorruptedMsgServer
TestCorruptedMsgClient

•Check that server/client…

•Drop Data messages whose

calculated and recorded

checksums don’t match

