
P1: Distributed Bitcoin Miner
15-440/15-640

Fall 2021

Overview
1. P0 Wrap Up
2. P1 Part A Introduction

P0 Overview
type keyValueServer struct {

store kvstore.KVStore
listener net.Listener
currentClients []*client
newConnection chan net.Conn
dbQuery chan *db
...

}

type client struct {
connection net.Conn
messageQueue chan []byte
quitSignal_Read chan int
quitSignal_Write chan int

}

Main Routine - all changes/updates happen here
1. Add a new client to the client list.

a. go readRoutine(kvs, c)
b. go writeRoutine(c)

2. Remove the dead client.
3. Run a query on the DB, all queries are directed to this channel.

a. Process each case here
i. Update() -> slice

4. Process CountActive() calls
5. Process CountDropped() calls
6. Process Close() calls

Close function
● -1 Close not implemented. [Use this for no attempt at implementation.]
● -0.5 Close should signal goroutines to terminate. [Use this for if they call Close() on

the socket but do nothing else.]
● -0.01 for minor close issues:

○ Did not close individual client connections -> c.connection.Close()
○ Go routines that may deadlock when trying to handle a close signal
○ Sending a quit message on a channel with multiple listeners, only one of

whom will receive the message and actually quit.
■ 1 -> 1, good
■ Many -> 1, okay
■ 1 -> many, DON’T DO THIS

Using Channels As Mutexes
Case: count <- channel1:

Count += 1

channel1 <- count

Case: <- channel1:

// Do your updates or read a field

channel1 <- true

Using Channels For store things that can grow arbitrarily
in size

Case: newConn <- newConnChan:

activeCountChan <- 1

Return len(activeCountChan) for
CountActive function.

P1 Logistics
● P1 is HARD, read the handout and start early!
● Deadlines:

○ Part A Checkpoint: Due Tuesday, 9/28 -> 20% (the easy 20%!)
○ Part A Final: Due Friday, 10/8 -> 60%
○ Part B: Due Thursday, 10/14 -> 20%

● Working with a Partner
● OH will be busy, so start early!

○ 10 min time limit
○ Tell us what you have tried

P1 Requirement
● No locks and mutexes.

○ If you have lock-like behavior using channel, we will not help you debug your code.
● No buffered channels with size > 1.
● You cannot use sync, sync.atomic, or net packages.

Part A: Live Sequence Protocol
● LSP is similar to TCP, it adds functionality to UDP
● LSP has some of its own features:

○ LSP supports its own client-server communication model
○ Server communicates with multiple clients
○ Received messages must be processed in order
○ LSP includes Sliding Window Protocol
○ Payload size and Checksum are used to verify data integrity.
○ LSP includes Epoch Events for Re-transmission and Timeout Mechanism

lspnet
● Contains every UDP operation needed
● net package is not allowed for this project. Use lspnet

import “github.com/cmu440/lspnet”

addr, err := lspnet.ResolveUDPAddr("udp", hostport)
udpConn, err := lspnet.ListenUDP("udp", addr)

n, cliAddr, err := udpConn.ReadFromUDP(buffer)

udpConn.WriteToUDP(msg, cliAddr)

Messages
Each message is consists of:

● Message Type: Connect, Data, Ack, CAck
● Connection ID: uniquely identifies each client-server connection
● Sequence Number: sequence number increments with each message

sent, initial sequence number is randomly generated
● Payload Size: used to verify data integrity
● Checksum: used to verify data integrity
● Payload

Message
● Message size is limited to single UDP-packet size (~ 1000 bytes)
● Each Message is received exactly once (ignore duplicates)
● Messages are marshaled using Go’s Marshal function in the json package

and sent as a UDP packet

Client Server Communication: Establish a Connection
Server Client

(Connect, 0, isn)

Client begins by sending a connection message (must have ID = 0, and a
given initial sequence number)

Client Server Communication: Establish a Connection

Server generates a unique connection ID for this client-server connection
(you can generate ID’s sequentially)

Server Client

(Connect, 0, isn)

(Ack, id, isn)

Client Server Communication: Sending & Ack-ing Data
Server Client

(Data, id, isn+2, “hi”)

(Ack, id, isn+2)

(Data, id, isn+1,
“hi”)

(Ack, id, isn + 1)

(Data, id, isn+1, “hello”)

(Ack, id, isn+1)

● In this example, assume server and
clients just established the connection
and started to send data messages,
starting from isn:
○ Server and Client maintain

independent sequence
numbers.

○ Since all messages are
received in order, we can ack
with either Ack or CAck.

Client Server Communication: Ack & CAck
● Since all previous messages have been

received and processed, the
corresponding acknowledgement
(highlighted with yellow) can be either
Ack or CAck.

● Client then sends data messages i + 1
and i + 2, but only i + 2 is received. The
server still needs to acknowledge data
message i + 2, but this time only Ack
should be used.

● Your implementation does not
necessarily need to send CAck, but
both client and server should be able
to handle CAck.

Received Messages Must Be Processed In Order.
UDP Packets are not guaranteed to
arrive in order.

LSPServer.Read() //Blocks

LSPServer.Read()

LSPServer.Read()

Server

Received Messages Must Be Processed In Order.
UDP Packets are not guaranteed to arrive
in order.

LSPServer.Read() //Returns “440”

LSPServer.Read() //Blocks

LSPServer.Read()

Server

(Data, id, i, “440”)

Received Messages Must Be Processed In Order.
UDP Packets are not guaranteed to arrive
in order.

LSPServer.Read() //Returns “440”

LSPServer.Read() //Blocks

LSPServer.Read() //Blocks

Server

(Data, id, i, “440”)

(Data, id, i+2, “fun”)

Received Messages Must Be Processed In Order.
UDP Packets are not guaranteed to arrive
in order.

LSPServer.Read() //Returns “440”

LSPServer.Read() //Returns “is”

LSPServer.Read() //Returns “fun”

Server

(Data, id, i, “440”)

(Data, id, i+2, “fun”)

(Data, id, i+1, “is”)

Checkpoint (Due 9/28)
● Assume no packet loss (no need to implement window, epoch, retry)
● You need to implement:

○ Interaction between Server & Client
○ Receiving In Order
○ Simple Read & Write

■ Only reads and writes data messages
■ Please read the handout and api files carefully!

● This is the easy 20% of the project.

Sliding Window Protocol

● Given a window size w, we can send up to w messages without
acknowledgement.

● If the oldest unacknowledged message has sequence number
n, then only messages with sequence numbers n + w - 1
(inclusive) may be sent i.e. [n, n+ w -1]

● In addition, number of unacknowledged messages cannot
exceed MaxUnackedMessages

Sliding Window Protocol Example1

● W = 3
● Client messages queue:

“H” -> “E” -> “L” -> “L” -> “O”
● Oldest SN without Ack = i

Window = [i, i+2]

Server Client

Sliding Window Protocol Example1

● W = 3
● Client messages queue:

“E” -> “L” -> “L” -> “O”
● Oldest SN without Ack = i

Window = [i, i+2]

Server Client

(Data, id, i, “H”)

Sliding Window Protocol Example1

● W = 3
● Client messages queue:

“L” -> “L” -> “O”
● Oldest SN without Ack = i

Window = [i, i+2]

Server Client

(Data, id, i, “H”)

(Data, id, i+1, “E”)

Sliding Window Protocol Example1

● W = 3
● Client messages queue:

“L” -> “O”
● Oldest SN without Ack = i

Window = [i, i+2]

Server Client

(Data, id, i, “H”)

(Data, id, i+1, “E”)

(Data, id, i+2, “L”)

Block

Sliding Window Protocol Example1

● W = 3
● Client messages queue:

“L” -> “O”
● Oldest SN without Ack = i

Window = [i, i+2]

Server Client

(Data, id, i, “H”)

(Data, id, i+1, “E”)

(Data, id, i+2, “L”)

(Ack, id, i+1)

Sliding Window Protocol Example1

● W = 3
● Client messages queue:

“L” -> “O”
● Oldest SN without Ack = i

Window = [i, i+2]

Server Client

(Data, id, i, “H”)

(Data, id, i+1, “E”)

(Data, id, i+2, “L”)

(Ack, id, i+1)

Block

Sliding Window Protocol Example1

● W = 3
● Client messages queue:

“O”
● Oldest SN without Ack = i + 2

Old Window = [i, i+2]
New Window = [i+2, i+4]

Server Client

(Data, id, i, “H”)

(Data, id, i+1, “E”)

(Data, id, i+2, “L”)

(Ack, id, i+1)

(Ack, id, i)

(Data, id, i+3, “L”)

Sliding Window Protocol Example2

● W = 3
● MaxUnackedMessages = 2
● Client messages queue:

“L” -> “L” -> “O”
● Oldest SN without Ack = i

Window = [i, i+2]

Server Client

(Data, id, i, “H”)

(Data, id, i+1, “E”)

Block

Payload Size & Checksum
● Both payload size and checksum are used to verify data integrity.
● Payload Size (What if received data is shorter? longer?)
● Checksum

○ Carries more information than payload size
○ Can detect flipped bits introduced in the process of data transmission and storage
○ See writeup for detailed description of the 16-bit one’s complement sum algorithm
○ Use the Helper function CalculateChecksum() in checksum.go

Epoch Events
• We need to deal with dropped packets + check if connection is live
• Time interval between two epochs (t) is fixed.
• Clients and server take epoch actions when a periodic timer trigger fires.
• For every data message that isn’t acknowledged yet, resend following the

exponential backoff rules (0 -> 1 -> 2 -> 4)
• CurrentBackoff - the amount of epochs we wait before re-transmitting data that did

not receive an ACK.
• CurrentBackOff increases according to exponential backoff rules, until it reaches

MaxBackOff
• If sent/resent nothing in the past epoch, send a Heartbeat message — keeps the

connection alive

Client Epoch Actions: Connect Message Retransmission
If connection request has not been
acknowledges, resend connection
request every epoch.

Server Clien
t

(Connect, 0, isn)

(Ack, id, isn)

(Connect, 0, isn)

(Connect, 0, isn)

Client Epoch Actions: Is the connection dead?
If the client:

1. Has received Ack for the
Connect request

2. Has NOT received any Data
message

Then it should send a heartbeat
message (Ack with sequence
number 0)

Server Client

(Data, id, j, “hi”)

(Ack, id, j)

(Ack, id, 0)

Client Epoch Actions: Data Message Retransmission 1
For every unacknowledged data
message sent, resend the data
message.

Server Clien
t(Data, id, i, “hello”)

(Data, id, i+1, “world”)

Client Epoch Actions: Data Message Retransmission 1
For every unacknowledged data
message sent, resend the data
message after CurrentBackOff.

Note: CurrentBackOff = 0 in this
example.

Server Clien
t(Data, id, i, “hello”)

(Data, id, i+1, “world”)

(Data, id, i, “hello”)

(Data, id, i+1, “world”)

Client Epoch Actions: Data Message Retransmission 2
For every unacknowledged data
message sent, resend the data
message after CurrentBackOff.

Note: CurrentBackOff = 0 in this
example.

Server Clien
t(Data, id, i, “hello”)

(Data, id, i+1, “world”)

(Data, id, i, “hello”)

(Data, id, i+1, “world”)

(Ack, id, i+1)

Server epoch actions are very similar to client epoch
actions.
For each client connection:

● For each data message that has been sent, but not yet acknowledged,
resend the data message following the exponential backoff rules above.

● If the server has not sent or resent any data message to the client in the
last epoch, then send a Heartbeat message (i.e., an ACK with sequence
number 0).

Epoch Events: EpochLimit

We can keep track of epochs passed since the last message was
received. If this goes over a limit, we can assume the connection is
lost.

Read(), Write(), Close(), CloseConn()
● We don’t have time to go thru these during recitation, please go over the

handout, Server.api.go, and Client.api.go
● Note that Close() is blocking while CloseConn() is not
● Close() ensures that all pending messages to send are sent and

acknowledged before Close() returns
● If Read(), Write, Close(), or CloseConn() is called after Close() is called, they

must either return an error, or never return anything

