
Go
Debugging
Fall 2021

Overview
▪Congrats on reaching the P1 checkpoint! 🏅
▪Part A final is complicated
▪ By the end, your implementation will have many moving parts
▪Our goal is to help you fix the bugs that inevitably arise
▪Debugging large projects like this is a crucial real-world skill!

▪Purpose of this recitation:
▪ Teach language-agnostic debugging skills
▪ Teach Go-specific debugging skills
▪ Outline expectations for questions asked on Piazza, Slack, or at Office Hours

▪ CHECK OUT THE FAQ POST! @279

Debugging Tip1: Logging
● Add log statements around points of inter-thread communications

○ Channel -> understand buffered & unbuffered channels!
○ Connection
○ …

● Attach server/client IDs to each log line
● Create multiple log files, one for each thread
● Limit log output size for easy navigation

○ Convenient to use flags to enable/disable logging
○ No multi-level logging support in Go’s standard library

Debugging Tip2: Race Condition
● Remember to run with –race flag and read –race output (it tells you the two

specific go routines that are having data race!)
● Goland has a built-in debugger
● @68: Use the defer statement from the quick start in every test you’d like to

leak test.
○ https://github.com/uber-go/goleak

Debugging Tip3: Read the Tests
● Why read the tests programs?

○ Understand the expected behavior of the program.
○ The system specification is written in natural language and thus inherently ambiguous

and prone to misinterpretation.
○ The test program is more precise.

● Prepare for Part B.
○ The public tests are simple. The hidden tests are brutal.
○ You will need to write some of your own tests for partB!

Golang Documentation
▪Golang documentation can sometimes be cryptic, unhelpful, terse,
or simply empty. However, sufficient digging can usually unearth
the details you are interested in.

▪A common question in p0 was: Why does my code stop at
conn.Read()?
Can you try to figure this out yourself? (Other than reading the
handout)

Step1: Fix compiler errors
▪We expect you at this point to be proficient

enough at Go to fix most compile errors on
your own.

▪ If there is a type you are not familiar with, first
search the starter code for that type (grep -rn
type typeName)

▪ If it is not in the starter code, search Google.

▪ If it is not on Google, then ask on Piazza/Office
Hours.

Step2: Fix segfaults (panics)
▪The only common ways you will get a segfault in Golang are by
dereferencing a nil pointer or accessing an out-of-bounds index in an array.

▪ If you do get a segfault, Go will provide you with a stack trace with line
numbers.

▪ If you find a segfault, you are expected to fix it on your own (or at least put
a reasonable amount of effort). When I say fix, I mean fix, not mask.

▪The exception is segfaults that occur in the starter code or Go libraries.

Step3: Hand simulate the system
behavior
▪ Sample Scenario 1:

▪ Running the TestXXX test and I got a time out error.
▪ Potential bugs: 1. Spinlock 2. Deadlock 3. Block at a channel 4.Did not close properly
…

▪Understand the corresponding functions for the test case. The tests are generally
readable. ("grep <testname> *" in the lsp folder to figure out which file contains
a given test.)

▪Use logging statement to track the state.

▪ Check all the go routines (where you are running infinite loops) and reason
through all the cases you have. See if you are blocked somewhere.

Step3: Hand simulate the system
behavior
▪ > Check all the go routines (where you are running infinite loops) and reason

through all the cases you have. See if you are blocked somewhere.
▪ It may be helpful to get a printout of all current goroutines and their running/blocked

status.
▪ More ways to do this:

https://stackoverflow.com/questions/19094099/how-to-dump-goroutine-stacktraces

https://stackoverflow.com/questions/19094099/how-to-dump-goroutine-stacktraces

Step3: Hand simulate the system
behavior
▪ Sample Scenario 2:

▪ Running the srunner & crunner_sols but the srunner hangs (considering checkpoint
implementation).

▪ Check the srunner/crunner.go file, the reference binary files also use the same format
to run the reference solution.

▪ Reason through your code and check:
▪ The connection is established correctly.
▪ My server can read DATA from client.
▪ My server sends ACK back.
▪ My server write DATA to client.
▪ …

▪ A good exercise: walk through a hand simulation with your partner!
▪ Or, explain it to a pet, rubber duck, etc.
▪ Often you will realize while explaining a piece of code that it is not doing what you thought it was.

Step4: Fix race condition
▪When you run your tests with go test –race, Go will tell you if it detects any

data races. This will include line numbers for the offending data accesses.

▪ You are expected to be able to fix any races that are detected by the race
detector. If there is a race detected, it‘s time to bring out the Banker example
from the first recitation.

▪ Change the parameters of your test cases, and run them multiple times to
tease out race conditions. Even if it only detects a race 1 out of 10 runs, you
should still fix that race. (Or Part B will be miserable...)

Step5: Isolate the problem using
logs/prints
▪ Starting next week, we no longer accept Piazza questions or Office Hours questions

about an end-to-end failure accompanied by the entirety of your source code.
▪ This is not because we don't want to help you – we do! But looking at your code and seeing

what is wrong in 10 minutes is very hard, so the best we can do is just guide you through
these 5 steps. It is more efficient if you do the steps yourself and then ask us targeted
questions.

▪ Questions about your overall system design are still welcome.
▪ Questions like “how should my server handle … case” is something you should consider and design,

but do not ask on Piazza please (to avoid giving away an answer to everyone).

▪ We expect you to isolate the exact goroutine/lines of code that are behaving differently
than you expected before asking for help.

Step5: Isolate the problem using
logs/prints

▪ Some ideas:
▪ If you are having client/server coordination issues, print out every packet

sent/received.
▪ Consider defining a wrapper function around Read/Write funcs that prints the packet, then

use that instead of Read/Write directly.

▪ Same goes for channels

▪ Don't be afraid to write your own tests, or call our general test functions with different
arguments! Try to find a minimum broken example.
▪ E.g. if you have a bug that occurs in one of our multiple-client tests, first test having multiple

clients connect but do nothing else; then have one of them send a message after connecting;
then have multiple of them send messages after connecting; then mix in reordering, etc. until
the bug appears.

1. Fix compile errors

2. Fix segfaults

3.Hand-simulate system behavior

4. Fix race conditions

5. Isolate the problem using prints/logs

Ask precise, concise questions:
e.g: I noticed that in the SlowClient tests, the clients are getting responses for the
wrong keys. This is what happens in my system when it receives a Get request...
(explain in pseudocode)

5 steps before asking for help

My code passes locally but not on
Gradescope
▪Many students have had this issue

▪We will post on Piazza detailing common performance issues.
(Stealing from a previous TA)

▪One additional thing you can do: use top/htop

▪ If your program is pinning all your CPU cores at 100% when running,
that indicates a performance problem. At least for P1, a good
implementation will not use more than around 20% CPU on a modern
machine for any of our tests.

Words of advice

▪Always understand why your code works.

▪Don’t be afraid to rewrite part or all of your code.

▪Sometimes you can catch subtle mistakes by writing it a
second time – This is how you learn in general.

▪You do have a partner to work together!

Further Reading
▪ David Andersen, "Software Engineering for Systems Hackers",
https://www.cs.cmu.edu/~dga/systems-se.pdf
▪ Linked on course syllabus webpage
▪ Chapters 5.1 & 11

https://www.cs.cmu.edu/~dga/systems-se.pdf

