
15-440/640 Carnegie Mellon University

Announcements
• Midterm 2 on Thursday, Dec 2 in class

• 1 page (2 sides) cheat sheet allowed for the exam
• To be submitted along with your exam

• P3 final due on Friday, Dec 3

• Please fill out the FCEs before its due date

1

Distributed Systems

15-440/640

Byzantine Fault Tolerance

Readings: Tanenbaum pages 449 - 460. PBFT paper.
2

Failure Models

• A system is k fault tolerant if it can survive faults
in k components and still meet its specifications.

3

Previous lectures: specific types of fail-stop behavior

From now on: specific types of
Byzantine/adversarial behavior

What do Arbitrary Failures Look
Like?
Many things can go wrong…

Communication
• Messages lost or delayed for arbitrary time
• Adversary can intercept messages and corrupt it

Processes
• Can fail or team up to produce wrong results

Agreement very hard, sometime impossible, to
achieve!

4

Fault Tolerance

• Terminology & Background

• Byzantine Fault Tolerance (Lamport)

• Async. BFT (Liskov)

5

Byzantine Agreement Problem

Three nonfaulty and one faulty
process.

• System of N processes, where
each process i will provide a value
vi to each other.

• Some number of these processes
may be incorrect (or malicious)

6

Goal:
Each nonfaulty process learn the
true values sent by each of the
nonfaulty processes

Byzantine General’s Problem

The Problem: “Several divisions of the Byzantine army are camped
outside an enemy city, each division commanded by its own
general. After observing the enemy, they must decide upon a
common plan of action. Some of the generals may be traitors,
trying to prevent the loyal generals from reaching agreement.”

Goal:
• All loyal generals decide upon the same plan of action.
• A small number of traitors cannot cause the loyal generals to adopt a

bad plan.

Lamport, Shostak, Pease. The Byzantine General’s Problem. ACM TOPLAS, 4,3, July 1982, 382-401. 7

So far: tolerating fail-stop failures
• Traditional replicated state machine (RSM)

tolerates benign failures
• Node crashes
• Network partitions

Question to ponder until next lecture: How
many Byzantine/arbitrary failures can RSM
(like Raft/Paxos) tolerate?

Given 2f+1 replicas, how many simultaneous
fail-stop failures can RSM tolerate?

• A RSM w/ 2f+1 replicas can tolerate f
simultaneous fail-stop failures

8

Why doesn’t traditional RSM work
with Byzantine nodes?

• Paxos uses a majority accept-quorum to tolerate f
benign faults out of 2f+1 nodes

• Does the intersection of two quorums always
contain one honest node?

• Bad node tells different things to different
quorums!
• E.g. tell N1 accept=val1 and tell N2 accept=val2

9

10

Paxos under Byzantine faults

Prepare vid=1, myn=N0:1
OK val=null

N0 N1

N2

nh=N0:1nh=N0:1

Prepare vid=1, myn=N0:1
OK val=null

11

Paxos under Byzantine faults

accept vid=1, myn=N0:1, val=xyz
OK

N0 N1

N2

nh=N0:1nh=N0:1
X

N0 decides on
Vid1=xyz

12

Paxos under Byzantine faults

prepare vid=1, myn=N1:1, val=abc
OK val=null

N0 N1

N2

nh=N1:1nh=N0:1

X
N0 decides on

Vid1=xyz

13

Paxos under Byzantine faults

accept vid=1, myn=N1:1, val=abc
OK

N0 N1

N2

nh=N1:1nh=N0:1

X
N1 decides on

Vid1=abc

N0 decides on
Vid1=xyz

Agreement
conflict!

14

1. State: …A
2. State: …A

3. State: …A
4. State: …

Quorums under Byzantine faults

Servers

Clients

write
 A

write A
X

w
rit

e
Awrite A

For correctness, what property must the intersection of any
two quorums have?
At least one honest node => intersection size at least f + 1

Byzantine General’s Problem

The Problem: “Several divisions of the Byzantine army are camped
outside an enemy city, each division commanded by its own
general. After observing the enemy, they must decide upon a
common plan of action. Some of the generals may be traitors,
trying to prevent the loyal generals from reaching agreement.”

Goal:
• All loyal generals decide upon the same plan of action.
• A small number of traitors cannot cause the loyal generals to adopt a

bad plan.
• If the commander is loyal, then all loyal lieutenants obey the

commander.

Lamport, Shostak, Pease. The Byzantine General’s Problem. ACM TOPLAS, 4,3, July 1982, 382-401. 15

Impossibility Results

• No solution for three processes can cope with a single traitor.

• No solution with fewer than 3f + 1 generals can cope with f traitors

16Lamport, Shostak, Pease. The Byzantine General’s Problem. ACM TOPLAS, 4,3, July 1982, 382-401.

N >= 3f+1

Impossibility Results

• No solution for three processes can cope with a single traitor.

17Lamport, Shostak, Pease. The Byzantine General’s Problem. ACM TOPLAS, 4,3, July 1982, 382-401.

General 1

General 2 General 3

General 1

General 2 General 3

attack attack attack retreat

retreat
retreat

18

1. State: …A
2. State: …A

3. State: …A
4. State: …

Quorums under Byzantine faults

Servers

Clients

write
 A

write A
X

w
rit

e
Awrite A

For liveness, the upper bound on the quorum size: N – f
Why?

19

1. State: …A
2. State: …A

3. State: …A
4. State: …

Quorums under Byzantine faults

Servers

Clients

write
 A

write A
X

w
rit

e
Awrite A

For correctness, what property must the intersection of any
two quorums have?
At least one honest node => intersection size at least f + 1

20

1. State: …A
2. State: …A

3. State: …A
4. State: …

Quorums under Byzantine faults

Servers

Clients

write
 A

write A
X

w
rit

e
Awrite A

At least one honest node in the intersection =>
(N-f) + (N-f) - N >= f+1 N >= 3f+1

Agreement in Faulty Systems

Possible characteristics of the underlying system:
1. Synchronous versus asynchronous systems.

• A system is synchronized if the process operation in
lock-step mode. Otherwise, it is asynchronous.

2. Communication delay is bounded or not.
3. Message delivery is ordered or not.
4. Message transmission is done through unicasting

or multicasting.

21

Agreement in Faulty Systems

Circumstances under which distributed agreement can be reached.
Note that most distributed systems assume that

1. processes behave asynchronously
2. messages are unicast
3. communication delays are unbounded (see red blocks)

22

Fault Tolerance

• Terminology & Background

• Sync. Byzantine Fault Tolerance (Lamport)

• Async. BFT (Liskov)

23

24

Synchronous Asynchronous

Fail-stop Byzantine

Synchronous, Byzantine world

Agreement in Faulty Systems
• Byzantine Agreement [Lamport, Shostak, Pease, 1982]
• Assumptions:

• Every message that is sent is delivered correctly
• The receiver knows who sent the message
• Message delivery time is bounded

25

Byzantine Agreement Algorithm
(oral messages) - Example
• 4 processes: N = 4

• At most 1 is faulty: f = 1

Lamport, Shostak, Pease. The Byzantine General’s Problem. ACM TOPLAS, 4,3, July 1982, 382-401. 26

Byzantine Agreement Algorithm
(oral messages) - 1
• Phase 1: Each process sends its value to the

other processes.
• Correct processes send the same (correct)

value to all.
• Faulty processes may send different values to

each if desired (or no message).

Lamport, Shostak, Pease. The Byzantine General’s Problem. ACM TOPLAS, 4,3, July 1982, 382-401. 27

Byzantine General Problem
Example - 1

• Phase 1:

28

P1 P2

P3 P4

1

11

Byzantine General Problem
Example - 2

• Phase 1:

29

P1 P2

P3 P4

2

2 2

Byzantine General Problem
Example - 3

• Phase 1:

30

P1 P2

P3 P4

4 4

4

Byzantine General Problem
Example - 4

• Phase 1:

31

P1 P2

P3 P4

yx

z

Byzantine Agreement Algorithm
(oral messages) - 2
• Phase 2: Each process uses the messages to

create a vector of responses – must be a default
value for missing messages.

Lamport, Shostak, Pease. The Byzantine General’s Problem. ACM TOPLAS, 4,3, July 1982, 382-401. 32

Byzantine General Problem
Example - 5

• Phase 2:

33

P1 P2 P3 P4
1 2 x 4

P1 P2

P3 P4

P1 P2 P3 P4
1 2 y 4

P1 P2 P3 P4
1 2 z 4

Byzantine Agreement Algorithm
(oral messages) - 3
• Phase 3: Each process sends its vector to all other

processes.

• Phase 4: Each process uses information received from
every other process to do majority voting

Lamport, Shostak, Pease. The Byzantine General’s Problem. ACM TOPLAS, 4,3, July 1982, 382-401. 34

Byzantine General Problem
Example - 6

• Phase 3,4:

35

P1 P2 P3 P4
1 2 y 4
a b c d
1 2 z 4

P1 P2

P3 P4

(e, f, g, h)

(a, b, c, d)

(h, i, j, k)

P1 P2 P3 P4
1 2 x 4
e f g h
1 2 z 4

P1 P2 P3 P4
1 2 x 4
1 2 y 4
h i j k

P2

P3

P4

P1

P3

P4

P1

P2

P3

(1, 2, ?, 4)
(1, 2, ?, 4)

(1, 2, ?, 4)

Fault Tolerance

• Terminology & Background

• Byzantine Fault Tolerance (Lamport)

• Async. BFT (Liskov)

37

38

Practical Byzantine Fault
Tolerance:Asynchronous, Byzantine

Synchronous Asynchronous

Fail-stop Byzantine

Why async?
Faulty network can

violate timing
assumptions

PBFT ideas

• PBFT, “Practical Byzantine Fault Tolerance”, M. Castro and
B. Liskov, SOSP 1999

• Replicate service across many nodes
• Assumption: only a small fraction of nodes are Byzantine
• Rely on a super-majority of votes to decide on correct

computation.
• Makes some weak synchrony (message delay) assumptions to

ensure liveness
• Why?
• Would violate FLP impossibility otherwise

• PBFT property: tolerates <=f failures
using a RSM with 3f+1 replicas

40

PBFT main ideas

• Static configuration (same 3f+1 nodes)
• Primary-Backup Replication + Quorums
• To deal with malicious primary

• Use a 3-phase protocol to agree on sequence number
• To deal with loss of agreement

• Use a bigger quorum (2f+1 out of 3f+1 nodes)
• New primary (new “view”)
• Need to authenticate communications (MACs)

41

Replica state

• A replica id i (between 0 and N-1)
• Replica 0, replica 1, …

• A view number v#, initially 0
• Primary is the replica with id

i = v# mod N
• A log of <op, seq#, status> entries

• Status = pre-prepared or prepared or committed

42

Normal Case

• Client sends request to Primary

• Primary sends pre-prepare message to all
Pre-prepare contains <v#,seq#,op>
• Records operation in log as pre-prepared

43

44

PBFT

Client

Primary

Replica 2

Replica 3

Replica 4

Request Pre-Prepare Prepare Commit Reply

Normal Case

• Replicas check the pre-prepare message
• If pre-prepare is ok:

• Record operation in log as pre-prepared
• Send prepare messages to all
• Prepare contains <i,v#,seq#,op>

• All to all communication

45

46

PBFT

Client

Primary

Replica 2

Replica 3

Replica 4

Request Pre-Prepare Prepare Commit Reply

Normal Case:

• Replicas wait for 2f+1 matching prepares
• Record operation in log as prepared
• Send commit message to all
• Commit contains <i,v#,seq#,op>

• What does this stage achieve:
• All honest nodes that are prepared prepare the same

value
• At least f+1 honest nodes have sent prepare/pre-

prepare

47

48

PBFT

Client

Primary

Replica 2

Replica 3

Replica 4

Request Pre-Prepare Prepare Commit Reply

Normal Case:

• Replicas wait for 2f+1 matching commits
• Absent view-change, a node only needs f+1 matching

commits, but under the view change logic (not
discussed), 2f+1 ensures eventual convergence even if
operations were committed in different views.

• Record operation in log as committed
• Execute the operation
• Send result to the client

49

50

PBFT

Client

Primary

Replica 2

Replica 3

Replica 4

Request Pre-Prepare Prepare Commit Reply

Normal Case

• Client waits for f+1 matching replies

• Ensures that at least one honest node is among these
nodes

Why f+1? What does this ensure?

51

Practical limitations of BFTs
• Expensive

56

• Protection is achieved only when <= f nodes fail
• How to know in advance: how many nodes will fail?

Figure from “The Saddest Moment” article by James Mickens.

Practical Application of BFTs
• While very expensive, still need to deal with

arbitrary failures
• “Small” safety-critical systems

SpaceX Dragon
requirement for ISS
docking procedure.

[Robert Rose, SpaceX,
Embedded Linux
Conference, 2013]

Boeing 777/ 787 flight control systems

[Zurawski, Richard. Industrial
Communication Technology, 2nd ed,
2015]

• “Large” (but low-throughput) distributed ledgers

57

