
24 – Security Protocols - II

15-440 Distributed Systems

Thursday, Nov 18st, 2021
(or.. the second last lecture!)

Logistical Updates

• P3 released – Due 11/23 (CHKP), 12/3 Final
• Automatic 2 late days (Please don’t ask for more)

• HW4 – Release 11/17, Due 11/29
• NO LATE DAYS. Need to release solutions.

• Thanksgiving next week! No class! Enjoy!!
• No instructor OH next week. No TA OH 11/25 – 11/26
• Piazza responses will be very slow in that period

• Midterm II – Thursday 12/2, 10:10am – 11:30am
• In class. Please come 10mins early early to set up.

2

Today's Lecture

• Effective secure channels

• Access control

• Privacy and Tor

3

The Great Divide

Symmetric Crypto:
(Private key)

Example: AES

Asymmetric Crypto:
(Public key)
Example: RSA

Requires a pre-
shared secret
between
communicating
parties?

Yes

Overall speed of
cryptographic
operations

Slow

No

Fast

4

One last “little detail”…

How do I get these keys in the first place??

Remember:
• Symmetric key primitives assumed Alice and Bob

had already shared a key.
• Asymmetric key primitives assumed Alice knew

Bob’s public key.

This may work with friends, but when was the last
time you saw Amazon.com walking down the street?

Recap: Symmetric Key
Distribution

• How does Andrew do this?

Andrew Uses Kerberos, which relies on a
Key Distribution Center (KDC) to establish
shared symmetric keys.

Key Distribution Center (KDC)

• Alice, Bob need shared symmetric key.
• KDC: server shares different secret key with each

registered user (many users)
• Alice, Bob know own symmetric keys, KA-KDC KB-KDC ,

for communicating with KDC.

KB-KDC

KX-KDC

KY-KDC

KZ-KDC

KP-KDC

KB-KDC

KA-KDC

KA-KDC

KP-KDC

KDC

Key Distribution Center (KDC)

Alice
knows

R1

Bob knows to
use R1 to

communicate
with Alice

Alice and Bob communicate: using R1 as
session key for shared symmetric encryption

Q: How does KDC allow Bob, Alice to determine shared
symmetric secret key to communicate with each other?

KDC
generates

R1

KB-KDC(A,R1)

KA-KDC(A,B)

KA-KDC(R1, KB-KDC(A,R1))

What are the potential downsides of this design?

How Useful is a KDC?

• Must always be online to support secure
communication

• KDC can expose our session keys to others!
• Centralized trust and point of failure.

In practice, the KDC model is mostly used within
single organizations (e.g. Kerberos) but not more
widely.

The Dreaded PKI

• Definition: Public Key Infrastructure (PKI)

1) A system in which “roots of trust” authoritatively
bind public keys to real-world identities

2) A significant stumbling block in deploying many
“next generation” secure Internet protocol or
applications.

Certification Authorities
• Certification authority (CA): binds public key to

particular entity, E.
• An entity E registers its public key with CA.

• E provides “proof of identity” to CA.
• CA creates certificate binding E to its public key.
• Certificate contains E’s public key AND the CA’s

signature of E’s public key.

11

Bob’s
public

key

Bob’s
identifying

information

CA
private

key

certificate = Bob’s
public key and

signature by CA

KB

K-1
CA

KB

CA generates
S = Sign(KB)

Certification Authorities

• When Alice wants Bob’s public key:
• Gets Bob’s certificate (Bob or elsewhere).
• Use CA’s public key to verify the signature within

Bob’s certificate, then accepts public key

12

Verify(S, KB)

CA
public

key KCA

KB If
signature
is valid,
use KB

What is the trust model here? Who is Alice trusting?

Certificate Contents

• info algorithm and key value itself (not shown)

13

n Cert owner
n Cert issuer
n Valid dates
n Fingerprint of

signature

Transport Layer Security (TLS)
aka Secure Socket Layer (SSL)

• Used for protocols like HTTPS

• Special TLS socket layer between application and
TCP (small changes to application).

• Handles confidentiality, integrity, and authentication.

• Uses “hybrid” cryptography.

14

Setup Channel with TLS
“Handshake”

15

Handshake Steps:

1) Clients and servers negotiate
exact cryptographic protocols

2) Client’s validate public key
certificate with CA public key.

3) Client encrypt secret random
value with servers key, and
send it as a challenge.

4) Server decrypts, proving it has
the corresponding private key.

5) This value is used to derive
symmetric session keys for
encryption & MACs.

How TLS Handles Data

16

1) Data arrives as a stream from the application via the TLS Socket

2) The data is segmented by TLS into chunks

3) A session key is used to encrypt and MAC each chunk to form a
TLS “record”, which includes a short header and data that is
encrypted, as well as a MAC.

4) Records form a byte stream that is fed to a TCP socket for
transmission.

Analysis

• PKI lets us take the trusted third party offline:
– If it’s down, we can still talk!
– But we trade-off ability for fast revocation

• If server’s key is compromised, we can’t revoke it
immediately...

• Usual trick:
– Certificate expires in, e.g., a year.
– Have an on-line revocation authority that distributes a revocation list. Kinda

clunky but mostly works, iff revocation is rare. Clients fetch list periodically.

• Better scaling: CA must only sign once... no matter how
many connections the server handles.

• If CA is compromised, attacker can trick clients into
thinking they’re the real server.

17

Important Lessons

• Symmetric (pre-shared key, fast) and asymmetric
(key pairs, slow) primitives provide:

• Confidentiality
• Integrity
• Authentication

• “Hybrid Encryption” leverages strengths of both.
• Great complexity exists in securely acquiring keys.
• Crypto is hard to get right, so use tools from others,

don’t design your own (e.g. TLS).

18

Forward secrecy

• In KDC design, if key Kserver-KDC is compromised a
year later,
–from the traffic log, attacker can extract session key

(encrypted with auth server keys).
–attacker can decode all traffic retroactively.

• In SSL, if CA key is compromised a year later,
–Only new traffic can be compromised. Cool…

• But in SSL, if server’s key is compromised...
–Old logged traffic can still be compromised...

19

Diffie-Hellman Key Exchange

• Different model of the world: How to generate keys
between two people, securely, no trusted party, even if
someone is listening in.

20

Illustrative Example
image from wikipedia
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange

Diffie-Hellman Key Exchange

• Different model of the world: How to generate keys
between two people, securely, no trusted party, even if
someone is listening in.

• This is cool. But: Vulnerable to man-in-the-middle attack.
Attacker pair-wise negotiates keys with each of A and B
and decrypts traffic in the middle. No authentication...

21

image from wikipedia

Authentication?

• But we already have protocols that give us authentication!
– They just happen to be vulnerable to disclosure if long-lasting keys

are compromised later...

• Hybrid solution:
– Use diffie-hellman key exchange with the protocols we’ve discussed

so far.
– Auth protocols prevent M-it-M attack if keys aren’t yet compromised.
– D-H means that an attacker can’t recover the real session key from a

traffic log, even if they can decrypt that log.
– Client and server discard the D-H parameters and session key after

use, so can’t be recovered later.

• This is called “perfect forward secrecy”. Nice property.

22

One more note…

• public key infrastructures (PKI)s are great, but
have some challenges…
–We discussed how your browser trusts many, many

different CAs.
–If any one of those is compromised, an attacker can

convince your browser to trust their key for a website...
like your bank.

–Often require payment, etc. (2018: LetsEncrypt)

• Alternative: the “ssh” model, which we call “trust
on first use” (TOFU). Sometimes called “prayer.”

23

Today's Lecture

• Effective secure channels

• Access control

• Privacy and Tor

24

Access Control

• Once secure communication between a client and
server has been established, we now have to
worry about access control – when the client
issues a request, how do we know that the client
has authorization?

25

26

The Access Control Matrix (ACM)

A model of protection systems
• Describes who (subject) can do what (rights) to

what/whom (object/subject)
• Example

• An instructor can assign and grade homework and
exams

• A TA can grade homework
• A Student can evaluate the instructor and TA

26

An Access Control Matrix

• Allowed Operations (Rights): r,x,w

27

File1 File2 File3
Ann rx r rwx
Bob rwx r --
Charlie rx rw w

ACMs and ACLs; Capabilities

• Real systems have to be fast and not use
excessive space

28

What’s Wrong with an ACM?

• If we have 1k ‘users’ and 100k ‘files’ and a user
should only read/write his or her own files
• The ACM will have 100k columns and 1k rows
• Most of the 100M elements are either empty or identical

• Good for theoretical study but bad for
implementation
• Remove the empty elements?

2929

Two ways to cut a table (ACM)

• Order by columns (ACL) or rows (Capability
Lists)?

30

ACLs

Capability

File1 File2 File3
Ann rx r rwx
Bob rwx r --
Charlie rx rw w

Access Control Lists

• An ACL stores (non-empty elements of) each column with its
object

• Columns of access control matrix

• ACLs:
• file1: { (Andy, rx) (Betty, rwx) (Charlie, rx) }
• file2: { (Andy, r) (Betty, r) (Charlie, rw) }
• file3: { (Andy, rw) (Charlie, w) }

3131

File1 File2 File3
Andy rx r rwx
Betty rwx r --
Charlie rx rw w

Capability Lists

• Rows of access control matrix

• C-Lists:
• Andy: { (file1, rx) (file2, r) (file3, rw) }
• Betty: { (file1, rwx) (file2, r) }
• Charlie: { (file1, rx) (file2, rw) (file3, w) }

3232

File1 File2 File3
Andy rx r rwx
Betty rwx r --
Charlie rx rw w

ACLs vs. Capabilities

• They are equivalent:
1. Given a subject, what objects can it access, and how?
2. Given an object, what subjects can access it, and how?
• ACLs answer second easily; C-Lists, answer the first

easily.

• The second question in the past was most used;
thus ACL-based systems are more common

• But today some operations need to answer the first
question

35

Today's Lecture

• Effective secure channels

• Access control

• Privacy and Tor

• Encryption used across the networking stack

36

Randomized Routing

• Hide message source by routing it randomly
• Popular technique: Crowds, Freenet, Onion routing

• Routers don’t know for sure if the apparent source
of a message is the true sender or another router

37

Onion Routing

• Sender chooses a random sequence of routers
• Some routers are honest, some controlled by attacker
• Sender controls the length of the path

38

R R4
R1

R2

R

RR3

Bob

R

R

R
Alice

How does Tor work?

39

How does Tor work?

40

Tor Circuit Setup (1)

• Client proxy establish a symmetric session key
and circuit with Onion Router #1

41

Tor Circuit Setup (2)

• Client proxy extends the circuit by establishing
a symmetric session key with Onion Router #2
• Tunnel through Onion Router #1

42

Tor Circuit Setup (3)

• Client proxy extends the circuit by establishing a
symmetric session key with Onion Router #3
• Tunnel through Onion Routers #1 and #2

43

Overall Route Establishment

44

R4
R1

R2 R3 BobAlice

{R2,k1}pk(R1),{ }k1
{R3,k2}pk(R2),{ }k2

{R4,k3}pk(R3),{ }k3
{B,k4}pk(R4),{ }k4

{M}pk(B)

Routing info for each link encrypted with router’s public key
Each router learns only the identity of the next router

Note: k1, k2, k3 etc are session keys, so when each router (R1, R2, .. Rn) use their private keys to
decrypt the packets, they can only then get the next hop (e.g. R2) and the session key (k1) to
decrypt the rest of the packet and send it along.

Tor

• Second-generation onion routing network
• http://tor.eff.org
• Developed by Roger Dingledine, Nick Mathewson

and Paul Syverson
• Specifically designed for low-latency anonymous

Internet communications
• Running since October 2003
• 100s nodes on four continents, 1000s of users
• “Easy-to-use” client proxy

• Freely available, can use it for anonymous
browsing

45

Today's Lecture

• Effective secure channels

• Access control

• Privacy and Tor

• Encryption used across the networking stack

46

Remember Network Layering?

47

Host Host

Application

Transport

Network

Link

User A User B

Modular approach to network functionality

Peer
Layer

Peer
Layer

IP Layering & Encryption Protocols

48

Bridge/Switch
or a WiFi AP

Router/GatewayHost Host

Application

Transport

Network

Link

Physical

SSL/TLS

IPSec

802.1x, …
WPA/WEP
For WiFi

So, what does using encrypted WiFi protect against?
…. How about SSL to google.com on Starbucks open WiFi?

Key Bits: Today's Lecture

• Effective secure channels
• Key Distribution Centers and Certificate Authorities
• Diffie-Hellman for key establishment in the “open”

• Access control
• Way to store what “subjects” can do to “objects”
• Access Control Matrix: ACLs and Capability lists

• Privacy and Tor
• Used for anonymity on the internet (Onion Routes)
• Uses ideas from encryption, networking, P2P

49

Thank You!

50

….. And we have One FINAL logistical update J

….. For taking Distributed Systems with Rashmi and me!

Logistical Update: Filling FCEs!

• Please fill out course evaluations (FCE)
• Helps us improve the course, we appreciate feedback
• Both positive and negative feedback help.
• We really appreciate it!

• We usually use the last 15mins of the last class
• However the FCE Smart Evals have not been sent
• Usually will be sent the last week of classes
• Lecture on Nov 30 on BFT will be taught by Rashmi

51

