
15-440/640 Carnegie Mellon University

Announcements
• No questions asked *two penalty free late days* for 

P2 final and P3 (CHKPT and final)
• You can use the late days for any reason: medical issues, 

stress, other projects, ...
• No need to email us the reason – we trust you!
• No additional late days will be granted (unless a major 

emergency)

• Submit P3 project partner form by tomorrow, Friday 
11/12

1



15-440/640 Carnegie Mellon University

15-440 Distributed Systems

Scaling Techniques

Scaling architectures



15-440/640 Carnegie Mellon University

How to scale?
Assume: we have reached the limit of optimizing

(protocol design, caching, ...)

Still need to scale as clients grow.
How to add more resources?
Two fundamental approaches:

3

Scale Up
(aka “vertical scaling”)

Scale Out
(aka “horizontal scaling”)

add resources to a single node in 
the distributed system

(e.g. more and faster CPUs/GPUs, more 
memory, more disks)

add more nodes to the distributed 
system

Scale Up or Scale Out?



15-440/640 Carnegie Mellon University

Scale Up or Scale Out?

4

Scale Up
(aka “vertical scaling”)

Scale Out
(aka “horizontal scaling”)

❏ no application changes
huge win in terms of cost and time
→ IBM mainframes still a viable business

❏ application has to conform to 
scale out design
may involve total rewrite of application

❏ typically more expensive
bigger profit margins for IBM

❏ hits limits sooner

❏ Scales better. Large Internet-
based companies (e.g., Google, 
Facebook, Microsoft, Amazon,...) 
have been champions of this 
approach

❏ no new failure modes, latency 
concerns between nodes, etc.

❏ more complex failure modes, 
latency concerns across nodes



15-440/640 Carnegie Mellon University

When to Scale Out?
• How do we decide when a new node should be created?

• What happens on overload?

Response times (i.e., latency) get worse
Often very nonlinear

7



15-440/640 Carnegie Mellon University

Latency Aspects of “Scale Up vs Scale Out”

Queueing time: a critical component of latency

8

What is the avg server load (= fraction of time server is busy?)

avg arrival rate
(jobs / second) avg 

service rate
(jobs / second)

avg arrival rate
load = 

avg service rate

serverqueue



15-440/640 Carnegie Mellon University

How Does Load Affect Latency?

9

avg arrival rate
(jobs / second) avg 

service rate
(jobs / second)

avg arrival rate
load = 

avg service rate

server load

av
g 

re
qu

es
t l

at
en

cy

10 0.5



15-440/640 Carnegie Mellon University

How Does Load Affect Latency?

10

avg arrival rate
(jobs / second) avg 

service rate
(jobs / second)

avg arrival rate
load = 

avg service rate

server load

av
g 

re
qu

es
t l

at
en

cy

10 0.5

Why latency
if load < 1?



15-440/640 Carnegie Mellon University

How Does Load Affect Latency?

11

avg 
service rate
(jobs / second)

avg arrival rate
load = 

avg service rate

server load

av
g 

re
qu

es
t l

at
en

cy

10 0.5

Why latency
if load < 1?



15-440/640 Carnegie Mellon University

How Does Load Affect Latency?

12

avg 
service rate
(jobs / second)

avg arrival rate
load = 

avg service rate

server load

av
g 

re
qu

es
t l

at
en

cy

10 0.5

Why latency
if load < 1?

jobs arrive 
randomly

jobs take 
variable times 
to process



15-440/640 Carnegie Mellon University

When to Scale Out?
• How do we decide when a new node should be created?
• What happens on overload?

Response times (i.e., latency) get worse
Often very nonlinear

server load

re
qu

es
t l

at
en

cy

10 0.5

You don’t want to 
be here!

13



15-440/640 Carnegie Mellon University

When to Scale Out?
• Each node incurs some cost

• CPU and memory overhead for VMs, processes and threads
• overprovisioning can be expensive
• billing can be excessive from cloud services like AWS

• Timing of scaling is crucial
• Scaling out too late ® long period of suboptimal response time

• Scaling out too soon ® greater overhead and underutilized 
resources

• How do we find the sweet spot?

14



15-440/640 Carnegie Mellon University

A good heuristic: queue length

• As a server queue builds up, use a threshold to trigger scale out
• When load drops (e.g. empty queues for nodes) shrink scale

• empty queues are the signal that shrinking might be in order

• brief transients can muddy the picture

• Hyteresis essential to avoid wasteful oscillations
• significant gap between upper and lower thresholds
• size of gap determines extent of hysteresis

• Caution: often queue length also insufficient
• Might have to resort to some degree of overprovisioning

When to Scale Out?

server load

re
qu

es
t 

la
te

nc
y

10 0.5
15



15-440/640 Carnegie Mellon University

• load balancing front end typically does redirection

• how to partition work across nodes?
• random assignment is one possibility
• static partitioning of workspace (e.g. low order bits of user id) is another
• content-based approaches also possible (one node handles A-F, another 

G-K, etc.)

How to Scale Out?

17



15-440/640 Carnegie Mellon University

Simple Case Study

18



15-440/640 Carnegie Mellon University

Simple Web Service

19

Let’s start with a simple web application
How might one scale it ?

This is just an illustrative example of how systems 
can be evolved to larger scales

Many other ways to do this as well



15-440/640 Carnegie Mellon University

Starting point
Simple website for sharing pictures
Used by a few of your friends
Simple implementation
• a few static pages
• a couple of CGI scripts for custom content
• .htaccess file for users/passwords
• simple Apache webserver
Running on small server
E.g., AWS EC2 “micro” instance, GCD “f1-micro” 
instance

20



15-440/640 Carnegie Mellon University

Small Website

21

Apache 
web server

Static files
CGI script
.htaccess

Local 
Disk



15-440/640 Carnegie Mellon University

Issues with simple website
What if you included photos …

of your kitten?

How scalable is your website?
• Content

• Easy to add user content, but limited storage
• Administrative

• Painful to add, maintain user accounts
• Load

• Limited to a fraction of a machine

22



15-440/640 Carnegie Mellon University

Scaling to the next level

Want to scale to 10s - 100s of users

Use a database to store user accounts, settings

2-tier structure:
• Front end: web server, scripts
• Back end: DB, storage server

23



15-440/640 Carnegie Mellon University

2-tier web site

24

Apache 
web server Static files

CGI script
cache

Local Disk

MySQL

AFS
(or any DFS 

that uses 
caching)

Content
DB files

DB improves administrative scaling
More storage for content scalability
Scaling up
• Frontend - more cores, RAM for running CGI
• Backend - more disk for storing content

Frontend Backend



15-440/640 Carnegie Mellon University

Growing bigger

Webserver likely to be bottleneck
• Dynamic content will consume cpu cycles

Need to scale out
• Introduce middle tier for application servers
• Scale out storage

25



15-440/640 Carnegie Mellon University

3-tier web site

26

Frontend/
Static 

Content 
Server

DFS

MySQL

App
ServerApp

ServerApp
Server

DFS
DFS

Great for scaling up features
Can add lots of application processing power, storage for 
content



15-440/640 Carnegie Mellon University

Scaling out the front end
Frontend servers likely to be bottleneck
• Connection termination
• TLS termination
• Open to probing from the Internet

27

Need multiple frontend webservers

How to direct traffic to the right ones?

Solution: load-balancing switch
• “Layer 7” – application layer in network stack
• HW that understands http, sessions,...
• Map Single IP maps to multiple servers



15-440/640 Carnegie Mellon University

Large web site

28

Frontend/
Static 

Content DFS

MySQL

App
ServerApp

ServerApp
Server

DFS
DFS

Now, can handle 1000’s of concurrent users

Frontend/
Static 

Content

Frontend/
Static 

Content
ServerLo

ad
 B

al
an

ce
r

What bottlenecks remain?



15-440/640 Carnegie Mellon University

What to do about DB?
Databases excel at ensuring correctness during concurrent 
operations, maintaining persistent state

Databases notoriously difficult to scale out
• Critical transactional operations work best on single 

beefy machine

However, not all data / operations need such stringent 
consistency semantics

Option 1: Save DB for critical things (e.g., money), something 
more scalable for rest

Option 2: Use DB as master store, but have some form of cache 
in front of it

29



15-440/640 Carnegie Mellon University

Alternative data stores

Key-value stores – provide simple interface for storing key-
value pairs

Memcache – RAM-only storage layer, used as a cache for 
DB or disk-based KV store

In-memory DBs – sacrifice durability for performance

30



15-440/640 Carnegie Mellon University

Highly-scaled web service

31

Frontend/
Static 

Content

DFS

MySQL

App
ServerApp

ServerApp
Server

DFS
DFS

All components scaled out
Potential remaining bottlenecks :
• Load balancer limited by ingress link

Frontend/
Static 

Content
Frontend/

Static 
Content

Lo
ad

 B
al

an
ce

r

Memcache
Memcache

Memcache



15-440/640 Carnegie Mellon University

Georeplication
• Deploy to multiple sites around the globe
• Each site is a large-scale web service
• How do we direct users to the right site?

• DNS tricks – mysite.com resolves to different IP addresses 
depending on where you are

• Can be randomized to help with load balancing

Introduces more challenges: Data consistency across sites
• Can get close to one-copy semantics at a single site
• How long does it take to propagate changes globally?
• What if users move?

Can we go bigger?

32



15-440/640 Carnegie Mellon University

Monolithic Architecture

33

Fast static 
content 
server
Fast static 

content 
server
Frontend/

Static 
Content

App Server Components
Login

Personalization
Renderer
Ads
Suggestions
Encoders

App Servers 

Potential limitations of this architecture?

.WAR too big for IDE?

Change tech of a component?

Async release of updates?

Failure Isolation?

Monolithic application
100 engineers
Release / month
Horizontal scale out

DFS

MySQL

DFS
DFS

Memcache
Memcache

Memcache



15-440/640 Carnegie Mellon University

Micro-Service Architecture

34

Fast static 
content 
server
Fast static 

content 
server
Fast static 

content 
server

App Server Components
Login

Personification
Renderer
Ads
Suggestions
Encoders

“Micro services”

RPC API between components
10-20 engineers / component
Components release and scale independently

RPC

RPC

RPC
RPC

RPC

DFS

MySQL

DFS
DFS

Memcache
Memcache

Memcache



15-440/640 Carnegie Mellon University

Reliability? 
Lots of components → What happens to reliability?
• Failures more likely!

However, most components can be stateless
• Simply restart any that fail

Storage layer: Filesystem uses redundancy to protect against 
failures

DB: Replicated DB with “hot spare”; logging

35


