
15-440/640 Fall 2020 Carnegie Mellon University

15-440 Distributed Systems

Scaling Techniques

Virtualization
Lecture #19, Tuesday Nov 9th 2021

15-440/640 Fall 2020 Carnegie Mellon University

Announcements
• HW4: Released 11/17 Due 11/29, No Late Days

• Note, question on BFT will not be graded so you can technically
finish HW4 in a week (by 11/24) before thanksgiving starts!

• P3 (Tribbler): Released 11/14
• Checkpoint: 11/23, P3 Final (12/3). Team Matching survey @Piazza

• Thanksgiving: No class Tues (11/23) or Thurs (11/25)!
• Modified TA and instructor OHs that week, To be Announced

• Midterm-2 - In Class, During Class Time
• Thursday, December 2nd, 10:10 – 11:30
• Please try and arrive early, 10:00-10:05am, get settled.
• Topics: Focus on the 2nd half of class (links to 1st half also possible)

2

15-440/640 Fall 2020 Carnegie Mellon University

What is “Scalability”?
Ability to easily and rapidly grow the system

Many aspects:

1. load scalability (How easy to add more concurrent users?)
2. content scalability (How easy to add content? aka “data scalability”)
3. geographic scalability (Tolerance for high-latency WANs?)
4. functional scalability (How easy to add new capabilities?)
5. evolutionary scalability (How easy to add new hardware/software?)
6. administrative scalability (How hard to manage?)

3

15-440/640 Fall 2020 Carnegie Mellon University

Load Scalability

Need: ability to dynamically grow resources
• hard to do with real resources

→ purchase of new servers, storage, networks, etc.
→ growing/shrinking over small timeframes/quanta not feasible

• made possible by virtualization
→ primarily Virtual Machines (VMs), but extends to other resources as well
→ e.g “software-defined networking” virtualizes network components
→ e.g. “software-defined storage”virtualizes storage components

4

Characteristic of good design for distributed systems
• small marginal load due to each additional client
• maximum # of clients with fixed # servers

15-440/640 Fall 2020 Carnegie Mellon University

Virtual Machine
Virtual machine = perfect software abstraction of

OS-visible hardware

Starting Point: Physical Machine

Figure adapted from: Eyal DeLara

• Physical Hardware
• Processors, memory, I/O devices,…

• Software
• Single active OS instance
• OS controls hardware

15-440/640 Fall 2020 Carnegie Mellon University

Virtual Machine
Virtual machine = perfect software abstraction of

OS-visible hardware

Figure adapted from: Eyal DeLara

• Software Abstraction
• Behaves just like hardware
• Allows multiple OSes

Virtual machines on a physical machine

15-440/640 Fall 2020 Carnegie Mellon University

Virtual Machines
• A virtual machine monitor (VMM) aka “hypervisor”

implements the VM abstraction
• software layer between OS and hardware
• functionally invisible to OS and apps
• able to multiplex hardware among multiple VMs

VM
Monitor

Application

Guest OS

Host hardware

virtual machine (VM)

15-440/640 Fall 2020 Carnegie Mellon University

Reasons for Virtualization
Virtualization can transform CAPEX into OPEX
• CAPEX → “capital expenses”
• OPEX → “operational expenses”

→ smaller incremental investments, different accounting rules
→ great boon for startups and small mature companies

• Cloud computing/storage:
• cloud owner (e.g. Amazon) incurs CAPEX
• cloud users (e.g. startup) incurs only OPEX

→ cloud owner makes a profit from OPEX pricing
• Flexible allocation of resources in cloud → “elasticity”

• “EC2” in “Amazon EC2” stands for “elastic cloud computing”

8

15-440/640 Fall 2020 Carnegie Mellon University

Reasons for Virtualization

9

“Sandboxing”: fully
control any resource
access and possible
actions of tenant

Support multiple
operating systems
on a single hardware
platform

Monitor and limit resource
usage (e.g., CPU) ,
Contain failures locally

CAPEX→ OPEX;
Elasticity: Adapt to changing
resource requirements

Improve
Resource
Utilization

Resource
& Failure
Isolation

Security
Isolation

Mixed-
OSEnviron

ment

15-440/640 Fall 2020 Carnegie Mellon University

Roots of VM Technology

10

Roots of today’s VMs reach back to 1960s
M44/44X (IBM), CTSS (MIT), {CP-40, CP-67, CP/CMS} (IBM) VM/370 (IBM product, 1972)

What was the driving force?
• Hardware very expensive (mainframes) → few machines
• Explosion of effort in low-level system software
• Pain point: need real hardware for testing

→ “nearly identical” not good enough

Hardware virtualization wins big
• enhances productivity of system software development
• new software runs concurrently with older versions
• Multiple developers can share a single physical machine

15-440/640 Fall 2020 Carnegie Mellon University

The Strange History of VMs

11

mid-1960s to early 1970s birth and emergence

early 1970s to late 1970s extensive commercial use (VM/CMS)

late 1970s to early 1980s emergence of personal computers (IBM PC)

late 1980s to late 1990s “demise” of VMs

late 1990s rebirth of VMs (VMware)

early 2000s resurgence of research interest in VMs

late 2000s to present explosion of commercial interest

(cloud computing)

15-440/640 Fall 2020 Carnegie Mellon University

Why is HW Virtualization special?

Extensive,
unconstrained

innovation
(e.g. cloud computing)

HW
interface

Legacy World

Narrow & stable waistline critical
• narrow ® freer innovation
• narrow ® vendor neutrality
• stable ® longevity / ubiquity

Software too malleable and too wide!

Wide interfaces ® brittle abstractions
• Hard to deploy, hard to sustain, hard to

scale
• E.g., software interface: processes

15-440/640 Fall 2020 Carnegie Mellon University

Virtual Machine Monitor
• A virtual machine monitor (VMM) aka “hypervisor”

implements the VM abstraction
• software layer between OS and hardware
• functionally invisible to OS and apps
• able to multiplex hardware among multiple VMs

VM
Monitor

Application

Guest OS

Host layer

virtual machine (VM)

15

15-440/640 Fall 2020 Carnegie Mellon University

Virtual Machine Monitor
● Classic Definition (Popek and Goldberg ’74)

A virtual machine is … an efficient, isolated duplicate of the real
machine.
… the VMM provides an environment for programs which is
essentially identical with the original machine;
second, programs run in this environment show at worst only
minor decreases in speed;
and last, the VMM is in complete control of system resources.

16

15-440/640 Fall 2020 Carnegie Mellon University

Virtual Machine Monitor
Desired properties for VMM (aka “hypervisor”)

• Fidelity: Programs running in the virtualized
environment run identically to running natively.

• Performance: A statistically dominant subset of the
instructions must be executed directly on the CPU.

• Safety and isolation: The VMM must completely control
access to system resources.

17

15-440/640 Fall 2020 Carnegie Mellon University

Types of System Virtualization
• Type 1: Native/Bare metal

• Higher performance
• E.g., VMWare ESX, KVM, Xen, Hyper-V

• Type 2: Hosted
• Easier to install and use, cheaper
• Leverage host’s device drivers
• Aka “client hypervisors”
• E.g., VMware Workstation, Parallels

• Guest OS’es unaware of the type of hypervisor

Picture from: https://itechthoughts.wordpress.com/tag/full-virtualization/ 18

15-440/640 Fall 2020 Carnegie Mellon University

Properties of VMs
● Isolation

○ Fault isolation, performance isolation, software isolation

● Encapsulation and portability
○ Cleanly capture all VM state

○ Enables VM snapshots, clones
○ Independent of physical hardware
○ Enables migration of live, running VMs

● Interposition
○ Transformations on instructions, memory, I/O
○ Enables encryption, compression, …

Adapted from: Eyal DeLara

Improved
Resource
Utilization

Resource &
Failure
Isolation

Security
Isolation

Mixed-OS
Environment

19

15-440/640 Fall 2020 Carnegie Mellon University

CPU Virtualization

● Privileged instructions (e.g., IO requests, Update
CPU state, Manipulate page table)

● Non-privileged instructions (e.g., Load from mem)

Privileged
instructions

Non-
Privileged

instructions

20

15-440/640 Fall 2020 Carnegie Mellon University

CPU Virtualization

OS (even without any virtualization) also needs to handle
these differently: kernel mode vs user mode

● Privileged instructions from user mode:
“Trap to OS” and executed from kernel mode

● Non-privileged instructions: Run directly from user mode

21

Privileged
instructions

Non-
Privileged

instructions

15-440/640 Fall 2020 Carnegie Mellon University

CPU Virtualization

For virtualization:

● Privileged instructions from user mode:
“Trap to VMM”

● Non-privileged instructions: Run directly on native CPU

22

Privileged
instructions

Non-
Privileged

instructions

15-440/640 Fall 2020 Carnegie Mellon University

CPU Virtualization

23

15-440/640 Fall 2020 Carnegie Mellon University

CPU Virtualization

More complex in reality (no clear separation)
→ Processor support Intel VT-x, AMD-V

This is called Trap and Emulate
→ Full Control for VMM

24

Privileged
instructions

Non-
Privileged

instructions

15-440/640 Fall 2020 Carnegie Mellon University

System Call Example

25Adapted from: JP Singh @ Princeton

§ Run guest operating system deprivileged

§ All privileged instructions trap into VMM

§ VMM emulates instructions against virtual state
e.g. disable virtual interrupts, not physical interrupts

§ Resume direct execution from next guest instruction

15-440/640 Fall 2020 Carnegie Mellon University

Memory Virtualization
● OS assumes that it has full control over memory

○ Management: Assumes it owns it all
○ Mapping: Assumes it can map any Virtual→ Physical

Adapted from: Alex Snoeren

Native
machine

26

15-440/640 Fall 2020 Carnegie Mellon University

Memory Virtualization
● OS assumes that it has full control over memory

○ Management: Assumes it owns it all
○ Mapping: Assumes it can map any Virtual→ Physical

● However, VMM partitions memory among VMs
○ VMM needs to assign hardware pages to VMs
○ VMM needs to control mapping for isolation

■ Cannot allow OS to map any Virtual ⇒ hardware page

Adapted from: Alex Snoeren
27

15-440/640 Fall 2020 Carnegie Mellon University

Virtualized Memory:
Three Levels of Abstraction

28

15-440/640 Fall 2020 Carnegie Mellon University

Virtualized Memory:
Three Levels of Abstraction

○ Logical: process address space in a VM
○ Physical: abstraction of hardware memory. Managed by guest OS
○ Machine: actual hardware memory (e.g. 2GB of DRAM). Managed by

VMM

29

15-440/640 Fall 2020 Carnegie Mellon University

I/O Virtualization
● Direct access: VMs can directly access devices

○ Requires H/W support (e.g., DMA passthrough, SR-IOV)
● Shared access: VMM provides an emulated device and routes I/O

data to and from the device and VMs

● VMM provides “virtual disks”
○ Type 1 VMM – store guest root disks and

config information within file system
provided by VMM as a disk image

○ Type 2 VMM – store the same info as

files in the host OS’ file system

15-440/640 Fall 2020 Carnegie Mellon University

Live migration
● Running guest OS can be moved between systems,

without interrupting user access to the guest or its apps
● Supported by type 1 and type 2 hypervisors
● Very useful for resource management, no downtime for

upgrades/maintenance, etc.

31

15-440/640 Fall 2020 Carnegie Mellon University

Live migration: How does it work?

When cycle of steps 4 and 5 become very short, source VMM
freezes guest, sends VCPU’s final state, sends final dirty pages,
and tells target to start running the guest

32

15-440/640 Fall 2020 Carnegie Mellon University

Topics Today

Motivation
System Virtualization (VMs)
Container Virtualization

Motivation for Containers

Implementation in Linux
Practical Implications

15-440/640 Fall 2020 Carnegie Mellon University

Motivation for Containers

34

Architecture of web applications is changing
Classical architecture

Potential limitations of this architecture?

Monolithic application
100 engineers
Release / month
Horizontal scale out

Components
Login

Personification
Renderer
Ads
Suggestions
Encoders

.WAR too big for IDE?

Change tech of a component?

Async release of updates?

Failure Isolation?

15-440/640 Fall 2020 Carnegie Mellon University

Motivation for Containers

35

Changing architecture of web applications
New architecture: components → “micro services”

Potential limitations of this new architecture?

Per-component overhead?

API/Communication latency?

How to define services?

Define API between components
10-20 engineers / component
Components release and scale
independently

Components
Login

Personification
Renderer
Ads
Suggestions
Encoders

RPC

RPC

RPC RPC

RPC

15-440/640 Fall 2020 Carnegie Mellon University

Prominent Example: Netflix

36

Migration to micro services: 2008-2016
Hundreds of services, complex dependencies

15-440/640 Fall 2020 Carnegie Mellon University

Why Container Virtualization?
Overhead associated with deploying on VMs

• I/O overhead
• OS-startup overhead per VM
• Memory/Disk overhead (duplicate data)

Overhead becomes dominant at scale: thousands of VMs / server

New idea:
• Multiple isolated instances of programs
• Running in user-space (shared kernel)
• Instances see only resources (files, devices) assigned to their container

Other names: OS-level virtualization, partitions, jails (FreeBSD jail, chroot jail)

Perception: VM have too much overhead!

15-440/640 Fall 2020 Carnegie Mellon University

Requirements on Containers
• Isolation and encapsulation

• Fault and performance isolation
• Encapsulation of environment, libraries, etc.

• Low overhead
• Fast instantiation / startup
• Small per-operation overhead (I/O, ..)

• Reduced Portability

• Interposition (no hypervisor)

Improved
Resource
Utilization

Resource & Failure
Isolation

Security
Isolation

Mixed-OS
Environment

15-440/640 Fall 2020 Carnegie Mellon University

Implementation
Key problems:

• Isolating which resources containers see
• Isolating resource usage
• Efficient per-container filesystems

15-440/640 Fall 2020 Carnegie Mellon University

Resource View Isolation
Problem: containers should only see “their” resources, and are

the only users of their resource
(e.g., process IDs (PIDs), hostnames, users IDs (UIDs), interprocess

communication (IPC))

Solution: each process is assigned a “namespace”
■ Syscalls only show resources within own namespace
■ Subprocesses inherit namespace

Current implementation: namespace implementation per
resource type (PIDs, UIDs, networks, IPC), in Linux since
2006

Practical implication:
■ Containers feel like VMs, can get root
■ Security relies on kernel, containers make direct syscalls

15-440/640 Fall 2020 Carnegie Mellon University

Resource Usage Isolation
Problem: meter resource usage and enforce hard limits per

container
(e.g., limit memory usage, priorities for CPU and I/O usage)

Solution: usage counters for groups of processes (cgroups)
■ Compressible resources (CPU, I/O bandwidth): rate limiting
■ Non-compressible resources (Memory/disk space): require

terminating containers (e,g., OOM killer per cgroup)

Current implementation: cgroups/kernfs, in Linux since
2013/2014

Practical implication:
■ Efficiency: 1000s of containers on a single host
■ Small overhead per memory allocation, and in CPU scheduler

15-440/640 Fall 2020 Carnegie Mellon University

Filesystem Isolation
Problem: per-container filesystems without overhead of a

“virtual disk” for each container

Solution: layering of filesystems (copy on write):
■ Read-write (“upper”) layer that keeps per-container file changes
■ Read-only (“lower”) layer for original files

Current implementation: OverlayFS, in Linux since 2014
Practical implication:

■ Instant container startup
■ “Upper” layer is ephemeral

Upper: /index.html /photo/cat.jpg

Lower: /index.html

15-440/640 Fall 2020 Carnegie Mellon University

The Container Ecosystem
Docker (also: LXC, Google
lmctfy)

Libcontainer (written in GO)
• Automates using kernel features

(namespaces, cgroups, OverlayFS)

• Container-image configuration language

FROM golang

WORKDIR /go/src
COPY ./src .
RUN go-wrapper install monitor

CMD ./start.sh

15-440/640 Fall 2020 Carnegie Mellon University

Advantages of Containers

Fast boot times:
100s of milliseconds
(10s-100s of seconds for VMs)

High density:
1000s of containers per

machine
Very small I/O overhead
Require no CPU support

M
anco, Filipe, et al. "M

y VM
 is Lighter (and

Safer) than your Container." SO
SP 2017.

Felter, et al. An U
pdated Perform

ance
Com

parison of Virtual M
achines and Linux

Containers, IBM
 Report 2014.

15-440/640 Fall 2020 Carnegie Mellon University

Limitations of Containers
Implementation Complexity

• Much more complex (“wider”) interface for processes
• Need to configure namespace, cgroup, overlayfs (and more)

Less general than VMs
• Can only run the same Operation System (shared OS)

Harder to migrate than VMs
• State of containers is not fully encapsulated, state leaks into host

OS

• In practice: no container migration. Instead: containers are
ephemeral - just terminate old one and start new one

Large attack surface under adversarial behavior
• Containers typically have access to all syscalls

• Linux offers 400 syscalls (10 new syscalls / year)
• One approach: syscall filtering (very complicated)

15-440/640 Fall 2020 Carnegie Mellon University

Summary
VMs

Strengths: strong isolation guarantees, can run different OSs

VM migration practical

Weaknesses: OS startup, disk,memory, and hypervisor overhead

Containers
Strength: fast startup times, negligible I/O overheads, very high
density

Weaknesses: weak security isolation

In practice: techniques complement each other
Use VMs to isolate between different users, and containers to
isolate different applications/services of a single user

15-440/640 Fall 2020 Carnegie Mellon University 47

