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Roadmap

« Motivation
* How does PubSub fit In?
» Apache Kafka, and how 1t works
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Recall Spark and MapReduce?

Review...
What was Spark and MapReduce good for?

Usually good when you have...

v Batch workloads (no fine-grained updates to shared state)
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Recall Spark and MapReduce?

What if you wanted to combine multiple kinds & &
data-intensive systems like these? &

e.q., EREJINE Streaming Cassandra

Events MapReduce Table
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The Big-Data Ecosystem Table

Incomplete-but-useful list of big-data related projects packed into a JSON dataset.

¢ Github repository: https://github.com/zenkay/bigdata-ecosystem
e Raw JSON data: http://bigdata.andreamostosi.name/data.json
¢ Original page on my blog: http://blog.andreamostosi.name/big-data/

by Andrea Mostosi (http://blog.andreamostosi.name)

Frameworks

Apache Hadoop

Distributed Programming

AddThis Hydra

Akela

Amazon Lambda

Amazon SPICE

AMPcrowd

AMPLab G-OLA

AMPLab SIMR

Apache Crunch

Apache DataFu

framework for distributed processing. Integrates MapReduce (parallel processing), YARN (job scheduling)
and HDFS (distributed file system)

Hydra is a distributed data processing and storage system originally developed at AddThis. It ingests
streams of data (think log files) and builds trees that are aggregates, summaries, or transformations of the
data. These trees can be used by humans to explore (tiny queries), as part of a machine learning pipeline
(big queries), or to support live consoles on websites (lots of queries).

Mozilla’s utility library for Hadoop, HBase, Pig, etc.

a compute service that runs your code in response to events and automatically manages the compute
resources for you

Super-fast Parallel In-memory Calculation Engine
A RESTful web service that runs microtasks across multiple crowds

a novel mini-batch execution model that generalizes OLA to support general OLAP queries with arbitrarily
nested aggregates using efficient delta maintenance techniques

Apache Spark was developed thinking in Apache YARN. However, up to now, it has been relatively hard to
run Apache Spark on Hadoop MapReduce v1 clusters, i.e. clusters that do not have YARN installed.
Typically, users would have to get permission to install Spark/Scala on some subset of the machines, a
process that could be time consuming. SIMR allows anyone with access to a Hadoop MapReduce v1
cluster to run Spark out of the box. A user can run Spark directly on top of Hadoop MapReduce v1 without
any administrative rights, and without having Spark or Scala installed on any of the nodes.

is a simple Java API for tasks like joining and data aggregation that are tedious to implement on plain
MapReduce. The APIs are especially useful when processing data that does not fit naturally into relational
model, such as time series, serialized object formats like protocol buffers or Avro records, and HBase rows
and columns. For Scala users, there is the Scrunch API, which is built on top of the Java APIs and includes
a REPL (read-eval-print loop) for creating MapReduce pipelines.

DataFu provides a collection of Hadoop MapReduce jobs and functions in higher level languages based on
it to perform data analysis. It provides functions for common statistics tasks (e.g. quantiles, sampling),
PageRank, stream sessionization, and set and bag operations. DataFu also provides Hadoop jobs for

N

. Apache Hadoop

. Github

. Website

. Website

. Website

. Website

. Website

. SIMR on GitHub

. Website

. DataFu Apache Incubator
. LinkedIn DataFu

There are lots
of different
kinds of big
data systems
out there
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Today, popular web applications
are often built up of hundreds of
small, communicating components
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THE HIGH LEVEL IDEA:

Microservice Philosophy

. REET
APl

Maobile app

AP
GATEWAY

Application is a collection of
small, modular, replaceable,
Independently deployable

“services”. @

REST
AR
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EXAMPLE:

Mobile Shop

eShopOnContainers reference application
(Development environment architecture)

Client apps I I DDC|::=J=I‘ Host f Identity microservice (STS+users) \| I
| eShop mobile app I d‘"“ | - SO Server I
I Xamarin.Forms I 1 m - database I 52 I
C# | e e e e
xPlat. OS: | [ Catalog microservice "
I o ] g B | e I
Android I m_hi SQL Server Il" > N
I Windows I database ,;l c RabbitMQ I
I | (" Ordering microservice \ 7 I I I
eShop traditional Web app | : | > m
- ==t L <
I Gy | || cStorWebAeeMVC) ] | — il e (P |gg o |
| | atabase Q ek
| e & | | ASPNET Core MVC | { G[IP]L k J O G| — I
I S I } l';:gi_efl_m—_ﬂ_o—i—ir—fg:—_:::—_::::i A0 E M I
e — e N - Basket microservice i~ R —
| ATML | : S e
— N - > Service B
eShop SPA Web app I m tedis cache : Z S
| | & | —_—_—_—_—_—_—_—_—_—_—_—_—_—_—_—_—_—_—_—_—_—_—f e |
I l Marketing microservice = |
I I . E. Cl? MongoDB /| |
I u<: CosmosDB | I
- I I i SQL Server | 5
| TypeScript/Angular 2 | sttty |
I | I {' Locations microservice I / |
4. MongoDB/ |
I I : [l.,} E. e CosmosDB : I
r | e e e e e e e /

SOURCE:https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/ multi- Carnegie Mellon University
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Class Exercise

What types of N
microservices would
you expect Netflix to
run in production?
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Class Exercise

NETFLIX .

Amazon ELB

Services Netflix has:

. APl Gateway Service

. Titles Service (for Metadata)

. Ratings Service .

. Movies Service (for Data) e e Sy

. Accounts Service

. A/B Testing Service

. Service Failure Service

. Rescheduling Service

. Log Collection Service

. Service Status Visualization
Service

. Transaction Service

APl (Edge) Service
(instance 2; use-east-1 Zone

Maore Ribbon Client L
Ribbon (Movie Service) B

Zone Aware RoundRobin

Ribbon Client
(Maovie Service)

Ribbon Client
(Review Service) | B

Ribbon Client L
(Review Service) | B

F

3sh (custormn LB)
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https://www.youtube.com/watch?v=CZ3wIuvmHeM

Robots can be thought
of as distributed
systems of
communicating
components too!
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Robots are distributed systems!

2 Fisheye Cameras

Secure Wireless
Network Router

3.7-kilowatt-hour
lithium-ion battery
pack

30 degrees of
freedom(DOF) — 24 .
hydraulic actuators
& 6 electric motors

Six-Axis Force/
Torque Sensor

Multisense Head (3D Laser
Scanner & Stereo Camera)

Perception Computer (3
Intel Core i7 Processor)

a B Robotiq 3-Finger Adaptive
Robot Gripper

Software — Linux Operating
System with ROS (Robot
Operating System)

Inertial Measurement Unit
(IMU)

Strain Gauge Pressure Sensor
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Robots are distributed systems!

PERCEPTION NAVIGATION

LOCALIZATION TOP LEVEL
LIDAR Interface CONTROL

OBSTACLE
AVOIDANCE
RADAR Interface PATH PLANNING

POSE
ESTIMATION

GPS & IMU

WHEEL VEHICLE HEALTH STATUS

VELOCITY
DATA LOGGER

INTER PROCESS CONTROL

SENSOR INTERFACE
GLOBAL SERVICES

VEHICLE INTERFACE

STEERING
CONTROL
THROTTLE/
BRAKE CONTROL

WIRELESS E-
STOP
VISUALIZER GUI

USER INTERFACE

Robot
Operating
System
(ROS)
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HOW SHOULD THEY ALL COMMUNICATE?

RPCs?
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Two I1ssues with RPCs:

1. Synchronization (both components
need to be alive at the same time)

2. Tight coupling between components
(components need to know about
each other)
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RPC 1s too hands-on for managing
*all* of these components, and
their replicas!
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Publish-Subscribe

A way for the different parts of a system to communicate with
each other

 Publish: send messages regardless of who is listening
 Subscribe: receive messages regardless of who is sending
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Publish-Subscribe

A model in which we provide a framework to glue requestors
(producers) to workers (consumers), with much looser coupling.

On the producer side:
Requests are made as published messages on topics.

Workers monitor topics (subscribe) and then an idle worker can
announce that i1t has taken on some task, and later, finished It.
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THE HIGH LEVEL IDEA:

Publish-Subscribe

Basic idea:

A model in which we provide a framework to glue requestors
(producers) to workers (consumers), with much looser coupling.

[ } publish(category, msg)
producer \
[ producer } /

Publish-Subscribe
System
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Subscription Models

Events are classified into predefined
topics. Subscriptions can include any

number of these topics.

Events are structured in the form of
multiple attributes. Subscriptions
can define a range over any of
these attributes.
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A popular publish-subscribe framework:
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Franz Kafka
Bohemian novelist
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A popular publish-subscribe framework:

g katka.

Can be thought of as a distributed publish-subscribe messaging system.

» High Availability
» High Throughput
» Scalability

- Durability (message still received, even if queue is offline)
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Apache Kafka

“The main value Kafka provides to data pipelines is its ability to
serve as a very large, reliable buffer between various stages in

the pipeline, effectively decoupling producers and consumers of
data within the pipeline.

This decoupling, combined with reliability, security, and
efficiency, makes Kafka a good fit for most data pipelines.”
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Activate Your Web Pages

JavaScmpt

The Definitive Guide

O'RElLLY. Dxavid Flanagan
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Apache Kafka

“The main value Kafka provides to data pipelines is its ability to
serve as a very large, reliable buffer between various stages in

the pipeline, effectively decoupling producers and consumers of
data within the pipeline.

This decoupling, combined with reliability, security, and
efficiency, makes Kafka a good fit for most data pipelines.”
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Kafka Design Goals

suilt at Linked m®

“A unified platform for handling all the real-time data feeds a large company
might have.”

« High throughputto support high volume event feeds.
« Support real-time processing of these feeds to create new, derived feeds.
« Support large data backlogsto handle periodic ingestion from offline systems.

« Support low-latency delivery to handle more traditional messaging use cases.
« Guarantee fault-tolerance in the presence of machine failures.

Carnegie Mellon University
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Kafka at LinkedIn (2014)

What type of data is being transported through Kafka?

e Metrics: operational telemetry data.
e Tracking: everything a LinkedIn user does.
e Queuing: between Linkedln apps, e.g., for sending emails.

Used to transport data from LinkedIn’s apps to Hadoop and back

- In total ~200 billion events/day via Kafka
« Tens of thousands of data producers, thousands of consumers
« 7 million events/sec (write), 35 million events/sec (read)

Multiple clusters across multiple data centers

Carnegie Mellon University
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Core concepts in Kafka

 Records have a key (optional), value, and timestamp
* Topic is a stream of records (e.g., orders)

e Producer API| to produce streams of records
e Consumer APl to consume streams of records

e Broker Kafka server that runs in a Kafka Cluster.
Brokers form a cluster.

Carnegie Mellon University
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Kaftka at a glance

{ producer m { producer m { producer m

N v

Kafka cluster

LN\

e Producers write data to brokers

» Consumers read data from brokers /
» All of this Is distributed

- Data is stored in topics

» Topics are split into partitions | Partition 0 _
which are replicated __ Partition 1
i Partition 2
i Partition 3

Carnegie Mellon University
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Core concepts in Kafka

Kafka cluster

broker 1
p
producer broker 2 —>
"
broker 3
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Core concepts in Kafka

Kafka cluster

[ Partition 0 ]

[ Partition 2 ]

[ Partition O ]

producer

[ Partition 1

[ Partition 1 ]

[ Partition 2 ]
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Topics

Let's first dive Into the core abstraction Kafka provides for a stream of
records — the topic.

A topic Is a category or feed name to which records are published
(think of it like a label)

A topic can have zero, one, or many consumers that subscribe to the
data written to It.

Carnegie Mellon University
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Partitions

A topic consists of a

configurable number Partiion
of partitions.
Partition
Partition: |
ordered + immutable Parior
sequence of messages that
Oild

is continually appended to

Anatomy of a Topic

11111
of1[2]|3|4(5(6]|7(8[9|q]q 10
oli1lz]3|4

10111,
0[1]2(3]4|5(6(7[8(9q|y|p

o

} \
6|78 |o, = — Writes
: /
Mew

key

key

value H—i}

2

value H—i){ key

3

key value
ellon University
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Partitions

Partitions exist to improve performance
* More #Partitions - Higher consumer parallelism (later)

Carnegie Mellon University
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Partition offsets

Offset: messages in the partitions are each assigned a unique (per partition)
and sequential id called the offset.
Consumers track their pointers via (offset, partition, topic) tuples

Fartition | 11111 1:
0 0 2 3«56 |7 |B|D ol1(2!
| _ 1
[ _’.
rantion 1o l1i2la|4|s5|e|7|8lo) - — Writes
- L
Partition: {11
5 Of1 (23 4 5|6|7([8(9 olil2
_ |
Carnegie Mellon University
Cld = Dew
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Partition offsets

producer

T LELEGLEIEEAE <

partition O

Consumers each have their own offset.

Producer writing to offset 13 of partition 0 while...
Consumer A is reading from offset 6.
Consumer B is reading from offset 9. Carnegie Mellon University
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Replicas of a partition

A partition might be assigned to multiple brokers, which will result in the partition
being replicated. This provides redundancy of messages in the partition, such that
another broker can take over leadership if there is a broRer failure.

Replicas: “backups” of a partition

« They exist solely to prevent data loss.
« They do NOT help to increase producer or consumer parallelism!

 Kafka tolerates (numReplicas - 1) dead brokers before losing data
* LinkedIn: numReplicas == 2 ... 1 broker can die

Carnegie Mellon University
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Topics vs Partitions vs Replicas

Label for the data

!

Increases consumer == Copy of partition,
parallelism fault-tolerance

Carnegie Mellon University
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Topics vs Partitions vs Replicas Follower in blue

broker 0 broker 1 broker 2 broker 3 broker 4
[ Partition O} { Partition O}
A topic
configured to
use 4 partitions The ID of a replica is the same as For each partition, Kafka will elect
the ID of the broker that hosts it. one broker as the “leader”
Partition O If, say, the replication factor of a topic is set to 3,
: — < then Kafka will create 3 identical replicas of each
. Partition 1 ) partition and place those on available brokers in the
r o ) Each partition |
> . - Carnegie Mellon University
Partition 3
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Propagating writes across replicas

4 N

Step 1) write client Leader in red
recordto ~ | producer Follower in blue
leadet
Kafka broker 0 ' Kafka broker 1 Kafka broker 2
Partition O —_— | Partition O Partition O
: . . Step2) f - . Step2) : » :
\ Partition 1 J replicaté . Partition 1 ) repli Caté . Partition 1 J
Partition 2 record Partition 2 record Partition 2
Partition 3 Partition 3 Partition 3
Partition 4 Partition 4 Partition 4
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Dealing with Finite Storage

Kafka prunes the “head” based on
Vee or o Kafka broker
' ' producer Al

] / producer A2
! N | coe
| > producer An

older messages newer messages

producers always append to “tail”
(e.g., think appending to file)
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Kafka Producers

» Producers send records to topics

« Producer picks which partition to send record to per topic
- Can be done round-robin

 Can be based on priority

» Typically based on key of record

Carnegie Mellon University
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Kafka Producers

Producers write at their own cadence so order of records cannot be
guaranteed across partitions.

Producer configures consistency level (ack=0, ack=all, ack=1).

Producers pick the partition such that records/messages go to a given
same partition based on the data (usually key).
« Example: have all the events of a certain EmployeelD go to the same
partition.
* If order within a partition is not needed, a round-robin partition
strategy can be used so records are evenly distributed across
partitions.

Carnegie Mellon University
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Ways to send messages

We send a message to the server and don't really care If it arrives successfully or
not. Some messages will get lost using this method.

Synchronous send

We send a message, the send() method returns a Future object, and we use
get() to wait on the future and see if the send() was successful or not.

We call the send() method with a callback function, which gets triggered when
It recelves a response from the Kafka broker.

Carnegie Mellon University
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Putting Asynchrony into Context

Suppose the network roundtrip time between our application and the Kafka
cluster is 10ms.

If we walit for a reply after sending each message, sending 100 messages will
take ~1 second. (Synchronous)

On the other hand, If we just send all our messages and not wait for any
replies, then sending 100 messages will barely take any time at all.

On the other hand, we may need to know when we failed to send a message
completely so we can throw an exception or log an error. For this purpose,
Kafka supports producer callbacks.
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Parameters affecting Producer Performance

Two aspects worth mentioning because they significantly influence Kafka
performance:

1. Message ACKIng
2. Message Batching
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1) Message ACKing

In Kafka, a message is considered committed when any required ISR (in-sync

replicas) for that partition have applied it to the data los.
« Message ACKIng is about conveying this “Yes, committed!” information back

to the producer from the data brokers.
« Exact meaning of any required depends on chosen semantics

Carnegie Mellon University
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1) Message ACKing

better
latency

better
durability

. Typical values of request.required.acks

. @: producer never waits for an ack from the broker.
. Gives the lowest latency but the weakest durability guarantees.
. 1: producer gets an ack after the leader replica has received the data.

. Gives better durability as the we wait until the lead broker acks the request. Only msgs that
were written to the now-dead leader but not yet replicated will be lost.

. all: producer gets an ack after all ISR have received the data.

. QGives the best durability as Kafka guarantees that no data will be lost as long as at least
one ISR remains.
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2) Message Batching

- Batching improves throughput

. Tradeoff is data loss if client dies before pending messages have been sent.

. The original list of messages is partitioned (randomly if the default
partitioner is used) based on their destination partitions/topics, i.e. split into
smaller batches.

. Each post-split batch is sent to the respective leader broker/ISR (the
individual send()’s happen sequentially), and each is acked by its
respective leader broker according to request.required.acks.

|:|:|— send() =——> Current leader ISR (broker) for partition 4

p6  p6 send() =——> Current leader ISR (broker) for partition 6

[ ] ..and so on... Carnegie Mellon University
School of Computer Science




Kafka Consumers

Consumers pull from Kafka (there’s no push)
« Allows consumers to control their pace of consumption
 Allows to design downstream apps for average load instead of peak load

Consumers are responsible for tracking their read positions (aka “offsets”).

What does offset management allow you to do?

» Consumers can rewind in time (up to the point where Kafka prunes), e.g. to
replay older messages

« Consumers can decide to read a subset of partitions for a specific topic

 Run offline, periodically fetch batch updates

Carnegie Mellon University
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Kafka Consumers

Consumer Groups

 Allows multi-threaded/multi-machine consumption from Kafka topics

« Consumers “join” a group by using the same group id

- Kafka guarantees that a record is only ever read by one consumer in a group
> Each partition 1s consumed by exactly one consumer in the group
> Maximum parallelism: #consumers In group < #partitions

Kafka Cluster
Sserver 1— Server 2—

PO || P3 P1 || P2

PN PN
-

T 2K N NN

o i e “ i

C1 C2 C3 C4 Co C6

Consumer G rnup B Cal‘neg ie MellOIl UniverSity
School of Computer Science
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Rebalancing: how consumers meet brokers

—Server 1 —Server 2—

Kafka Cluster

-Consumer Group A-

J

Cbnsumer Group B

The assignment of brokers — via the partitions of a topic — to
consumers is quite important, and it is dynamic at run-time.
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Rebalancing: how consumers meet brokers

Kafka Cluster

Server 1 Server 2
PO || P3 P1 F’E—‘
s H‘x

. Why “dynamic at run-time”?

. Machines can die, be added, ...

. Consumer apps may die, be re-configured, added, ...

Carnegie Mellon University
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Rebalancing: how consumers meet brokers

- Rebalancing?

. Consumers in a group come into consensus on which consumer is
consuming which partitions = required for distributed consumption

- Divides broker partitions evenly across consumers, tries to reduce the
number of broker nodes each consumer has to connect to

- When does it happen? Each time:

. a consumer joins or leaves a consumer group, OR

- a broker joins or leaves, OR

. a topic “joins/leaves” via a filter, cf. createMessageStreamsByFilter()
. Examples:

. If a consumer or broker fails to heartbeat to ZK - rebalance!

.- createMessageStreams () registers consumers for a topic, which results
in a rebalance of the consumer-broker assignment.
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Other widely-used pubsub frameworks

W

Google Cloud
Pub/Sub

Google Cloud Pub/Sub

Amazon Simple Notification ceeo
Service 0o

§3 kaftka.

Apache Kafka

ROS (Robot Operating System)
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Recap

Publish-Subscribe (PubSub)
« “Glue” framework between disparate components in a distributed system

« Unlike RPCs, allows components to remain loosely-coupled

Apache Kafka (Developed at LinkedIn in 2011)

 Abstraction: “very large, reliable buffer” of topic-based data

» Producers: Write records (key-value pairs) into an append-only log

« Brokers form Kafka cluster, manage replicated partitions within each topic

« Consumers: Read records from partitions, using Consumer Groups for
parallelism
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