
Publish-Subscribe
15-440 Distributed Systems, Fall 2021

Adapted from slides by Heather Miller 1

The Spring ‘22 version of 15-440
needs TAs! If you’re interested,
please reach out to Prof. Satya
(satya@cs.cmu.edu).

A Q U I C K A N N O U N C E M E N T B E F O R E W E S T A R T …

2

mailto:satya@cs.cmu.edu

3

• Motivation
• How does PubSub fit in?
• Apache Kafka, and how it works

Roadmap

Recall Spark and MapReduce?

Review…
What was Spark and MapReduce good for?

Usually good when you have…

✓ Batch workloads (no fine-grained updates to shared state)

4

Recall Spark and MapReduce?

What if you wanted to combine multiple kinds
data-intensive systems like these?

e.g., Website
Events

Streaming
MapReduce

Cassandra
Table

There are lots
of different
kinds of big
data systems
out there

6

Today, popular web applications
are often built up of hundreds of
small, communicating components

B E Y O N D B I G - D A T A S Y S T E M S …

7

Microservice Philosophy
T H E H I G H L E V E L I D E A :

Application is a collection of
small, modular, replaceable,
independently deployable
“services”.

8

Mobile Shop

SOURCE:https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/multi-
container-microservice-net-applications/microservice-application-design

E X A M P L E :

9

Class Exercise

What types of
microservices would
you expect Netflix to
run in production?

10

Class Exercise

Services Netflix has:

● API Gateway Service
● Titles Service (for Metadata)
● Ratings Service
● Movies Service (for Data)
● Accounts Service
● A/B Testing Service
● Service Failure Service
● Rescheduling Service
● Log Collection Service
● Service Status Visualization

Service
● Transaction Service
● ...

11

https://www.youtube.com/watch?v=CZ3wIuvmHeM

Robots can be thought
of as distributed
systems of
communicating
components too!

B E Y O N D W E B A P P S …

12

Robots are distributed systems!

13

Robots are distributed systems!

14

Robot
Operating
System
(ROS)

RPCs?
H O W S H O U L D T H E Y A L L C O M M U N I C A T E ?

15

Two issues with RPCs:

16

H O W S H O U L D T H E Y A L L C O M M U N I C A T E ?

1. Synchronization (both components
need to be alive at the same time)

2. Tight coupling between components
(components need to know about
each other)

RPC is too hands-on for managing
all of these components, and
their replicas!

H O W S H O U L D T H E Y A L L C O M M U N I C A T E ?

17

Publish-Subscribe
E N T E R :

Gist:
A way for the different parts of a system to communicate with
each other

Each component (i.e. node) can:
• Publish: send messages regardless of who is listening
• Subscribe: receive messages regardless of who is sending

18

Publish-Subscribe
T H E H I G H L E V E L I D E A :

Basic idea:
A model in which we provide a framework to glue requestors
(producers) to workers (consumers), with much looser coupling.

On the producer side:
Requests are made as published messages on topics.

On the consumer side:
Workers monitor topics (subscribe) and then an idle worker can
announce that it has taken on some task, and later, finished it.

19

Publish-Subscribe
T H E H I G H L E V E L I D E A :

Basic idea:
A model in which we provide a framework to glue requestors
(producers) to workers (consumers), with much looser coupling.

producer

producer

consumer

consumer

Category 1
Category 2

Category 3

publish(category, msg) subscribe

msgPublish-Subscribe
System

20

Subscription Models

Topic-based:

Events are classified into predefined
topics. Subscriptions can include any
number of these topics.

E.g.,
• International Film Festivals in Pittsburgh
• Weather in Pittsburgh

Content-based:

Events are structured in the form of
multiple attributes. Subscriptions
can define a range over any of
these attributes.

E.g.,
• Temperature between 25F and 40F

21

A popular publish-subscribe framework:

Franz Kafka
Bohemian novelist

22

A popular publish-subscribe framework:

• High Availability

• High Throughput

• Scalability

• Durability (message still received, even if queue is offline)

Features:

Can be thought of as a distributed publish-subscribe messaging system.

23

Apache Kafka
“The main value Kafka provides to data pipelines is its ability to
serve as a very large, reliable buffer between various stages in
the pipeline, effectively decoupling producers and consumers of
data within the pipeline.

This decoupling, combined with reliability, security, and
efficiency, makes Kafka a good fit for most data pipelines.”

24

25

Apache Kafka
“The main value Kafka provides to data pipelines is its ability to
serve as a very large, reliable buffer between various stages in
the pipeline, effectively decoupling producers and consumers of
data within the pipeline.

This decoupling, combined with reliability, security, and
efficiency, makes Kafka a good fit for most data pipelines.”

26

Kafka Design Goals

“A unified platform for handling all the real-time data feeds a large company
might have.”

Motivation:

Built at

Must haves:
• High throughput to support high volume event feeds.
• Support real-time processing of these feeds to create new, derived feeds.
• Support large data backlogs to handle periodic ingestion from offline systems.
• Support low-latency delivery to handle more traditional messaging use cases.
• Guarantee fault-tolerance in the presence of machine failures.

27

Kafka at LinkedIn (2014)

What type of data is being transported through Kafka?
• Metrics: operational telemetry data.
• Tracking: everything a LinkedIn user does.
• Queuing: between LinkedIn apps, e.g., for sending emails.

Used to transport data from LinkedIn’s apps to Hadoop and back
• In total ~200 billion events/day via Kafka
• Tens of thousands of data producers, thousands of consumers
• 7 million events/sec (write), 35 million events/sec (read)

> Many replicated events

Multiple clusters across multiple data centers

28

Core concepts in Kafka

• Records have a key (optional), value, and timestamp

• Topic is a stream of records (e.g., orders)

• Producer API to produce streams of records

• Consumer API to consume streams of records

• Broker Kafka server that runs in a Kafka Cluster.
Brokers form a cluster.

29

Kafka at a glance
producer producer producer

consumer consumer consumer

Kafka cluster
• Producers write data to brokers

• Consumers read data from brokers

• All of this is distributed

• Data is stored in topics

• Topics are split into partitions
which are replicated

Who does what

The data

Partition 0

Partition 1

Partition 2

Partition 3

topic

30

Core concepts in Kafka

producer consumer

Kafka cluster

broker 1

broker 2

broker 3

31

Core concepts in Kafka

producer consumer

Kafka cluster

Partition 0

Partition 0

Partition 1

Partition 1

Partition 2

Partition 2

(replica 3)

(replica 3)

(replica 2)

(replica 2)

(replica 1)

(replica 1)

Assuming topic “Donuts” Assuming topic “Donuts”

32

Topics

Let's first dive into the core abstraction Kafka provides for a stream of
records — the topic.

A topic is a category or feed name to which records are published
(think of it like a label)

A topic can have zero, one, or many consumers that subscribe to the
data written to it.

33

Partitions

A topic consists of a
configurable number
of partitions.

Partition:
ordered + immutable
sequence of messages that
is continually appended to

key value key valuekey value key value

2 3 4 5
34

Partitions

Partitions exist to improve performance
• More #Partitions → Higher consumer parallelism (later)

Partition offsets

Consumer

Offset: messages in the partitions are each assigned a unique (per partition)
and sequential id called the offset.
Consumers track their pointers via (offset, partition, topic) tuples

36

Partition offsets

partition 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Consumer A
Consumer B

producer

Consumers each have their own offset.

Producer writing to offset 13 of partition 0 while…
Consumer A is reading from offset 6.
Consumer B is reading from offset 9.

37

Replicas of a partition

A partition might be assigned to multiple brokers, which will result in the partition
being replicated. This provides redundancy of messages in the partition, such that
another broker can take over leadership if there is a broker failure.

• They exist solely to prevent data loss.

• They do NOT help to increase producer or consumer parallelism!

• Kafka tolerates (numReplicas - 1) dead brokers before losing data
• LinkedIn: numReplicas == 2 … 1 broker can die

Replicas: “backups” of a partition

38

Topics vs Partitions vs Replicas

39

Topic
Label for the data

Partition
Increases consumer

parallelism

Replica
Copy of partition,
fault-tolerance

Topics vs Partitions vs Replicas
broker 0 broker 1 broker 2 broker 3 broker 4

Partition 0

Partition 1

Partition 2

Partition 3

topic

A topic
configured to
use 4 partitions

Each partition
has an ID

If, say, the replication factor of a topic is set to 3,
then Kafka will create 3 identical replicas of each
partition and place those on available brokers in the
cluster.

Leader in red
Follower in blue

Partition 0
[repl 1]

Partition 0
[repl 2]

Partition 0
[repl 4]

The ID of a replica is the same as
the ID of the broker that hosts it.

For each partition, Kafka will elect
one broker as the “leader”

40

Propagating writes across replicas

Kafka broker 1

Partition 0

Partition 1

Partition 2

Partition 3

Partition 4

Kafka broker 0

Partition 4

Partition 3

Partition 1

Partition 2

Partition 0

Kafka broker 2

Partition 0

Partition 2

Partition 1

Partition 3

Partition 4

Leader in red
Follower in blue

Step 1) write
record to

leader

Step 2)
replicate

record

Step 2)
replicate

record

client
producer

41

Dealing with Finite Storage

Kafka broker

older messages

…

newer messages

producer A1
producer A2

…
producer An

Kafka prunes the “head” based on
age, or max size, or “key”

producers always append to “tail”
(e.g., think appending to file)

42

Kafka Producers

• Producers send records to topics
• Producer picks which partition to send record to per topic

• Can be done round-robin
• Can be based on priority
• Typically based on key of record

Remember! Producer picks partition.

46

Kafka Producers
• Producers write at their own cadence so order of records cannot be

guaranteed across partitions.
• Producer configures consistency level (ack=0, ack=all, ack=1).
• Producers pick the partition such that records/messages go to a given

same partition based on the data (usually key).
• Example: have all the events of a certain EmployeeID go to the same
partition.

• If order within a partition is not needed, a round-robin partition
strategy can be used so records are evenly distributed across
partitions.

47

Ways to send messages
Fire-and-forget
We send a message to the server and don’t really care if it arrives successfully or
not. Some messages will get lost using this method.

Synchronous send
We send a message, the send() method returns a Future object, and we use
get() to wait on the future and see if the send() was successful or not.

Asynchronous send
We call the send() method with a callback function, which gets triggered when
it receives a response from the Kafka broker.

53

Putting Asynchrony into Context
Suppose the network roundtrip time between our application and the Kafka
cluster is 10ms.

If we wait for a reply after sending each message, sending 100 messages will
take ~1 second. (Synchronous)

On the other hand, if we just send all our messages and not wait for any
replies, then sending 100 messages will barely take any time at all.
(Fire-and-Forget)

On the other hand, we may need to know when we failed to send a message
completely so we can throw an exception or log an error. For this purpose,
Kafka supports producer callbacks. (Asynchronous)

61

Parameters affecting Producer Performance
Two aspects worth mentioning because they significantly influence Kafka
performance:

1. Message ACKing
2. Message Batching

66

1) Message ACKing
In Kafka, a message is considered committed when any required ISR (in-sync
replicas) for that partition have applied it to the data log.
• Message ACKing is about conveying this “Yes, committed!” information back

to the producer from the data brokers.
• Exact meaning of any required depends on chosen semantics

67

1) Message ACKing

68

2) Message Batching

69

Kafka Consumers
Consumers pull from Kafka (there’s no push)
• Allows consumers to control their pace of consumption
• Allows to design downstream apps for average load instead of peak load

Consumers are responsible for tracking their read positions (aka “offsets”).
What does offset management allow you to do?
• Consumers can rewind in time (up to the point where Kafka prunes), e.g. to

replay older messages
• Consumers can decide to read a subset of partitions for a specific topic
• Run offline, periodically fetch batch updates

71

Kafka Consumers
Consumer Groups
• Allows multi-threaded/multi-machine consumption from Kafka topics
• Consumers “join” a group by using the same group id
• Kafka guarantees that a record is only ever read by one consumer in a group

> Each partition is consumed by exactly one consumer in the group
> Maximum parallelism: #consumers in group ≤ #partitions

72

Rebalancing: how consumers meet brokers

74

Rebalancing: how consumers meet brokers

75

Rebalancing: how consumers meet brokers

76

Other widely-used pubsub frameworks

Google Cloud Pub/Sub

Amazon Simple Notification
Service

Redis

ROS (Robot Operating System)

Apache Kafka

77

Recap
Publish-Subscribe (PubSub)
• “Glue” framework between disparate components in a distributed system
• Unlike RPCs, allows components to remain loosely-coupled

Apache Kafka (Developed at LinkedIn in 2011)
• Abstraction: “very large, reliable buffer” of topic-based data
• Producers: Write records (key-value pairs) into an append-only log
• Brokers form Kafka cluster, manage replicated partitions within each topic
• Consumers: Read records from partitions, using Consumer Groups for

parallelism

78

