
15-440/640 Carnegie Mellon University

15-440/640
Distributed Systems

Internet Content Delivery

The Domain Name System
& Content Delivery Networks

15-440/640 Carnegie Mellon University
2

Users
j

Internet
“core”

Internet
“edge”

1) How to map human-readable names
(URLs) to server locations (IPs)?

2) How to deliver content
quickly & reliably?

15-440/640 Carnegie Mellon University

Topics Today

1. Naming at Internet Scale

DNS - one of the world’s largest databases

DNS Architecture

2. Content Distribution at Internet Scale

CDNs - some of the world’s largest distributed systems

Design Decisions

Consistent Hashing for Scaling and Load Balancing

3

15-440/640 Carnegie Mellon University

Internet Name Discovery
Challenges/Goals:
• Scalability
• Decentralized maintenance
• Robustness
• Global scope

• Names mean the same thing everywhere

4

Domain Name System, 1984

DNS trades off consistency
for all these goals

15-440/640 Carnegie Mellon University

DNS-RPC Format

RR format: (class, name, value, type, ttl)

Types for IN class:
• Type=A

• name is hostname
• value is IP address

• Type=NS
• name is domain (e.g. foo.com)
• value is name of authoritative name

server for this domain

Basically, only one class: Internet (IN)

• Type=CNAME
• name is an alias name for some

“canonical” (the real) name
• value is canonical name

• Type=MX
• value is hostname of mailserver

associated with name

5

RPC-queries to the DNS database with billions of resource
records (RR)

15-440/640 Carnegie Mellon University

The DNS Hierarchy

root

edunet
org

ukcom

gwu ucb cmu bu mit

cs ece

Each node in hierarchy stores
information for names that
end with same suffix

• Suffix = path up tree

6

Each edge is implemented via
a DNS record of type NS.

Single node
Subtree

15-440/640 Carnegie Mellon University

The DNS Hierarchy

root

edunet
org

ukcom

gwu ucb cmu bu mit

cs ece

7

Zone
• distinct contiguous section of

name space
• E.g., Complete tree, single node

or subtree
• Managed by a specific

organization or administrator
• Has an associated set of

name servers
• Holds trusted, correct DNS

records for that zone

Single node
Subtree

15-440/640 Carnegie Mellon University

DNS Design: Zone Delegation
Zones are created by delegating the administration
for a part of the DNS namespace

• Records within zone stored in multiple redundant
name servers (primary/secondary)

• Secondary updated by “zone transfer” of name space
• Zone transfer is a bulk transfer of the “configuration” of a DNS

server – uses TCP to ensure reliability

Example:
• CS.CMU.EDU created by CMU.EDU administrators

8

15-440/640 Carnegie Mellon University

DNS: Root Name Servers
Responsible for “root” zone: ~13 root name servers

• Currently {a-m}.root-servers.net

9

Local name servers contact root servers when they cannot
resolve a name

• Configured with well-known root servers
• www.root-servers.org

http://www.root-servers.org/

15-440/640 Carnegie Mellon University

Architecture and Robustness

DNS servers are replicated
• Available if ≥1 replica up
• Load balance replicas

UDP used for queries

RPC semantic of DNS?

Each host has a resolver
• Typically a library that applications can link to
• Local name servers hand-configured (e.g. /etc/resolv.conf)

10

Daniel S. Berger
15-440 Fall 2018 Carnegie Mellon University

Typical Resolution

Client Local
DNS server

root & edu
DNS serverwww.cs.cmu.edu

NS

ns1.cmu.edu
www.cs.cmu.edu

14

Daniel S. Berger
15-440 Fall 2018 Carnegie Mellon University

Typical Resolution

Client Local
DNS server

root & edu
DNS server

ns1.cmu.edu
DNS server

www.cs.cmu.edu

NS

ns1.cmu.edu
www.cs.cmu.edu

NS
ns1.cs.cmu.edu

15

Daniel S. Berger
15-440 Fall 2018 Carnegie Mellon University

Typical Resolution

Client Local
DNS server

root & edu
DNS server

ns1.cmu.edu
DNS server

www.cs.cmu.edu

NS

ns1.cmu.edu
www.cs.cmu.edu

NS
ns1.cs.cmu.edu

A www=IPaddr

ns1.cs.cmu.edu
DNS

server

16

15-440/640 Carnegie Mellon University

Workload and Caching
Are all servers/names likely to be equally popular?

11

ranked websites

hi
ts

 /
m

on
th• Why might this be a problem?

• How can we solve this problem?
DNS responses are cached

• Quick response for repeated translations
• Other queries may reuse some parts of lookup

• NS records for domains
DNS negative queries are cached

• Don’t have to repeat past mistakes
• E.g. misspellings, search strings in resolv.conf

Cached data periodically times out
• Lifetime of data controlled by owner of data
• Time-to-live (TTL) passed with every record

15-440/640 Carnegie Mellon University

Choosing the Time-To-Live
Common practices

Top-level NS records: very high TTL
• alleviate load on root

Intermediary NS records: high TTL

A records: small TTL (<7200s)
• consistency concerns

Some A records: tiny TTL (<30s)
• fault tolerance, load balancing

12

root

edu

cmu

cs ece

www

NS

NS

A

128.2.217.13Think about the effect of TTL

15-440/640 Carnegie Mellon University

DNS (Summary)

• Motivations → large distributed database
• Scalability
• Independent update
• Robustness

• Hierarchical database structure
• Zones
• Lookup query flow

• Caching and consistency in practice
• Role of TTL

13

15-440/640 Carnegie Mellon University

Topics Today

1. Naming at Internet Scale

DNS - one of the world’s largest databases

DNS Architecture

2. Content Distribution at Internet Scale

CDNs - some of the world’s largest distributed systems

Design Decisions

Consistent Hashing for Scaling and Load Balancing

14

15-440/640 Carnegie Mellon University
15

Users
j

Internet
“core”

Internet
“edge”

1) How to map human-readable names
(URLs) to server locations (IPs)?

2) How to deliver content
quickly & reliably?

15-440/640 Carnegie Mellon University

Typical Web Workload
• Many (typically small) objects per page
• File sizes are heavy-tailed
• Embedded references

CDNs will carry 71% of Internet
traffic in 2021, up from 52% in
2016. Source: CISCO Visual Networking
Index 2016-2021. Sept 15, 2017.

Why does this matter for performance?

• Content Delivery Network (CDNs)
• The world’s largest distributed caching systems
• Key for Internet performance
• Explosive growth

Lots of objects & TCP
• 3-way handshake
• Lots of slow starts
• Even worse: TLS

Technique to reduce latency in a DS?

16

15-440/640 Carnegie Mellon University
17

Users j

Internet
“core”

Internet
“edge”

Content
Provider

A Typical CDN
1

2

3

4

cache /
edge
server

15-440/640 Carnegie Mellon University

Some Key CDN Design
Decisions
•Where and how to replicate

content
• How to direct clients towards a

CDN Point-of-Presence (PoP)
• How to choose a CDN server

within a PoP
• How to propagate updates

(CDN cache consistency)

18

j

15-440/640 Carnegie Mellon University

Where to Replicate Content
User 1

CDN POP 1
(Point-of-Presence)

ISP of User 1
(Internet Service Provider)

User 2

ISP of User 2

CDN POP 2

15-440/640 Carnegie Mellon University

Where and How to Replicate
Rack(s) of edge servers “Pull-based” edge servers

ISP

Internet
backbone First check

local cache

If cache miss,
fetch from
content
provider

20

15-440/640 Carnegie Mellon University

Some Key CDN Design
Decisions
•Where and how to replicate

content
• How to direct clients towards

a CDN Point-of-Presence (PoP)
• How to choose a CDN server

within a PoP
• How to propagate updates

(CDN cache consistency)

21

j

15-440/640 Carnegie Mellon University

Directing Users to CDNs
• Which PoP?

• Best “performance” for this specific user
• Based on Geography? RTT?
• Throughput? Load?

• How to direct user requests to the PoP?
• Multiple ways
• Examples:

• As part of naming → DNS
(e.g., CNAME that is resolved via CDN’s name server)

• As part of IP routing → anycast

22

15-440/640 Carnegie Mellon University

DNS-Based Client Routing
• Client does name lookup for service
• CDN high-level name server chooses appropriate

regional PoP
• Chooses “best” PoP for client
• Return NS-record of low-level CDN name server
• Large TTL (why?)

• CDN low-level name server chooses specific caching
server within its PoP

• Choose edge server that is likely to cache file, and is alive
• Small TTL (why?)

How do we choose an edge server
(that has file in cache and is alive)?

24

15-440/640 Carnegie Mellon University

Some Key CDN Design
Decisions
•Where and how to replicate

content
• How to direct clients towards a

CDN Point-of-Presence (PoP)
• How to choose a CDN server

within a PoP
• How to propagate updates

(CDN cache consistency)

25

j

15-440/640 Carnegie Mellon University

CDN Scaling and Load Balancing
Idea 1: round robin load balancer

26

LB

Is round robin a good
idea for caches?

Consider an overall working set of size 16TB.
What is the working set at every cache with round robin?

15-440/640 Carnegie Mellon University

Better CDN Load Balancer
Idea 2: Static partition

27

What could go wrong with
static partitions?

• If you used the server name: what if “tigers.com” had
1000000 pages, but “zebras.com” had only 10?

• Could fill up the bins as they arrive

→ Requires tracking the location of every object at LB

LB

items a-e

items f-l

items m-s
items t-z

15-440/640 Carnegie Mellon University

Hash-Partitioned Load Balancer
Idea 3: Hash-based partition
(e.g., hash the URLs

use modulo operator, %)

28

Can you think of any disadvantages
of hash-based partitions?

• Adding/removing servers is hard! Why?

LB

hash % 4 = 0

hash % 4 = 1

hash % 4 = 2hash % 4 = 3

15-440/640 Carnegie Mellon University

Hash-Partitioning Problems
Idea 3: Hash-based partition (cntd)

29

Consider 90 documents
Before: hash-partitioned to nodes 1..9

Now: node 10 is added
How many documents are on the wrong server?

Before: server = id%9 (for 9 servers)
Now: server = id%10 (for 10 servers)

A large fraction of
objects need to move!
=> Cache misses

How do we fix hash-
based partitioning?

15-440/640 Carnegie Mellon University 30

Solution: Consistent Hashing
Idea 4: Consistent Hashing

30

• Special type of hashing
• Can resize table without shuffling all entries
• On average only 1/nth of entries will be moved when

adding/removing a node
• (where n = total number of nodes)

15-440/640 Carnegie Mellon University

• Key idea: map both nodes and keys to the same (metric)
identifier space
• E.g., Hash to a m-bit identifier

• Identifier space organized as ring

31

Consistent Hashing

31

IP=“198.10.10.1” ID=123SHA-1
Node identifier: SHA-1(IP address)

key=“LetItBe” ID=60SHA-1
Key identifier: SHA-1(key)

15-440/640 Carnegie Mellon University

Consistent Hashing

• Keys mapped to the successor node
• Node with immediately next higher ID

32

5-bit circular
ID space

031

N8

N19

N28

Key 12

Note: circular ID space
so 29-31, 0-8 map to N8

How to map key IDs to node IDs?

15-440/640 Carnegie Mellon University 33

Consistent Hashing

33

LB
5-bit circular

ID space

031

N8

N19

N28

N28

N8

N19

15-440/640 Carnegie Mellon University 34

Properties of Consistent Hashing

34

Load: over all views, # of objects / server is small (and ∼uniform)

Spread: over all views, # of servers / obj is small (and ∼uniform)

Smoothness: little impact when servers are added/removed

LB
“View” = subset of all
servers that are
visible to LB

Very useful in other distributed systems too
E.g., Distributed Hash Tables in peer-to-peer systems

15-440/640 Carnegie Mellon University 35

DNS-Based Client Routing
• Client does name lookup for service
• CDN high-level name server chooses appropriate

regional PoP
• Chooses “best” PoP for client
• Return NS-record of low-level CDN name server
• Large TTL (why?)

• CDN low-level name server chooses specific caching
server within its PoP

• Use consistent hashing to choose the edge server that has
is responsible for this URL, and is alive

• Small TTL (why?)

35

15-440/640 Carnegie Mellon University

Some Key CDN Design
Decisions
•Where and how to replicate

content
• How to direct clients towards a

CDN Point-of-Presence (PoP)
• How to choose a CDN server

within a PoP
• How to propagate updates

(CDN cache consistency)

36

j

15-440/640 Carnegie Mellon University

Edge Applications (only partial adoption)
• Applications run on edge servers
• Paxos-based data replication (at Akamai)

Static Web Objects (“1st-gen CDNs” from 1998)
• Images & Photos, static websites, CSS, JS, ...
• Consistency via TTL (set by content owner)

CDN Update Propagation

37

Dynamic Content (“2nd-gen CDNs” from 2010)
• Support for dynamic web content at edge
• Broadcast invalidation “purge” objects

15-440/640 Carnegie Mellon University 39

So far, we’ve discussed Akamai
• Akamai is one of the world’s largest CDNs

• Evolved out of MIT research on consistent hashing
• Serves 15-30% of all Internet traffic
• 170K++ servers deployed worldwide

• But there are many more: CloudFront, CloudFlare,
Fastly, ChinaNet, Edgecast, Limelight, Lvl3, GCD, ..

• Current developments:
• Optimizing resource consumption
• Automation in performance tuning
• Large content providers deploy their own CDNs
• Many open problems (performance and security)

39

15-440/640 Carnegie Mellon University

Summary on CDNs
• Across wide-area Internet: caching is the only way to

improve latency
• CDNs move data closer to user
• CDNs balance load and fault tolerance
• Many design decisions
• Use consistent hashes and many other DS techniques

