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Users
j

Internet 
“core”

Internet 
“edge”

1) How to map human-readable names 
(URLs) to server locations (IPs)?

2) How to deliver content
quickly & reliably?



15-440/640 Carnegie Mellon University

Topics Today

1. Naming at Internet Scale

DNS - one of the world’s largest databases

DNS Architecture

2.   Content Distribution at Internet Scale

CDNs - some of the world’s largest distributed systems

Design Decisions

Consistent Hashing for Scaling and Load Balancing
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Internet Name Discovery
Challenges/Goals:
• Scalability
• Decentralized maintenance
• Robustness
• Global scope 

• Names mean the same thing everywhere

4

Domain Name System, 1984

DNS trades off consistency
for all these goals
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DNS-RPC Format 

RR format: (class, name, value, type, ttl)

Types for IN class:
• Type=A

• name is hostname
• value is IP address

• Type=NS
• name is domain (e.g. foo.com)
• value is name of authoritative name 

server for this domain

Basically, only one class: Internet (IN)

• Type=CNAME
• name is an alias name for some 

“canonical” (the real) name
• value is canonical name

• Type=MX
• value is hostname of mailserver 

associated with name

5

RPC-queries to the DNS database with billions of resource 
records (RR)
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The DNS Hierarchy

root

edunet
org

ukcom

gwu ucb cmu bu mit

cs ece

Each node in hierarchy stores 
information for names that 
end with same suffix

• Suffix = path up tree

6

Each edge is implemented via 
a DNS record of type NS.

Single node
Subtree
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The DNS Hierarchy

root

edunet
org

ukcom

gwu ucb cmu bu mit

cs ece
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Zone
• distinct contiguous section of 

name space
• E.g., Complete tree, single node 

or subtree
• Managed by a specific 

organization or administrator
• Has an associated set of 

name servers
• Holds trusted, correct DNS 

records for that zone

Single node
Subtree
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DNS Design: Zone Delegation
Zones are created by delegating the administration 
for a part of the DNS namespace

• Records within zone stored in multiple redundant 
name servers (primary/secondary)

• Secondary updated by “zone transfer” of name space
• Zone transfer is a bulk transfer of the “configuration” of a DNS 

server – uses TCP to ensure reliability

Example:
• CS.CMU.EDU created by CMU.EDU administrators

8
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DNS: Root Name Servers
Responsible for “root” zone: ~13 root name servers 

• Currently {a-m}.root-servers.net

9

Local name servers contact root servers when they cannot 
resolve a name

• Configured with well-known root servers
• www.root-servers.org

http://www.root-servers.org/
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Architecture and Robustness

DNS servers are replicated
• Available if ≥1 replica up
• Load balance replicas

UDP used for queries

RPC semantic of DNS?

Each host has a resolver
• Typically a library that applications can link to
• Local name servers hand-configured (e.g. /etc/resolv.conf)

10
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Typical Resolution

Client Local 
DNS server

root & edu 
DNS serverwww.cs.cmu.edu

NS 

ns1.cmu.edu
www.cs.cmu.edu
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Typical Resolution

Client Local 
DNS server

root & edu 
DNS server

ns1.cmu.edu 
DNS server

www.cs.cmu.edu

NS 

ns1.cmu.edu
www.cs.cmu.edu

NS 
ns1.cs.cmu.edu

15



Daniel S. Berger
15-440 Fall  2018 Carnegie Mellon University

Typical Resolution

Client Local 
DNS server

root & edu 
DNS server

ns1.cmu.edu 
DNS server

www.cs.cmu.edu

NS 

ns1.cmu.edu
www.cs.cmu.edu

NS 
ns1.cs.cmu.edu

A www=IPaddr

ns1.cs.cmu.edu
DNS

server
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Workload and Caching
Are all servers/names likely to be equally popular?

11

ranked websites

hi
ts

 / 
m

on
th• Why might this be a problem?

• How can we solve this problem?
DNS responses are cached 

• Quick response for repeated translations
• Other queries may reuse some parts of lookup

• NS records for domains 
DNS negative queries are cached

• Don’t have to repeat past mistakes
• E.g. misspellings, search strings in resolv.conf

Cached data periodically times out
• Lifetime of data controlled by owner of data
• Time-to-live (TTL) passed with every record
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Choosing the Time-To-Live
Common practices

Top-level NS records: very high TTL
• alleviate load on root 

Intermediary NS records: high TTL

A records: small TTL (<7200s)
• consistency concerns

Some A records: tiny TTL (<30s)
• fault tolerance, load balancing

12

root

edu

cmu

cs ece

www

NS

NS

A

128.2.217.13Think about the effect of TTL
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DNS (Summary)

• Motivations → large distributed database
• Scalability
• Independent update
• Robustness

• Hierarchical database structure
• Zones
• Lookup query flow

• Caching and consistency in practice
• Role of TTL

13
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Topics Today

1. Naming at Internet Scale

DNS - one of the world’s largest databases

DNS Architecture

2.   Content Distribution at Internet Scale

CDNs - some of the world’s largest distributed systems

Design Decisions

Consistent Hashing for Scaling and Load Balancing

14



15-440/640 Carnegie Mellon University
15

Users
j

Internet 
“core”

Internet 
“edge”

1) How to map human-readable names 
(URLs) to server locations (IPs)?

2) How to deliver content
quickly & reliably?
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Typical Web Workload
• Many (typically small) objects per page 
• File sizes are heavy-tailed
• Embedded references

CDNs will carry 71% of Internet 
traffic in 2021, up from 52% in 
2016. Source: CISCO Visual Networking 
Index 2016-2021. Sept 15, 2017.

Why does this matter for performance?

• Content Delivery Network (CDNs)
• The world’s largest distributed caching systems
• Key for Internet performance
• Explosive growth

Lots of objects & TCP
• 3-way handshake
• Lots of slow starts
• Even worse: TLS

Technique to reduce latency in a DS?

16
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Users j

Internet 
“core”

Internet 
“edge”

Content
Provider

A Typical CDN
1

2

3

4

cache / 
edge
server
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Some Key CDN Design 
Decisions
•Where  and how to replicate 

content
• How to direct clients towards a 

CDN Point-of-Presence (PoP)
• How to choose a CDN server 

within a PoP
• How to propagate updates 

(CDN cache consistency)

18

j
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Where to Replicate Content
User 1

CDN POP 1
(Point-of-Presence)

ISP of User 1
(Internet Service Provider)

User 2

ISP of User 2

CDN POP 2
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Where and How to Replicate
Rack(s) of edge servers “Pull-based” edge servers

ISP

Internet
backbone First check

local cache

If cache miss,
fetch from
content
provider

20
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Some Key CDN Design 
Decisions
•Where  and how to replicate 

content
• How to direct clients towards 

a CDN Point-of-Presence (PoP)
• How to choose a CDN server 

within a PoP
• How to propagate updates 

(CDN cache consistency)

21

j
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Directing Users to CDNs
• Which PoP?

• Best “performance” for this specific user
• Based on Geography? RTT?
• Throughput? Load?

• How to direct user requests to the PoP?
• Multiple ways
• Examples:

• As part of naming → DNS
(e.g., CNAME that is resolved via CDN’s name server)

• As part of IP routing → anycast

22
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DNS-Based Client Routing
• Client does name lookup for service
• CDN high-level name server chooses appropriate 

regional PoP
• Chooses “best” PoP for client
• Return NS-record of low-level CDN name server
• Large TTL (why?)

• CDN low-level name server chooses specific caching 
server within its PoP

• Choose edge server that is likely to cache file, and is alive
• Small TTL (why?)

How do we choose an edge server 
(that has file in cache and is alive)?

24
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Some Key CDN Design 
Decisions
•Where and how to replicate 

content
• How to direct clients towards a 

CDN Point-of-Presence (PoP)
• How to choose a CDN server 

within a PoP
• How to propagate updates 

(CDN cache consistency)

25
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CDN Scaling and Load Balancing
Idea 1: round robin load balancer

26

LB

Is round robin a good 
idea for caches?

Consider an overall working set of size 16TB.
What is the working set at every cache with round robin?
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Better CDN Load Balancer
Idea 2: Static partition

27

What could go wrong with 
static partitions?

• If you used the server name: what if “tigers.com” had 
1000000 pages, but “zebras.com” had only 10?

• Could fill up the bins as they arrive

→ Requires tracking the location of every object at LB

LB

items a-e

items f-l

items m-s
items t-z
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Hash-Partitioned Load Balancer
Idea 3: Hash-based partition
(e.g., hash the URLs

use modulo operator, %)

28

Can you think of any disadvantages 
of hash-based partitions?

• Adding/removing servers is hard! Why?

LB

hash % 4 = 0

hash % 4 = 1

hash % 4 = 2hash % 4 = 3
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Hash-Partitioning Problems
Idea 3: Hash-based partition (cntd)

29

Consider 90 documents
Before: hash-partitioned to nodes 1..9

Now: node 10 is added
How many documents are on the wrong server?

Before: server = id%9 (for 9 servers)
Now: server = id%10 (for 10 servers)

A large fraction of 
objects need to move!
=> Cache misses

How do we fix hash-
based partitioning?
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Solution: Consistent Hashing
Idea 4: Consistent Hashing

30

• Special type of hashing
• Can resize table without shuffling all entries
• On average only 1/nth of entries will be moved when 

adding/removing a node
• (where n = total number of nodes)
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• Key idea: map both nodes and keys to the same (metric) 
identifier space
• E.g., Hash to a m-bit identifier  

• Identifier space organized as ring

31

Consistent Hashing

31

IP=“198.10.10.1” ID=123SHA-1
Node identifier: SHA-1(IP address)

key=“LetItBe” ID=60SHA-1
Key identifier: SHA-1(key)
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Consistent Hashing

• Keys mapped to the successor node
• Node with immediately next higher ID

32

5-bit circular
ID space

031

N8

N19

N28

Key 12

Note: circular ID space
so 29-31, 0-8 map to N8

How to map key IDs to node IDs? 
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Consistent Hashing

33

LB
5-bit circular

ID space

031

N8

N19

N28

N28

N8

N19
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Properties of Consistent Hashing

34

Load: over all views, # of objects / server is small (and ∼uniform)

Spread: over all views, # of servers / obj is small (and ∼uniform)

Smoothness: little impact when servers are added/removed

LB 
“View” = subset of all 
servers that are 
visible to LB

Very useful in other distributed systems too
E.g., Distributed Hash Tables in peer-to-peer systems
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DNS-Based Client Routing
• Client does name lookup for service
• CDN high-level name server chooses appropriate 

regional PoP
• Chooses “best” PoP for client
• Return NS-record of low-level CDN name server
• Large TTL (why?)

• CDN low-level name server chooses specific caching 
server within its PoP

• Use consistent hashing to choose the edge server that has 
is responsible for this URL, and is alive

• Small TTL (why?)

35
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Some Key CDN Design 
Decisions
•Where  and how to replicate 

content
• How to direct clients towards a 

CDN Point-of-Presence (PoP)
• How to choose a CDN server 

within a PoP
• How to propagate updates 

(CDN cache consistency)

36
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Edge Applications (only partial adoption)
• Applications run on edge servers
• Paxos-based data replication (at Akamai)

Static Web Objects (“1st-gen CDNs” from 1998)
• Images & Photos, static websites, CSS, JS, ...
• Consistency via TTL (set by content owner)

CDN Update Propagation

37

Dynamic Content (“2nd-gen CDNs” from 2010)
• Support for dynamic web content at edge
• Broadcast invalidation “purge” objects
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So far, we’ve discussed Akamai
• Akamai is one of the world’s largest CDNs

• Evolved out of MIT research on consistent hashing
• Serves 15-30% of all Internet traffic
• 170K++ servers deployed worldwide

• But there are many more: CloudFront, CloudFlare, 
Fastly, ChinaNet, Edgecast, Limelight, Lvl3, GCD, ..

• Current developments:
• Optimizing resource consumption
• Automation in performance tuning
• Large content providers deploy their own CDNs
• Many open problems (performance and security)

39
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Summary on CDNs
• Across wide-area Internet: caching is the only way to 

improve latency
• CDNs move data closer to user
• CDNs balance load and fault tolerance
• Many design decisions
• Use consistent hashes and many other DS techniques


