
15-440 /640  Carnegie Mellon University

Announcements
• For everyone’s safety: 

- Please do not congregate after the class for Q/A -- ask 
questions during the lecture or make use of Piazza and OH

- If you are sick, please watch the lectures remotely
- Wear your mask properly covering your nose and mouth 

entirely at all times during the lecture

• For any private communication, use course staff email < ds-staff-
f21-private@lists.andrew.cmu.edu>. Not individual instructor 
email addresses.

1



15-440 /640  Carnegie Mellon University

15-440/640
Distributed Systems

- Finish up distributed computation
(MPI & MapReduce) - In-memory cluster compute (Spark)- Distributed ML



15-440/640 Carnegie Mellon University

Cluster Computing

1. High-performance computing (HPC)
- Message Passing Interface (MPI)

2. Cluster computing
- MapReduce

3



15-440/640 Carnegie Mellon University

Recall: Typical HPC Machine
• Compute Nodes

• Lots of high end processor(s)
• Lots of RAM

• Network
• Specialized
• Very high performance

• Storage Server
• RAID-based disk array

Network

Compute Nodes

Storage Server

CPU

Mem

CPU

Mem

CPU

Mem
• • •

• • •

4



15-440/640 Carnegie Mellon University

Recall: Typical HPC Operation
• Characteristics

• Long-lived interdependent processes
• Partitioning: exploit spatial locality
• Hold all program data in memory (no disk 

access)
• High bandwidth communication

• Strengths
• High utilization of resources
• Effective for many scientific applications

• Weaknesses
• Requires careful tuning of application to 

resources
• Intolerant of any variability

P1 P2 P3 P4 P5

Message Passing

5



15-440/640 Carnegie Mellon University

HPC Fault Tolerance

• Tightly coupled processes
• Failure of one processes prevents all 

others from progressing

• How to ensure correct execution in 
presence of failures?

6

P1 P2 P3 P4 P5



15-440/640 Carnegie Mellon University

HPC Fault Tolerance

• Tightly coupled processes
• Failure of one processes prevents all 

others from progressing

• How to ensure correct execution in 
presence of failures?

• Checkpointing
• Periodically save system state of all 

processes
• Stored in reliable storage that can 

withstand targeted failure
• Roll back to error-free state in case of 

failure

P1 P2 P3 P4 P5

Checkpoint

Checkpoint

7



15-440/640 Carnegie Mellon University

HPC Fault Tolerance
• Rollback upon failure

• Restore state to that of last 
checkpoint

• All intervening computation 
wasted

• Design decisions
• Asynchronous or synchronous?
• How often to checkpoint?
• What data to checkpoint?
• Who checkpoints: application or 

system?

• Significant I/O traffic

• Very sensitive to number of 
failing components

P1 P2 P3 P4 P5

Checkpoint

Restore

Wasted
Computation

8



15-440/640 Carnegie Mellon University

Cluster Computing

1. High-performance computing (HPC)
- Message Passing Interface (MPI)

2. Cluster computing
- MapReduce

9



15-440/640 Carnegie Mellon University

Typical Cluster Computing
• Off-the-shelf servers

• Collocation of compute and 
storage

• Medium-performance 
processors

• Modest memory
• A few disks

• Network
• Conventional Ethernet 

switches
• 10s Gb/s

Network

Compute + Storage Nodes

• • •
CPU

Mem

CPU

Mem

CPU

Mem

10



15-440/640 Carnegie Mellon University

Oceans of Data, Skinny Pipes
• 10 Terabytes

• Easy to store
• Hard to move

Disks MB / s Time

Seagate HDDs ~100s > Few hours

Networks MB / s Time

Gigabit Ethernet < 125 > 23 hours

10GE < 1,200 > 2.4 hours

100GE < 12,000 15 minutes

11



15-440/640 Carnegie Mellon University

Data-Intensive System Challenge
How to process 10 TB in a few minutes?
• Distribute data over 100+ disks
• Assuming uniform data partitioning

12

• System Requirements
• Lots of processors with co-located disks
• Nodes located in close proximity

• Within reach of fast, local-area network

Key idea: partition compute tasks 
and run where data is stored

• Compute using 100+ processors
• Without having to move data



15-440/640 Carnegie Mellon University

How To Program A Cluster? 
Example:

Many text files (e.g. logfiles, crawled webpages,..)
Stored in DFS on thousands of machines (GFS)
Assume you have access to all those machines

13

How do you find the frequency of words, 
such as , “440”, “error”, “p4” ?

What do you do if tasks run for > 1 week?
e.g., machines fail, get rebooted

What do you do if a variant of this task comes up?



15-440/640 Carnegie Mellon University

Cluster Programming Model

• Application programs written in terms of high-level data operations
• Runtime system controls scheduling, load balancing, fault-tolerance
• This is idealized: no perfect cluster programming model, in practice
• One popular model: MapReduce

Hardware

Machine-Independent
Programming Model

Runtime
System

Application
Programs

14



15-440/640 Carnegie Mellon University

MapReduce Cluster Model

• Map: Map computation across many objects
• Runtime schedules “mappers” so as to minimize data movement

• Reduce: Aggregation of results

M

x1

M

x2

M

x3

M

xn

k1

Map

Reduce
k2

kr

·  ·  ·

·  ·  ·

Key-Value
Pairs

Dean & Ghemawat: “MapReduce: Simplified Data Processing on Large Clusters”, OSDI 2004 15



15-440/640 Carnegie Mellon University

Example MapReduce
• Calculate word frequency of a set of documents
• Example: children book in basic English

16



15-440/640 Carnegie Mellon University

Example MapReduce

• Calculate word frequency of set of documents

17

Come 
and 
see.

Come 
and 
see.

Come, 
come.

Come,
Dick

Come 
and see 

Spot.



15-440/640 Carnegie Mellon University

Example MapReduce

• Map: generate 〈word, count〉 pairs for all words in document
• Reduce: sum word counts across documents

Come 
and 
see.

Come 
and 
see.

Come, 
come.

M Extract

Word-Count
Pairs

M M M M

〈dick, 1〉

〈see, 1〉

〈come, 1〉

〈and, 1〉

〈come, 1〉

〈come, 1〉

〈come, 1〉

〈come, 2〉

〈see, 1〉

〈and, 1〉
〈and, 1〉

〈spot, 1〉

Sum
dick and

co
me see

spo
t

∑=1 ∑=3 ∑=6 ∑=3 ∑=1

Come,
Dick

Come 
and see 

Spot.

18



15-440/640 Carnegie Mellon University

Come 
and 
see.

Come 
and 
see.

Come, 
come.

M Extract

Word-Count
Pairs

M M M M

〈dick, 
1〉

〈see, 
1〉

〈com
e, 1〉

〈and, 
1〉

〈com
e, 1〉

〈com
e, 1〉

〈com
e, 1〉

〈com
e, 2〉

〈see, 
1〉

〈and, 
1〉

〈and, 
1〉

〈spot, 
1〉

Sum
dick and

co
me see

spo
t

∑=1 ∑=3 ∑=6 ∑=3 ∑=1

Come,
Dick

Come 
and see 

Spot.

Example MapReduce

• Map: generate 〈word, count〉 pairs for all words in document
• Reduce: sum word counts across documents

19

1) Mapping Phase

2) Shuffling / Sorting Phase

3) Reduce Phase



15-440/640 Carnegie Mellon University

MapReduce Implementation
• Built on Top of Cluster Filesystem

• Provides global naming
• Reliability via replication (3 replicas of every chunk)

• Breaks work into tasks
• Typically #tasks >> #processors
• Master schedules tasks on workers dynamically

• Net effect
• Input: Set of files in reliable file system
• Output: Set of files in reliable file system

20



15-440/640 Carnegie Mellon University

Real-World Challenges
Fault Tolerance
• Reliable file system is not enough
• Workers can fail even if input files available
• Map-Reduce solution

• Detect failed worker (Heartbeat mechanism)
• Reschedule failed task

Stragglers
• Tasks that take a long time to execute

• Might be bugs, flaky/slow hardware (e.g., disk I/O), poor partitioning, etc.

• Map-Reduce solution: 
• When done with most tasks, reschedule any remaining executing tasks
• Keep track of redundant executions
• Significantly reduces overall run time

21



15-440/640 Carnegie Mellon University

Hadoop Project
• Colocate compute and storage: HDFS + MapReduce

Local Network

CPU

Node 1

CPU

Node 2

CPU

Node n

·   ·  ·

22

• HDFS Fault Tolerance (3 copies of file)
• “Locality-preserving” compute job placement priority order

1) On same node as HDFS chunk
2) On same rack as HDFS chunk
3) Anywhere else (access over HDFS network)

• MapReduce programming environment



15-440/640 Carnegie Mellon University

MapReduce Execution

Dean & Ghemawat: “MapReduce: Simplified Data Processing on Large Clusters”, OSDI 2004

GFS/ 
HDFS

GFS/ 
HDFS



15-440/640 Carnegie Mellon University

Cluster Computing

MapReduce (Hadoop) Framework:

24

Key features: fault tolerance and high throughput

⇒ Simplified data analysis on large, unreliable clusters

Reduce
Map

local 
disk

HDFS HDFSMap

Map
Reduce

input data output data

Can you think of limitations of the 
MapReduce framework?



15-440/640 Carnegie Mellon University

Limitations of MapReduce I

25

ReduceMap

diskHDFS HDFSMap

Map
Reduce

write I/O

write I/O

read I/O

read I/O

read I/O

read I/O

read I/O

write I/O write I/O

write I/O

I/O penalty makes interactive data analysis impossible

Store input/output after every step on disk

Effect on response time? From
 Jeff D

ean’s Latency N
um

bers 
E

very P
rogram

m
er S

hould K
now

https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html


15-440/640 Carnegie Mellon University

Limitations of MapReduce II

Many applications require iterating MapReduce steps

26

Each iteration steps is small.

But: we need many iterations

⇒ 90% spent on I/O to disks and over network

⇒ 10% spent computing actual results

Does not work for iterative applications
( ⇒ distributed machine learning)



15-440/640 Carnegie Mellon University

Limitations of MapReduce III

MapReduce abstraction not expressive enough

27

Explosion of specialized analytics systems

● Streaming analytics, Iterative ML algorithms, 

Graph/social data

Learn all of them? Share data between them?



15-440/640 Carnegie Mellon University

15-440/640
Distributed Systems

- Finish up distributed computation
(MPI & MapReduce) - In-memory cluster compute (Spark)- Distributed ML



15-440/640 Carnegie Mellon University

Apache Spark:  In-Memory Computation
Key idea: keep and share data sets in main memory

29

Why didn’t we do that in the first place? Problems?

Much faster response time  (in practice: 10x-100x)



15-440/640 Carnegie Mellon University

In-memory computation and data-sharing

How to build fault-tolerant and efficient system?

30

● Logging each operation to node-local persistent storage

● Replicating data across nodes (+ persistent storage)

● Checkpointing (checkpoints need to be stored persistently)

⇒ Expensive (10-100x slowdown)

Fault tolerance techniques from lectures so far?

How common are fine-grained (bit-level) data updates?



15-440/640 Carnegie Mellon University

Spark Approach: RDDs and Lineage

Resilient Distributed Datasets
● Limit update interface to coarse-grained operations

○ Map, group-by, filter, sample, ...

● Efficient fault recovery using lineage
○ Small partition size → individual operations are cheap

○ Master server tracks coarse-grained operator sequence

○ Recompute lost partitions on failure

31

Zaharia et al. Resilient distributed datasets: 
A fault-tolerant abstraction for in-memory 
cluster computing. NSDI 2012.



15-440/640 Carnegie Mellon University

RDD Consistency and Fault Recovery

RDDs are immutable datasets
● Deterministic functions of input

○ recreate any RDD any time
● Simplifies consistency (caching, sharing, ..)
● Still need periodic RDD checkpoints

○ stored persistently on disks/ in HDFS

32

RDD API

Design implications?

● High overhead: copying data (no mutate-in-place)
● Needs lots of memory (might not be able to run your workload)

https://spark.apache.org/docs/latest/api/scala/index.html


15-440/640 Carnegie Mellon University

Towards a New Unified Framework

Two Goals

1. In-memory computation and data-sharing

● 10-100x faster than disks or network

● Key problem: 

33

fault tolerance

ease-of-use and generality

2. Unified computation abstraction

● Power of iterations (“local work + message passing”)

● Key problem: 



15-440/640 Carnegie Mellon University

BSP computation abstraction
• Surprising power of iterations

• (e.g., iterative Map/Reduce)
• Explained by theory of bulk 

synchronous parallel (BSP) model

34

Theorem (Leslie Valiant,1990):
“Any distributed system can 
be emulated as local work + 
message passing” (=BSP).

Communication

Communication

Communication

Spark implements BSP approximately



15-440/640 Carnegie Mellon University

Spark as a Uniform Framework

Graph processing like

GraphLab/Pregel on Spark (Bagel)

⇒ “200 lines of Spark code”

Iterative MapReduce

⇒ “200 lines of Spark code“

Hive SQL on Spark (Shark) 

⇒ “500 lines of code”

ML-lib and other distributed ML implementations

35



15-440/640 Carnegie Mellon University

Should You Always Use Spark?

Some examples for which Spark is not a good fit for

● Applications with fine-grained updates to shared state

● Datasets that don’t fit into memory

36



15-440/640 Carnegie Mellon University

15-440/640
Distributed Systems

- Finish up distributed computation
(MPI & MapReduce) - In-memory cluster compute (Spark)- Distributed ML



15-440/640 Carnegie Mellon University

Machine Learning

38

YOUR COMPANY NEEDS

MACHINE LEARNING
https://w

w
w
.rockpapershotgun.com

/2015/02
/26/sli-good-or-bad/

The ML hype

Enabled by huge leap in parallelization 

ML systems out scale even powerful machines (GPUs et al)
=> Distributed ML



15-440/640 Carnegie Mellon University

What Do ML Algorithms look like?

39

Eric Xing, Strategies & Principles for Distributed 
Machine Learning, Allen AI, 2016

1) lots of data 2) lots of parameters

Regression

Other examples: Bayes, K-means, Neural Networks...

Common feature when computing these algorithms?

Three key challenges:

3) lots of iterations

Page Rank



15-440/640 Carnegie Mellon University

Distributed Machine Learning
Data/model often fits into 10s-100s of nodes

Goal: more iterations / sec

40

Ite
ra

tio
ns

 /
 S

ec

Machine Count

ideal s
peedup

good speedup

pathetic speedup



15-440/640 Carnegie Mellon University

Challenge of Communication Overhead
• Communication overhead scales badly

• E.g., for Netflix-like recommender systems

41

Naive

From
: Chow

dhury, et al., M
anaging data transfers in com

puter clusters w
ith orchestra., SIG

CO
M

M
 2011.

master 
node

worker 
nodes



15-440/640 Carnegie Mellon University

Challenge of Synchronization Overhead

BSP model:
● No computation during barrier
● No communication during 

computation

Fundamental limitation in BSP model
Constantly waiting for stragglers

42

Synchronization Barrier

Synchronization Barrier

Synchronization Barrier



15-440/640 Carnegie Mellon University

Relaxing BSP Consistency

Idea: nodes can accept slightly stale state

43

From: Eric Xing, 
Strategies & Principles 
for Distributed Machine 
Learning, Allen AI, 2016

How can we incorporate stale 
state into the BSP model?

ML algorithms are robust

⇒ converge even with some stale state



15-440/640 Carnegie Mellon University

Opposite Extreme: No Synchronization

What if we fully remove BSP’s 

synchronization barriers?

Asynchronous communication: 
● no communication at all, or
● communication at any time

44

Observation through experiments:
Iterative algorithms won’t converge



15-440/640 Carnegie Mellon University

Bounded-delay BSP for Distributed ML

Bound stale state by N steps:

⇒ N-bounded delay BSP

45

1-bounded 
delay

2-bounded 
delay

From: Li et al, Scaling Distributed Machine 
Learning with the Parameter Server
OSDI 2014

what 
happens 
here?



15-440/640 Carnegie Mellon University

Many Challenges Remain
Trade-Off:

Stale state -> throughput (iter / sec)

Misleading design decisions:

Higher throughput

Less progress / iteration

Many open challenges

Automatic model partitioning

How to schedule many parallel jobs on ML clusters

How to build a framework for interactive ML 

applications

⇒ Very active field of research 46
Ite

ra
tio

ns
 /

 S
ec

Machine Count

ideal s
peedup

good 

speedup


