
15-440/640 Carnegie Mellon University

15-440/640
Distributed Systems

- Finish up cluster filesystems (GFS)- Start distributed computation
(HPC & cluster computing)

15-440 /640 Carnegie Mellon University

Announcements
• Fill in P1 project partner survey
• For everyone’s safety:

- Please do not congregate after the class for Q/A -- ask
questions during the lecture or make use of Piazza and OH

- If you are sick, please watch the lectures remotely
- Wear your mask properly covering your nose and mouth

entirely at all times during the lecture
• For any private communication, use course staff email < ds-staff-

f21-private@lists.andrew.cmu.edu>. Not individual instructor
email addresses.

2

15-440 /640 Carnegie Mellon University

15-440/640
Distributed Systems

- Finish up cluster filesystems (GFS)- Start distributed computation
(HPC & cluster computing)

15-440 /640 Carnegie Mellon University

Outline: GFS
• Motivation and design goals
• Architecture
• Client operations
• Fault tolerance
• Consistency model
• Post-GFS

4

15-440 Fall 2020 Carnegie Mellon University

Recall: High-Level Picture of GFS Architecture

5

15-440 /640 Carnegie Mellon University

GFS Client: Record Append Operation

• Large files used as queues between multiple producers and
consumers
- Need atomic append operation

6

• Client pushes data to last chunk’s replicas; sends append
request to primary without specifying byte offset

Why not use a regular GFS write (client, offset)?

Þ multiple clients might use GFS write (client offset) operation to
write records to the same region

Þ Avoid using complex and expensive synchronization among clients
(e.g., distributed lock manager)

15-440 /640 Carnegie Mellon University

GFS Client: Record Append Operation
• Common case: request fits in last chunk

- Primary appends data to own chunk replica
- Primary tells secondaries to do same at same byte offset in

their chunk replicas
- Primary replies with success to client

• When data won’t fit in last chunk
• Primary fills current chunk with padding
• Primary instructs other replicas to do same
• Primary replies to client, “retry on next chunk”

• If record append fails at any replica, client retries

7

15-440 /640 Carnegie Mellon University

GFS Client: Record Append Operation

8

• Replicas of same chunk may contain different data
• Can contain duplicates of all or part of record data
• Some regions of a chunk consistent and some not

• Semantics?
• Data written at least once in atomic unit

⇒ GFS client retries until success

What guarantee does GFS provide after
reporting success of append to application?

15-440 /640 Carnegie Mellon University

Outline: GFS
• Motivation and design goals
• Architecture
• Client Operations
• Fault tolerance
• Consistency model
• Post-GFS

9

15-440 /640 Carnegie Mellon University

GFS Fault Tolerance

High Availability
- Chunk replication

- Each chunk is replicated on multiple chunkservers

- Master (i.e., state of the master) replication
- Operation log and checkpoints replicated on multiple machines

Data Integrity
- Checksum checks

- Each chunk has checksums
- Checksum verified for every read and write
- Checksum also verified periodically for inactive chunks

10

15-440 /640 Carnegie Mellon University

GFS Fault Tolerance: Chunkserver

Chunkservers can be temporarily down or fail

Insufficient chunk replicas
- Master notices missing heartbeats
- Master decrements count of replicas for all chunks on dead

chunkserver
- Master re-replicates chunks missing replicas in background

Stale chunks
- Chunks have version numbers

- Stored on disk at master and chunkservers
- Each time master grants new lease to primary, increments

version, informs all replicas
- Detect outdated chunks with version number

- Outdated chunks are ignored and garbage collected
11

15-440 /640 Carnegie Mellon University

GFS Fault Tolerance: Master

• Master has all metadata information
• Lose master = lose the filesystem

• Master logs metadata updates to disk sequentially (→ WAL)
• Replicates log entries to remote backup servers
• Only replies to client after log entries safe on disk on self and

backups

12

What if GFS loses the master?

15-440 /640 Carnegie Mellon University

GFS Fault Tolerance: Master

• Replays log from disk
• Recovers namespace (directory) and file-to-chunk-ID

mapping (but not location of chunks)
• Asks chunkservers which chunks they hold

• Recovers chunk-ID-to-chunkserver mapping
• If chunk server has newer chunk, adopt its version number

• Master may have failed while granting lease

• Logs cannot be too long – why?
- Master uses log to rebuild the filesystem state at startup

• How to avoid too long logs?
- Periodic checkpoints taken to keep log short

13

15-440 /640 Carnegie Mellon University

Outline: GFS
• Motivation and design goals
• Architecture
• Client Operations
• Fault tolerance
• Consistency model
• Post-GFS

14

15-440 /640 Carnegie Mellon University

GFS Consistency Model

• Changes to namespace (i.e., metadata) are atomic
• E.g., file creation
• Due to: namespace locking (granular) + operation log

• Changes to data are ordered by a primary
• Concurrent writes can be overwritten
• Record appends complete at least once, at offset of GFS’s

choosing
→ Applications must cope with possible duplicates

15

15-440 /640 Carnegie Mellon University

GFS Consistency Model

• Failed operations can cause inconsistency
• E.g., different data across chunk servers (failed append)

• Concurrent successful writes (to the same region) results in an
“undefined” region

• Behavior is worse for writes than appends (why?)

GFS applications designed to accommodate the relaxed
consistency model

- Co-design of applications and the file system

16

15-440 /640 Carnegie Mellon University

Outline: GFS
• Motivation and design goals
• Architecture
• Client Operations
• Fault tolerance
• Consistency model
• Post-GFS

17

15-440 /640 Carnegie Mellon University

Post GFS

Open-source Implementation:
• Apache Hadoop Distributed File System (HDFS)
• Widely deployed in industry (esp. as underlying filesystem

for data analytics clusters)

Successor at Google: Colossus
• Some of the key differences

- Eliminates master node as single point of failure:
Multiple/distributed masters

- Improved storage efficiency: Employs erasure coding instead
of replicas

18

15-440 /640 Carnegie Mellon University

achunk 1

chunk 2

chunk 4

chunk 5

chunk 3

chunk 6

a

a

b

b

b

a

b

a+b

a+2b

Replication vs. erasure codes

3-replication Erasure code

chunk 1

chunk 2

chunk 3

Storage overhead = 3x Storage overhead = 2x

chunk 4

Two data chunks to be stored: and
Tolerate any 2 failures

“parity chunks”

a b

15-440 /640 Carnegie Mellon University

achunk 1

chunk 2

chunk 4

chunk 5

chunk 3

chunk 6

a

a

b

b

b

a

b

a+b

a+2b

Replication vs. erasure codes

3-replication Erasure code

chunk 1

chunk 2

chunk 3

Storage overhead = 3x Storage overhead = 2x

chunk 4

Two data chunks to be stored: and
Tolerate any 2 failures

“parity chunks”

Erasure codes: much less storage
for desired fault tolerance

a b

15-440 /640 Carnegie Mellon University

a b c d e f g h i j P1 P2 P3 P4

……

Erasure codes: how are they used in distributed
storage systems?

distributed on servers

across network

a b c d e f g h i j

a b c d e f g h i j P1 P2 P3 P4

10 data chunks 4 parity chunks

Example:

15-440 /640 Carnegie Mellon University

Most large-scale storage systems use erasure
codes

“Considering trends in data growth & datacenter hardware, we foresee

HDFS erasure coding being an important feature in years to come”

- Cloudera Engineering (September, 2016)

Facebook, Google, Amazon, Microsoft...

15-440 /640 Carnegie Mellon University

a b c d e f g h i j P1 P2 P3 P4

Research on erasure codes for storage clusters

Mathematical structure of parities decide degree of reliability and overhead

• Traditional erasure code: Reed-Solomon code

• Recent research on erasure codes for distributed storage

• Apache Hadoop Distributed File System (HDFS) v3.0

• "A Piggybacking Design Framework for Read-and Download-efficient Distributed Storage Codes",
IEEE ISIT 2013, IEEE Transactions on Information Theory, 2017.

• "A "Hitchhiker's" Guide to Fast and Efficient Data Reconstruction in Erasure-coded Data Centers",
ACM SIGCOMM 2014.

• Microsoft Azure

• "Erasure Coding in Windows Azure Storage", USENIX ATC, 2012.
• “On the locality of codeword symbols”, Transactions on Information Theory, 2012.

a b c d e f g h i j P1 P2 P3 P4

10 data chunks 4 parity chunks

15-440 /640 Carnegie Mellon University

15-440/640
Distributed Systems

- Finish up cluster filesystems (GFS)- Start distributed computation
(MPI & MapReduce)

15-440/640 Carnegie Mellon University

Cluster Computing

1. High-performance computing (HPC)

- Message Passing Interface (MPI)

2. Cluster computing

- MapReduce

25

15-440/640 Carnegie Mellon University

Cluster Computing

1. High-performance computing (HPC)

- Message Passing Interface (MPI)

2. Cluster computing

- MapReduce

26

15-440/640 Carnegie Mellon University

Typical HPC Machine
• Compute Nodes

• Lots of high end processor(s)
• Lots of RAM

• Network
• Specialized
• Very high performance

• Storage Server
• RAID-based disk array

Network

Compute Nodes

Storage Server

CPU

Mem

CPU

Mem

CPU

Mem
• • •

• • •

27

15-440/640 Carnegie Mellon University

HPC Machine Example

• Cores: ~200K CPU cores and ~27K GPU cores
• Total system memory: > 10 PB
• Interconnect: Mellanox EDR 100G InfiniBand

28

SUMMIT
Supercomputer

15-440/640 Carnegie Mellon University

HPC Programming Model
• Message passing model

• Processes communicate and synchronize
via exchange of messages

• Programs described at very low level
• Specify detailed control of processing &

communications

• Rely on small number of software packages
• Written by specialists

• Limits classes of problems & solution methods

Hardware

Machine-Dependent
Programming Model

Software
Packages

Application
Programs

29

15-440/640 Carnegie Mellon University

Typical HPC Operation

• Characteristics
• Long-lived interdependent processes
• Partitioning: exploit spatial locality
• Hold all program data in memory (avoiding

disk access)
• High bandwidth communication

P1 P2 P3 P4 P5

Message Passing

30

15-440/640 Carnegie Mellon University

Message Passing Interface (MPI)
• Standardized communication protocol for programming

parallel computers
• Specifies a range of functionality

• Virtual topology, Synchronization, Communication

• Virtual topology
• Finding number of processes, processor identity for a process,

neighboring processes in a logical topology

• Synchronization: barrier

31

15-440/640 Carnegie Mellon University

Message Passing Interface (MPI)
• Communication: both point-to-point and collective

• Collective sending: E.g., broadcast, scatter

4 7 3

14

• Collective receiving: E.g., gather, reduce, all-to-all

Involves both sending and receiving

• MPI implementations highly optimized for low
latency, high scalability over HPC grids / LANs

32

15-440/640 Carnegie Mellon University

HPC Example: Iterative Simulation I
• Conway’s Game of Life

– Cellular automata on a square grid
– Each cell “live” or “dead” (empty)
– State in next “generation” depends on number of

current neighbors:
• 2 -> stays same
• 3 -> becomes live
• Other -> becomes empty

33

15-440/640 Carnegie Mellon University

• Shard grid across nodes
• Simulate locally in each subgrid
• Exchange boundary information
• Repeat simulation, exchange steps

HPC Example: Iterative Simulation II

34

15-440/640 Carnegie Mellon University

Typical HPC Operation
• Characteristics

• Long-lived interdependent processes
• Partitioning: exploit spatial locality
• Hold all program data in memory (no disk

access)
• High bandwidth communication

• Strengths
• High utilization of resources
• Effective for many scientific applications

• Weaknesses
• Requires careful tuning of application to

resources
• Intolerant of any variability

P1 P2 P3 P4 P5

Message Passing

35

15-440/640 Carnegie Mellon University

HPC Fault Tolerance

• Tightly coupled processes
• Failure of one processes prevents all

others from progressing

• How to ensure correct execution in
presence of failures?

36

P1 P2 P3 P4 P5

15-440/640 Carnegie Mellon University

HPC Fault Tolerance

• Tightly coupled processes
• Failure of one processes prevents all

others from progressing

• How to ensure correct execution in
presence of failures?

• Checkpointing
• Periodically save system state of all

processes
• Stored in reliable storage that can

withstand targeted failure
• Roll back to error-free state in case of

failure

P1 P2 P3 P4 P5

Checkpoint

Checkpoint

37

15-440/640 Carnegie Mellon University

HPC Fault Tolerance
• Rollback upon failure

• Restore state to that of last
checkpoint

• All intervening computation
wasted

• Design decisions
• Asynchronous or synchronous?
• How often to checkpoint?
• What data to checkpoint?
• Who checkpoints: application or

system?

• Significant I/O traffic

• Very sensitive to number of
failing components

P1 P2 P3 P4 P5

Checkpoint

Restore

Wasted
Computation

38

15-440/640 Carnegie Mellon University

Cluster Computing

1. High-performance computing (HPC)

- Message Passing Interface (MPI)

2. Cluster computing

- MapReduce

39

15-440/640 Carnegie Mellon University

Typical Cluster Computing
• Off-the-shelf servers

• Collocation of compute and
storage

• Medium-performance
processors

• Modest memory
• A few disks

• Network
• Conventional Ethernet

switches
• 10s Gb/s

Network

Compute + Storage Nodes

• • •
CPU

Mem

CPU

Mem

CPU

Mem

40

15-440/640 Carnegie Mellon University

Oceans of Data, Skinny Pipes
• 10 Terabytes

• Easy to store
• Hard to move

Disks MB / s Time

Seagate HDDs ~100s > Few hours

Networks MB / s Time

Gigabit Ethernet < 125 > 23 hours

10GE < 1,200 > 2.4 hours

100GE < 12,000 15 minutes

41

15-440/640 Carnegie Mellon University

Data-Intensive System Challenge
How to process 10 TB in a few minutes?
• Distribute data over 100+ disks

• Assuming uniform data partitioning

42

• System Requirements
• Lots of processors with co-located disks
• Nodes located in close proximity

• Within reach of fast, local-area network

Key idea: partition compute tasks
and run where data is stored.

• Compute using 100+ processors
• Without having to move data

15-440/640 Carnegie Mellon University

How To Program A Cluster?
Example:

Many text files (e.g. logfiles, crawled webpages,..)
Stored in DFS on thousands of machines (GFS)
Assume you have access to all those machines

43

How do you find the frequency of words,
such as , “440”, “error”, “p4” ?

What do you do if tasks run for > 1 week?
e.g., machines fail, get rebooted

What do you do if a variant of this task comes up?

15-440/640 Carnegie Mellon University

Cluster Programming Model

• Application programs written in terms of high-level data operations
• Runtime system controls scheduling, load balancing, fault-tolerance
• This is idealized: no perfect cluster programming model, in practice
• One popular model: MapReduce

Hardware

Machine-Independent
Programming Model

Runtime
System

Application
Programs

44

15-440/640 Carnegie Mellon University

MapReduce Cluster Model

• Map: Map computation across many objects
• Runtime schedules “mappers” so as to minimize data movement

• Reduce: Aggregation of results

M

x1

M

x2

M

x3

M

xn

k1

Map

Reduce
k2

kr

· · ·

· · ·

Key-Value
Pairs

Dean & Ghemawat: “MapReduce: Simplified Data Processing on Large Clusters”, OSDI 2004 45

15-440/640 Carnegie Mellon University

Example MapReduce
• Calculate word frequency of a set of documents
• Example: children book in basic English

46

15-440/640 Carnegie Mellon University

Example MapReduce

• Calculate word frequency of set of documents

47

Come
and
see.

Come
and
see.

Come,
come.

Come,
Dick

Come
and see

Spot.

15-440/640 Carnegie Mellon University

Example MapReduce

• Map: generate 〈word, count〉 pairs for all words in document
• Reduce: sum word counts across documents

Come
and
see.

Come
and
see.

Come,
come.

M Extract

Word-Count
Pairs

M M M M

〈dick, 1〉

〈see, 1〉

〈come, 1〉

〈and, 1〉

〈come, 1〉

〈come, 1〉

〈come, 1〉

〈come, 2〉

〈see, 1〉

〈and, 1〉
〈and, 1〉

〈spot, 1〉

Sum
dick and

co
me see

spo
t

∑=1 ∑=3 ∑=6 ∑=3 ∑=1

Come,
Dick

Come
and see

Spot.

48

15-440/640 Carnegie Mellon University

Come
and
see.

Come
and
see.

Come,
come.

M Extract

Word-Count
Pairs

M M M M

〈dick,
1〉

〈see,
1〉

〈com
e, 1〉

〈and,
1〉

〈com
e, 1〉

〈com
e, 1〉

〈com
e, 1〉

〈com
e, 2〉

〈see,
1〉

〈and,
1〉

〈and,
1〉

〈spot,
1〉

Sum
dick and

co
me see

spo
t

∑=1 ∑=3 ∑=6 ∑=3 ∑=1

Come,
Dick

Come
and see

Spot.

Example MapReduce

• Map: generate 〈word, count〉 pairs for all words in document
• Reduce: sum word counts across documents

49

1) Mapping Phase

2) Shuffling / Sorting Phase

3) Reduce Phase

15-440/640 Carnegie Mellon University

Hadoop Project
• Colocate compute and storage: HDFS + MapReduce

Local Network

CPU

Node 1

CPU

Node 2

CPU

Node n

· · ·

50

• HDFS Fault Tolerance (3 copies of file)

• “Locality-preserving” compute job placement priority order
1) On same node as HDFS chunk
2) On same rack as HDFS chunk
3) Anywhere else (access over HDFS network)

• MapReduce programming environment
• Software manages (fault tolerant) execution of tasks on nodes

15-440/640 Carnegie Mellon University

MapReduce Implementation
• Built on Top of Cluster Filesystem

• Provides global naming
• Reliability via replication (3 replicas of every chunk)

• Breaks work into tasks
• Typically #tasks >> #processors
• Master schedules tasks on workers dynamically

• Net effect
• Input: Set of files in reliable file system
• Output: Set of files in reliable file system

51

15-440/640 Carnegie Mellon University

MapReduce Execution

Dean & Ghemawat: “MapReduce: Simplified Data Processing on Large Clusters”, OSDI 2004

HDFS
HDFS

15-440/640 Carnegie Mellon University

Real-World Challenges
• Fault Tolerance

• Reliable file system is not enough

• Workers can fail even if input files available

• Detect failed worker
• Heartbeat mechanism

• Reschedule failed task

• Stragglers
• Tasks that take a long time to execute

• Might be bugs, flaky/slow hardware (e.g., disk I/O), poor
partitioning, etc.

• When done with most tasks, reschedule any remaining
executing tasks

• Keep track of redundant executions
• Significantly reduces overall run time

53

15-440/640 Spring 2020 Carnegie Mellon University

Cluster Scalability Advantages
• Framework automatically manages fault tolerance
• Dynamically scheduled tasks with state in replicated files
• Provisioning Advantages

• Can use consumer-grade components
• maximizes cost-performance

• Can have heterogeneous nodes
• More efficient technology refresh

• Operational Advantages
• Minimal staffing
• Minimize downtime (operator errors…)

54

15-440/640 Carnegie Mellon University

Cluster Computing

MapReduce (Hadoop) Framework:

56

Key features: fault tolerance and high throughput

⇒ Simplified data analysis on large, unreliable clusters

Reduce
Map

local
disk

HDFS HDFSMap

Map
Reduce

input data output data

Can you think of limitations of the
MapReduce framework?

