
15-440 /640 Carnegie Mellon University

15-440/640
Distributed Systems

Cluster Filesystems
The Google File System

15-440 /640 Carnegie Mellon University

Announcements
• P2 released. Dates as on course website. Start early!
• For everyone’s safety:

- Please do not congregate after the class for Q/A -- ask
questions during the lecture or make use of Piazza and OH

- If you are sick, please watch the lectures remotely

- Wear your mask properly covering your nose and mouth
entirely at all times during the lecture

• For any private communication, use course staff email < ds-staff-
f21-private@lists.andrew.cmu.edu>. Not individual instructor
email addresses.

2

15-440 /640 Carnegie Mellon University

Introduction

3

Deep dive into a distributed filesystem for large clusters
(developed by Google).

Google File System (GFS)
Unique design choices
• Markedly different from traditional file systems
• Tradeoffs driven by specific characteristics of the operation

environment and workload
• Influenced several cluster file systems design
Open source version:
Apache Hadoop Distributed File System (HDFS)
• Widely successful and deployed in hundreds of companies

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, “The Google File System”, SOSP 2013.

15-440 /640 Carnegie Mellon University

Outline: GFS
• Motivation and design goals
• Architecture
• Client Operations
• Fault tolerance
• Consistency model
• Post-GFS

4

15-440 /640 Carnegie Mellon University

5

GFS Operation Environment: Data center

Warehouse scale computer built out of
large number of interconnected commodity servers

15-440 /640 Carnegie Mellon University

6

GFS Operation Environment: Data center

• Communicating within a rack
• low latency, high bandwidth, less contention for bandwidth

• Communicating across racks
• higher latency, limited available bandwidth, more contention

Top-of-rack Switch (TOR)

Hierarchy of Aggregation and Core Switches

Rack 1 Rack 2 …

15-440 /640 Carnegie Mellon University

7

GFS Operation Environment

• Hundreds of thousands of commodity servers
• Millions of commodity disks
• Failures are normal (expected):

• App bugs, OS bugs
• Disk failures
• Memory failures
• Network failures
• Power supply failures
• Human error

“Failures/unavailabilities are the norm rather than the exception”

15-440 /640 Carnegie Mellon University

Unavailability statistics (from a Facebook cluster)

day

• Multiple thousands of servers

• Unavailability event: server unresponsive for > 15 min

Source: Rashmi et. al., "A Solution to the Network Challenges of Data Recovery in Erasure-coded Distributed Storage Systems: A Study on the
Facebook Warehouse Cluster”, USENIX HotStorage 2013, ACM SIGCOMM 2014

median: 52

#unavailability
events

350

300

250

200

150

100

50

0
0 5 10 15 20 25 30

8

Daily server unavailability events = 0.5 - 1%

15-440 /640 Carnegie Mellon University

GFS: Workload Assumptions

• Large files, >= 100 MB in size
• Large, streaming reads (>= 1 MB in size)
• Large, sequential writes that mostly append
• Concurrent appends by multiple clients (e.g.,

files used as producer-consumer queues)
• Want atomicity for appends without synchronization

overhead among clients

9

15-440 /640 Carnegie Mellon University

GFS Design Goals

• Maintain high data and system availability
• Handle failures transparently (i.e., automatically)

• Low synchronization overhead between entities of
GFS

• Exploit parallelism of numerous disks/servers
• Choose high sustained throughput for individual

reads / writes
- High throughput more important than low latency

• Co-design filesystem and applications

10

15-440 /640 Carnegie Mellon University

Outline: GFS
• Motivation and design goals
• Architecture
• Client Operations
• Fault tolerance
• Consistency model
• Post-GFS

11

15-440 /640 Carnegie Mellon University

GFS Architecture

• One master server

• Many chunk servers (1000s)
• Chunk: fixed size (e.g., 64 MB) portion of file,

identified by 64-bit globally unique ID

• Many clients accessing different files stored
on same cluster

12

15-440 /640 Carnegie Mellon University

High-Level Picture of GFS Architecture

13

Search Gmail

15-440 /640 Carnegie Mellon University

High-Level Picture of GFS Architecture

14

15-440 /640 Carnegie Mellon University

GFS Architecture: Master Server

• Metadata:
• Namespace (directory hierarchy)
• Access control information (per-file)
• Mapping from files to chunks
• Current locations of chunks (chunkservers)

• Migrates chunks between chunkservers
• Why is migration needed?

• Controls consistency management
• Garbage collects orphaned chunks

15

Holds all metadata in RAM; very fast
operations on file system metadata

15-440 /640 Carnegie Mellon University

High-Level Picture of GFS Architecture

16

15-440 /640 Carnegie Mellon University

GFS Architecture: Chunkserver

• Stores file chunks (e.g., 64 MB in size) on local disk using
standard Linux filesystem (like Ext4), each with version
number and checksums

17

Why 64MB, and not traditional block size?

⇒ To reduce GFS overhead per chunk

• No understanding of overall distributed file system (just deal
with chunks)

• Read/write requests specify chunk handle and byte range

• Chunks replicated on configurable number of chunkservers
(default: 3)

• No caching of file data (beyond standard Linux buffer cache)

• Send periodic heartbeats to Master

15-440 /640 Carnegie Mellon University

Master/Chunkservers

18

file

re
pl
ic
at
ed

ch
un
ks

ch
un
ks
er
ve
rs

15-440 /640 Carnegie Mellon University

High-Level Picture of GFS Architecture

19

15-440 /640 Carnegie Mellon University

GFS Architecture: Client

• Issues control (metadata) requests to master server
• Issues data requests directly to chunkservers

• No caching of data
- Streaming reads (read once) and append writes (write

once) don’t benefit much from caching at client
• Simplifies client and overall system: No cache coherence

issues
• Caches metadata

- E.g., Chunkserver associated to a chunk

20

15-440 /640 Carnegie Mellon University

GFS Architecture: Client

• No file system interface at the operating-system level

• Not a traditional in-kernel file system

• User-level API is provided

• Does not support all the features of POSIX file system

access – but looks familiar (i.e. open, close, read…)

• Two special operations

• Append: append data to file as an atomic operation

without having to lock a file
⇒Multiple processes can append to the same file concurrently
without fear of overwriting one another’s data

• Snapshot: creates a copy of a file or directory at low cost

21

15-440 /640 Carnegie Mellon University

Outline: GFS
• Motivation and design goals
• Architecture
• Client operations
• Fault tolerance
• Consistency model
• Post-GFS

22

15-440 /640 Carnegie Mellon University

GFS Client: Read Operation

• Client sends master:

• read(file name, chunk ID = chunk index)
• Master’s reply:

• chunk ID, chunk version number, locations of

replicas

• Client sends request to “closest” chunkserver
with replica:

- read(chunk ID, byte range)
- “Closest” determined by IP address on rack-based

network topology

• Chunkserver replies with data

23

15-440 /640 Carnegie Mellon University

GFS Client: Write Operation

• 3 replicas for each chunk → must write to all
• When chunk created, Master decides placements

• Two within single rack; third on a different rack
• Why?

- Access time / safety tradeoff

24

How to ensure consistent writes to all replicas?

15-440 /640 Carnegie Mellon University

GFS Client: Write Operation

• Some chunkserver is primary for each chunk
• Managed via leases
• Master grants lease to primary (typically for 60 sec.)
• Leases renewed via piggybacking over periodic

heartbeat messages between master and chunkservers
• Client asks master for primary and secondary

replicas for each chunk
- Response cached at client

25

How to efficiently send write data to all three replicas?

• Client sends data to replicas in daisy chain
• Pipelined: each replica forwards as it receives

15-440 /640 Carnegie Mellon University

GFS Client: Write Operation
• Clients get metadata, daisy-chains data
• All replicas acknowledge receiving data

write to client
• Doesn’t write to file → just buffers data

• Client sends write request (chunk handle,
offset) to primary → commit phase

• Primary assigns serial numbers to write
requests, providing ordering

• Primary forwards write request with same
serial number to secondary replicas

• Secondary replicas all reply to primary
after completing writes in the same order

• Primary replies to client

26

15-440 /640 Carnegie Mellon University

GFS Client: Write Operation

Key points:
• Data pushed linearly along a chain
• Flow of data decoupled from flow of

control

Why?
Helps to
• fully utilize each machine’s network

bandwidth
• avoid network bottlenecks and high-

latency links
• minimize the latency to push through

all the data.

27

15-440 /640 Carnegie Mellon University

GFS Client: Record Append Operation

• Large files used as queues between multiple producers and

consumers

- Need atomic append operation

28

• Client pushes data to last chunk’s replicas; sends append

request to primary without specifying byte offset

Why not use a regular GFS write (client, offset)?

Þ multiple clients might use GFS write (client offset) operation to

write records to the same region

Þ Avoid using complex and expensive synchronization among clients

(e.g., distributed lock manager)

15-440 /640 Carnegie Mellon University

GFS Client: Record Append Operation
• Common case: request fits in last chunk

- Primary appends data to own chunk replica
- Primary tells secondaries to do same at same byte offset in

their chunk replicas
- Primary replies with success to client

• When data won’t fit in last chunk
• Primary fills current chunk with padding
• Primary instructs other replicas to do same
• Primary replies to client, “retry on next chunk”

• If record append fails at any replica, client retries

29

15-440 /640 Carnegie Mellon University

GFS Client: Record Append Operation

30

• Replicas of same chunk may contain different data
• Can contain duplicates of all or part of record data
• Some regions of a chunk consistent and some not

• Semantics?
• Data written at least once in atomic unit

⇒GFS client retries until success

What guarantee does GFS provide after
reporting success of append to application?

15-440 /640 Carnegie Mellon University

Outline: GFS
• Motivation and design goals
• Architecture
• Client Operations
• Fault tolerance
• Consistency model
• Post-GFS

31

15-440 /640 Carnegie Mellon University

GFS Fault Tolerance

High Availability
- Chunk replication

- Each chunk is replicated on multiple chunkservers

- Master (i.e., state of the master) replication
- Operation log and checkpoints replicated on multiple machines

Data Integrity
- Checksum checks

- Each chunk has checksums
- Checksum verified for every read and write
- Checksum also verified periodically for inactive chunks

32

15-440 /640 Carnegie Mellon University

GFS Fault Tolerance: Chunkserver

Chunkservers can be temporarily down or fail

Insufficient chunk replicas
- Master notices missing heartbeats
- Master decrements count of replicas for all chunks on dead

chunkserver
- Master re-replicates chunks missing replicas in background

Stale chunks
- Chunks have version numbers

- Stored on disk at master and chunkservers
- Each time master grants new lease to primary, increments

version, informs all replicas
- Detect outdated chunks with version number

- Outdated chunks are ignored and garbage collected
33

15-440 /640 Carnegie Mellon University

GFS Fault Tolerance: Master

• Master has all metadata information
• Lose master = lose the filesystem

• Master logs metadata updates to disk sequentially (→ WAL)
• Replicates log entries to remote backup servers
• Only replies to client after log entries safe on disk on self and

backups

34

What if GFS loses the master?

15-440 /640 Carnegie Mellon University

GFS Fault Tolerance: Master

• Replays log from disk

• Recovers namespace (directory) and file-to-chunk-ID

mapping (but not location of chunks)

• Asks chunkservers which chunks they hold

• Recovers chunk-ID-to-chunkserver mapping

• If chunk server has newer chunk, adopt its version number

• Master may have failed while granting lease

• Logs cannot be too long – why?

- Master uses log to rebuild the filesystem state at startup

• How to avoid too long logs?

- Periodic checkpoints taken to keep log short

35

15-440 /640 Carnegie Mellon University

Outline: GFS
• Motivation and design goals
• Architecture
• Client Operations
• Fault tolerance
• Consistency model
• Post-GFS

36

15-440 /640 Carnegie Mellon University

GFS Consistency Model

• Changes to namespace (i.e., metadata) are atomic
• E.g., file creation

• Due to: namespace locking (granular) + operation log

• Changes to data are ordered by a primary

• Concurrent writes can be overwritten

• Record appends complete at least once, at offset of GFS’s

choosing
→ Applications must cope with possible duplicates

37

15-440 /640 Carnegie Mellon University

GFS Consistency Model

• Failed operations can cause inconsistency
• E.g., different data across chunk servers (failed append)

• Concurrent successful writes (to the same region) results in an
“undefined” region

• Behavior is worse for writes than appends (why?)

GFS applications designed to accommodate the relaxed
consistency model

- Co-design of applications and the file system

38

15-440 /640 Carnegie Mellon University

Outline: GFS
• Motivation and design goals
• Architecture
• Client Operations
• Fault tolerance
• Consistency model
• Post-GFS

39

15-440 /640 Carnegie Mellon University

Post GFS

Open-source Implementation:
• Apache Hadoop Distributed File System (HDFS)
• Widely deployed in industry (esp. as underlying filesystem

for data analytics clusters)

Successor at Google: Colossus
• Some of the key differences

- Eliminates master node as single point of failure:
Multiple/distributed masters

- Improved storage efficiency: Employs erasure coding instead
of replicas

40

15-440 /640 Carnegie Mellon University

achunk 1

chunk 2

chunk 4

chunk 5

chunk 3

chunk 6

a

a

b

b

b

a

b

a+b

a+2b

Replication vs. erasure codes

3-replication Erasure code

chunk 1

chunk 2

chunk 3

Storage overhead = 3x Storage overhead = 2x

chunk 4

Two data chunks to be stored: and
Tolerate any 2 failures

“parity chunks”

a b

15-440 /640 Carnegie Mellon University

achunk 1

chunk 2

chunk 4

chunk 5

chunk 3

chunk 6

a

a

b

b

b

a

b

a+b

a+2b

Replication vs. erasure codes

3-replication Erasure code

chunk 1

chunk 2

chunk 3

Storage overhead = 3x Storage overhead = 2x

chunk 4

Two data chunks to be stored: and
Tolerate any 2 failures

“parity chunks”

Erasure codes: much less storage
for desired fault tolerance

a b

15-440 /640 Carnegie Mellon University

a b c d e f g h i j P1 P2 P3 P4

……

Erasure codes: how are they used in distributed
storage systems?

distributed on servers
across network

a b c d e f g h i j

a b c d e f g h i j P1 P2 P3 P4

10 data chunks 4 parity chunks

Example:

15-440 /640 Carnegie Mellon University

Most large-scale storage systems use erasure
codes

“Considering trends in data growth & datacenter hardware, we foresee
HDFS erasure coding being an important feature in years to come”

- Cloudera Engineering (September, 2016)

Facebook, Google, Amazon, Microsoft...

15-440 /640 Carnegie Mellon University

a b c d e f g h i j P1 P2 P3 P4

Research on erasure codes for storage clusters

Mathematical structure of parities decide degree of reliability and overhead

• Traditional erasure code: Reed-Solomon code

• Recent research on erasure codes for distributed storage

• Apache Hadoop Distributed File System (HDFS) v3.0

• "A Piggybacking Design Framework for Read-and Download-efficient Distributed Storage Codes",
IEEE ISIT 2013, IEEE Transactions on Information Theory, 2017.

• "A "Hitchhiker's" Guide to Fast and Efficient Data Reconstruction in Erasure-coded Data Centers",
ACM SIGCOMM 2014.

• Microsoft Azure

• "Erasure Coding in Windows Azure Storage", USENIX ATC, 2012.
• “On the locality of codeword symbols”, Transactions on Information Theory, 2012.

a b c d e f g h i j P1 P2 P3 P4

10 data chunks 4 parity chunks

