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Announcements
• P2 released. Dates as on course website. Start early!
• For everyone’s safety: 

- Please do not congregate after the class for Q/A -- ask 
questions during the lecture or make use of Piazza and OH

- If you are sick, please watch the lectures remotely

- Wear your mask properly covering your nose and mouth 
entirely at all times during the lecture

• For any private communication, use course staff email < ds-staff-
f21-private@lists.andrew.cmu.edu>. Not individual instructor 
email addresses.
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Introduction
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Deep dive into a distributed filesystem for large clusters 
(developed by Google).

Google File System (GFS)
Unique design choices 
• Markedly different from traditional file systems 
• Tradeoffs driven by specific characteristics of the operation 

environment and workload
• Influenced several cluster file systems design
Open source version: 
Apache Hadoop Distributed File System (HDFS)
• Widely successful and deployed in hundreds of companies

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, “The Google File System”, SOSP 2013.
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Outline: GFS
• Motivation and design goals
• Architecture
• Client Operations
• Fault tolerance
• Consistency model
• Post-GFS
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GFS Operation Environment: Data center

Warehouse scale computer built out of 
large number of interconnected commodity servers
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GFS Operation Environment: Data center

• Communicating within a rack 
• low latency, high bandwidth, less contention for bandwidth

• Communicating across racks 
• higher latency, limited available bandwidth, more contention

Top-of-rack Switch (TOR)

Hierarchy of Aggregation and Core Switches

Rack 1 Rack 2 …
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GFS Operation Environment

• Hundreds of thousands of commodity servers
• Millions of commodity disks
• Failures are normal (expected):

• App bugs, OS bugs
• Disk failures
• Memory failures
• Network failures
• Power supply failures
• Human error

“Failures/unavailabilities are the norm rather than the exception”
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Unavailability statistics (from a Facebook cluster)

day

• Multiple thousands of servers

• Unavailability event: server unresponsive for > 15 min

Source: Rashmi et. al., "A Solution to the Network Challenges of Data Recovery in Erasure-coded Distributed Storage Systems: A Study on the 
Facebook Warehouse Cluster”, USENIX HotStorage 2013, ACM SIGCOMM 2014
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Daily server unavailability events = 0.5 - 1% 
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GFS: Workload Assumptions

• Large files, >= 100 MB in size
• Large, streaming reads (>= 1 MB in size)
• Large, sequential writes that mostly append
• Concurrent appends by multiple clients (e.g., 

files used as producer-consumer queues)
• Want atomicity for appends without synchronization 

overhead among clients
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GFS Design Goals

• Maintain high data and system availability
• Handle failures transparently (i.e., automatically)

• Low synchronization overhead between entities of 
GFS

• Exploit parallelism of numerous disks/servers
• Choose high sustained throughput for individual 

reads / writes
- High throughput more important than low latency

• Co-design filesystem and applications

10
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Outline: GFS
• Motivation and design goals
• Architecture
• Client Operations
• Fault tolerance
• Consistency model
• Post-GFS
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GFS Architecture

• One master server 

• Many chunk servers (1000s)
• Chunk: fixed size (e.g., 64 MB) portion of file, 

identified by 64-bit globally unique ID

• Many clients accessing different files stored 
on same cluster

12
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High-Level Picture of GFS Architecture
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Search Gmail
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High-Level Picture of GFS Architecture
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GFS Architecture: Master Server

• Metadata:
• Namespace (directory hierarchy)
• Access control information (per-file)
• Mapping from files to chunks
• Current locations of chunks (chunkservers)

• Migrates chunks between chunkservers
• Why is migration needed?

• Controls consistency management
• Garbage collects orphaned chunks

15

Holds all metadata in RAM; very fast 
operations on file system metadata
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High-Level Picture of GFS Architecture
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GFS Architecture: Chunkserver

• Stores file chunks (e.g., 64 MB in size) on local disk using 
standard Linux filesystem (like Ext4), each with version 
number and checksums
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Why 64MB, and not traditional block size?

⇒ To reduce GFS overhead per chunk

• No understanding of overall distributed file system (just deal 
with chunks)

• Read/write requests specify chunk handle and byte range

• Chunks replicated on configurable number of chunkservers
(default: 3)

• No caching of file data (beyond standard Linux buffer cache)

• Send periodic heartbeats to Master
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Master/Chunkservers
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High-Level Picture of GFS Architecture

19
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GFS Architecture: Client

• Issues control (metadata) requests to master server
• Issues data requests directly to chunkservers

• No caching of data
- Streaming reads (read once) and append writes (write 

once) don’t benefit much from caching at client
• Simplifies client and overall system: No cache coherence 

issues
• Caches metadata

- E.g., Chunkserver associated to a chunk

20



15-440 /640  Carnegie Mellon University

GFS Architecture: Client

• No file system interface at the operating-system level

• Not a traditional in-kernel file system

• User-level API is provided

• Does not support all the features of POSIX file system 

access – but looks familiar (i.e. open, close, read…)

• Two special operations

• Append: append data to file as an atomic operation 

without having to lock a file
⇒Multiple processes can append to the same file concurrently 
without fear of overwriting one another’s data

• Snapshot: creates a copy of a file or directory at low cost

21
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Outline: GFS
• Motivation and design goals
• Architecture
• Client operations
• Fault tolerance
• Consistency model
• Post-GFS
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GFS Client: Read Operation

• Client sends master:

• read(file name, chunk ID = chunk index)
• Master’s reply:

• chunk ID, chunk version number, locations of 

replicas

• Client sends request to “closest” chunkserver
with replica:

- read(chunk ID, byte range)
- “Closest” determined by IP address on rack-based 

network topology

• Chunkserver replies with data

23
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GFS Client: Write Operation

• 3 replicas for each chunk → must write to all
• When chunk created, Master decides placements

• Two within single rack; third on a different rack 
• Why?

- Access time / safety tradeoff 

24

How to ensure consistent writes to all replicas?
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GFS Client: Write Operation

• Some chunkserver is primary for each chunk
• Managed via leases
• Master grants lease to primary (typically for 60 sec.)
• Leases renewed via piggybacking over periodic 

heartbeat messages between master and chunkservers
• Client asks master for primary and secondary 

replicas for each chunk
- Response cached at client

25

How to efficiently send write data to all three replicas?

• Client sends data to replicas in daisy chain
• Pipelined: each replica forwards as it receives



15-440 /640  Carnegie Mellon University

GFS Client: Write Operation
• Clients get metadata, daisy-chains data
• All replicas acknowledge receiving data 

write to client
• Doesn’t write to file → just buffers data

• Client sends write request (chunk handle, 
offset) to primary → commit phase

• Primary assigns serial numbers to write 
requests, providing ordering

• Primary forwards write request with same 
serial number to secondary replicas

• Secondary replicas all reply to primary 
after completing writes in the same order

• Primary replies to client

26



15-440 /640  Carnegie Mellon University

GFS Client: Write Operation

Key points:
• Data pushed linearly along a chain
• Flow of data decoupled from flow of 

control

Why?
Helps to
• fully utilize each machine’s network 

bandwidth
• avoid network bottlenecks and high-

latency links 
• minimize the latency to push through 

all the data. 

27
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GFS Client: Record Append Operation

• Large files used as queues between multiple producers and 

consumers

- Need atomic append operation

28

• Client pushes data to last chunk’s replicas; sends append 

request to primary without specifying byte offset

Why not use a regular GFS write (client, offset)?

Þ multiple clients might use GFS write (client offset) operation to 

write records to the same region

Þ Avoid using complex and expensive synchronization among clients 

(e.g., distributed lock manager)
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GFS Client: Record Append Operation
• Common case: request fits in last chunk

- Primary appends data to own chunk replica
- Primary tells secondaries to do same at same byte offset in 

their chunk replicas
- Primary replies with success to client

• When data won’t fit in last chunk
• Primary fills current chunk with padding
• Primary instructs other replicas to do same
• Primary replies to client, “retry on next chunk”

• If record append fails at any replica, client retries

29
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GFS Client: Record Append Operation

30

• Replicas of same chunk may contain different data
• Can contain duplicates of all or part of record data
• Some regions of a chunk consistent and some not

• Semantics?
• Data written at least once in atomic unit

⇒GFS client retries until success

What guarantee does GFS provide after 
reporting success of append to application?
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Outline: GFS
• Motivation and design goals
• Architecture
• Client Operations
• Fault tolerance
• Consistency model
• Post-GFS
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GFS Fault Tolerance

High Availability
- Chunk replication

- Each chunk is replicated on multiple chunkservers

- Master (i.e., state of the master) replication
- Operation log and checkpoints replicated on multiple machines 

Data Integrity
- Checksum checks

- Each chunk has checksums
- Checksum verified for every read and write
- Checksum also verified periodically for inactive chunks

32
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GFS Fault Tolerance: Chunkserver

Chunkservers can be temporarily down or fail

Insufficient chunk replicas
- Master notices missing heartbeats
- Master decrements count of replicas for all chunks on dead 

chunkserver
- Master re-replicates chunks missing replicas in background

Stale chunks
- Chunks have version numbers

- Stored on disk at master and chunkservers
- Each time master grants new lease to primary, increments 

version, informs all replicas
- Detect outdated chunks with version number

- Outdated chunks are ignored and garbage collected
33
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GFS Fault Tolerance: Master

• Master has all metadata information
• Lose master = lose the filesystem

• Master logs metadata updates to disk sequentially ( → WAL)
• Replicates log entries to remote backup servers
• Only replies to client after log entries safe on disk on self and 

backups

34

What if GFS loses the master?
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GFS Fault Tolerance: Master

• Replays log from disk

• Recovers namespace (directory) and file-to-chunk-ID 

mapping (but not location of chunks)

• Asks chunkservers which chunks they hold

• Recovers chunk-ID-to-chunkserver mapping

• If chunk server has newer chunk, adopt its version number

• Master may have failed while granting lease

• Logs cannot be too long – why?

- Master uses log to rebuild the filesystem state at startup

• How to avoid too long logs?

- Periodic checkpoints taken to keep log short

35
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Outline: GFS
• Motivation and design goals
• Architecture
• Client Operations
• Fault tolerance
• Consistency model
• Post-GFS
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GFS Consistency Model

• Changes to namespace (i.e., metadata) are atomic
• E.g., file creation

• Due to: namespace locking (granular) + operation log

• Changes to data are ordered by a primary

• Concurrent writes can be overwritten

• Record appends complete at least once, at offset of GFS’s 

choosing
→ Applications must cope with possible duplicates

37
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GFS Consistency Model

• Failed operations can cause inconsistency
• E.g., different data across chunk servers (failed append)

• Concurrent successful writes (to the same region) results in an 
“undefined” region

• Behavior is worse for writes than appends (why?)

GFS applications designed to accommodate the relaxed 
consistency model

- Co-design of applications and the file system

38
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Outline: GFS
• Motivation and design goals
• Architecture
• Client Operations
• Fault tolerance
• Consistency model
• Post-GFS
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Post GFS

Open-source Implementation: 
• Apache Hadoop Distributed File System (HDFS)
• Widely deployed in industry (esp. as underlying filesystem 

for data analytics clusters)

Successor at Google: Colossus
• Some of the key differences

- Eliminates master node as single point of failure: 
Multiple/distributed masters

- Improved storage efficiency: Employs erasure coding instead 
of replicas

40
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Replication vs. erasure codes

3-replication Erasure code
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Storage overhead  = 3x Storage overhead  = 2x
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Two data chunks to be stored: and
Tolerate any 2 failures

“parity chunks”
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Replication vs. erasure codes

3-replication Erasure code

chunk 1

chunk 2

chunk 3

Storage overhead  = 3x Storage overhead  = 2x

chunk 4

Two data chunks to be stored: and
Tolerate any 2 failures

“parity chunks”

Erasure codes: much less storage 
for desired fault tolerance

a b



15-440 /640  Carnegie Mellon University

a b c d e f g h i j P1 P2 P3 P4

……

Erasure codes: how are they used in distributed 
storage systems?

distributed on servers
across network

a b c d e f g h i j

a b c d e f g h i j P1 P2 P3 P4

10 data chunks 4 parity chunks

Example:
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Most large-scale storage systems use erasure 
codes

“Considering trends in data growth & datacenter hardware, we foresee 
HDFS erasure coding being an important feature in years to come” 

- Cloudera Engineering (September, 2016)

Facebook, Google, Amazon, Microsoft...
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a b c d e f g h i j P1 P2 P3 P4

Research on erasure codes for storage clusters

Mathematical structure of parities decide degree of reliability and overhead

• Traditional erasure code: Reed-Solomon code

• Recent research on erasure codes for distributed storage

• Apache Hadoop Distributed File System (HDFS) v3.0

• "A Piggybacking Design Framework for Read-and Download-efficient Distributed Storage Codes", 
IEEE ISIT 2013, IEEE Transactions on Information Theory, 2017.

• "A "Hitchhiker's" Guide to Fast and Efficient Data Reconstruction in Erasure-coded Data Centers", 
ACM SIGCOMM 2014.

• Microsoft Azure

• "Erasure Coding in Windows Azure Storage", USENIX ATC, 2012. 
• “On the locality of codeword symbols”, Transactions on Information Theory, 2012.

a b c d e f g h i j P1 P2 P3 P4

10 data chunks 4 parity chunks


