
Fault Tolerance & RAID
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Announcements

• Project 2 Released
• Recitation this Wednesday

• Midterm-1 Recap. (Come and talk to the instructors, as per Piazza)

• P3 – Group Project, DO NOT have to have the same partner 
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Outline

• Errors (focus on errors in DRAM and disk drives)
• Presence, impact, availability metric

• Tools/options for dealing with errors
• Retries, checksums, CRC, error detection/correction codes, …

• RAID levels and performance
• For disk systems

• Estimating availability
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Types of Errors
Hard errors: Dead/damaged component which experiences a fail-
stop/crash.

Soft errors: A flipped signal or bit, caused by an external source or 
a faulty component.

A faulty component can cause recurring soft errors.
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Example: DRAM
Hard error
● Faulty traces/bad solder on the motherboard 
● Defective DRAM bank

Soft error
● Bit flips caused by cosmic radiation or alpha particles (from the 

chip itself) hitting memory cell, changing values
● DRAM is just little capacitors to store charge… 

if you hit it with radiation, you can add charge to it.
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DRAM errors in real life
Both Microsoft® and Google have recently started to identify DRAM 
errors as an increasing contributor to system failures

Google – Datacenter servers

Microsoft® – Consumer desktop/laptop

DRAM Errors in the Wild: A Large-Scale Field Study [Schroeder '09]
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Disk failures in the real world [Schroeder '07]

Hard drives are a major cause of server failures.

Company 1 Company 2HPC 1
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Impact of failures

One small error:
A single bit in DRAM flips due to a cosmic ray

Propagates:
● This bit happens to be mapped in kernel address space
● You soon get a kernel panic
● This node was part of a dozen storage servers for your DFS
● A client hangs trying to read from the DFS
● The Gradescope frontend can't fetch your 15-440 assignment
● You get an F in the course
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Measuring Availability

● Mean time to failure (MTTF)
● Mean time to repair (MTTR)
● Mean time between failures (MTBF) = MTTF + MTTR

Failure 1 Failure 2
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Measuring Availability

● Mean time to failure (MTTF)
● Mean time to repair (MTTR)
● Mean time between failures (MTBF) = MTTF + MTTR

Available during these 
3 periods of time.
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Measuring Availability

● Mean time to failure (MTTF)
● Mean time to repair (MTTR)
● Mean time between failures (MTBF) = MTTF + MTTR

Availability = MTTF / (MTTF + MTTR)
○ Example: Your OS crashes once a month, takes 10 minutes to reboot
○ MTTF = 720 hours (43,200 minutes)
○ MTTR = 10 minutes
○ Availability = 43,200 / 43,210 = 0.997 ("2 nines")
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Availability --- the “nines”
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Availability in Practice
● Carrier airlines (2002 FAA fact book)

○ 41 accidents, 6.7M departures
○ 99.9993% availability

● 911 Phone service (1993 NRIC report)
○ 29 minutes per line per year
○ 99.994%

● Standard phone service (various sources)
○ 53+ minutes per line per year
○ 99.99%+

● End-to-end Internet Availability
○ 95% -- 99.6%
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Availability SLOs and SLAs
● Availability Service Level Objective (SLO)

○ An availability threshold which your system targets

● Availability Service Level Agreement (SLA)

○ An availability threshold that you guarantee for customers

Let’s look at an example
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Example: AWS EC2 Availability SLA

15



Real Devices
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Real Devices
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Real Devices

MTBF of 114 years!
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MBTF of 1,000,000 hours: the fine print
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Outline

• Errors (focus on errors in DRAM and disk drives)
• Presence, impact, availability metric

• Tools/options for dealing with errors
• Retries, checksums, CRC, error detection/correction codes, …

• RAID levels and performance
• For disk systems

• Estimating availability
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What are our options?
1. Silently return the wrong data.

2. Detect Failure.

3. Correct / mask the failure.
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What are our options?
1. Silently return the wrong data.

2. Detect Failure.

3. Correct / mask the failure.
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What are our options?
1. Silently return the wrong data.

2. Detect Failure.

3. Correct / mask the failure.
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Detecting Errors
Key idea: information redundancy

● Add additional information (bits) that can be used to verify the 
correctness
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Error Detecting Codes

Sender Receiver

Error-prone link

Data D

Data D f(D)

Calculate EDC f(D)

Data D’ f(D)’

If f(D)’ ≠ f(D’)
error detected

Elif f(D)’ = f(D’)
no error detected
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Error Detecting Codes

Sender Receiver

Error-prone link

Data D

Data D f(D)

Calculate EDC f(D)

Data D’ f(D)’

If f(D)’ ≠ f(D’)
error detected

Elif f(D)’ = f(D’)
no error detected
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Error Detecting Codes

Sender Receiver

Error-prone link

Data D

Data D f(D)

Calculate EDC f(D)

Data D’ f(D)’

If f(D)’ ≠ f(D’)
error detected

Elif f(D)’ = f(D’)
no error detected
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Error Detection: Single Bit Parity

1 1 0 1 1 0 0 _

7 Data bits Parity
bit

f(D) = sum of bits in D (mod 2)

28



Error Detection: Single Bit Parity

1 1 0 1 1 0 0 0

7 Data bits Parity
bit

f(D) = sum of bits in D (mod 2)
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Error Detection: Single Bit Parity

1 1 0 1 1 0 0 0

7 Data bits Parity
bit

f(D) = sum of bits in D (mod 2)

1 1 0 1 1 1 0 0 Single Bit Parity can detect a single-bit 
error.
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Error Detection: Single Bit Parity

1 1 0 1 1 0 0 0

7 Data bits Parity
bit

f(D) = sum of bits in D (mod 2)

1 1 0 1 1 1 0 0 Single Bit Parity can detect a single-bit 
error.

1 1 0 1 0 1 0 0 Single Bit Parity cannot reliably detect 
multiple bit errors.
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Error Detection - Checksum
● Same principle as single bit parity but at coarser granularity
● Example: IP packets

● f(D) = Ones' complement sum of all bytes in a packet
○ Simple to implement
○ Relatively weak detection
○ Tricked by typical error patterns - e.g. burst errors
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Error Detection - Cyclic Redundancy Check (CRC)
• Strong detection capability
• Good at detecting burst errors
• Wide adoption

• Efficient streaming implementation in hardware
• x86 instruction to calculate CRC

• Used by ethernet and hard drives
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Error Detection - CRC
• Based on “polynomial codes”

• Treat data bits, D, as polynomial coefficients
• Choose r+1 bit “generator polynomial”, G

• Send/receiver share in advance
• Add r bits to packet as CRC bits, R
• Packet received <D, R> should be divisible by G
• Can detect all burst errors less than r+1 bits

• See the next few slides if you are curious
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Error Detection - Cyclic Redundancy Check (CRC)
○ Treat the bits of transmitted data as polynomial coefficients
○ Sender and receiver agree on a Generator polynomial G
○ Append check bits to the data so it is divisible by G (mod 2)
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CRC Example

<D, R> is evenly divisible by G modulo 2

D・2r ⊕ R ≡ kG (mod 2)
D・2r ≡ kG ⊕ R  (mod 2)                 XOR both sides by R
D・2r mod G ≡ 0 ⊕ R (mod 2)         mod both sides by G

Or equivalently
(D・2r) / G (mod 2) = R
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D = 101110
G = 1001
r = 3

Find R

CRC Example
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What are our options?
1. Silently return the wrong answer.

2. Detect Failure.

3. Correct / mask the failure.
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Error Recovery
• Two forms of error recovery

• Redundancy (forward recovery)
• Error Correcting Codes (ECC)
• Replication/Voting

• Retry (backward recovery)
• ECC

• Use encoded redundant data to help repair data loss
• Forward Error Correction – send bits in advance

• Tradeoff?
• Reduces latency of recovery at the cost of BW 39



Error Correcting Codes

Sender Receiver

Error-prone link

Data D

Data D f(D)

Calculate ECC f(D)

Data D’ f(D)’

If f(D)’ ≠ f(D’)
Fix the error
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We will not go into ECC in this course
Courses that cover ECC, if you are interested:
● 15-750 Graduate Algorithms
● 15-853 Algorithms in the real world
● 15-848 Practical information and coding theory for computer 

systems

● Course material and information available on Rashmi’s 
webpage
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Error Recovery - Replication/Voting
Triple modular redundancy

● Send the same request to 3 different instances of the system
● Compare the answers, take the majority

Only commonly used in space applications. Why?

● $$$
● Atmosphere blocks cosmic rays
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Error Recovery - Error Correcting Codes (ECC)
Two Dimensional Bit Parity: Detect and correct single bit errors
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Error Recovery - Error Correcting Codes (ECC)
Two Dimensional Bit Parity: Detect and correct single bit errors
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Error Recovery - Retry (Network)
How can we deal with soft faults in the network?

Detect the error:
● Timeout
● Parity
● Checksum

Correct the error:
● Retry/Retransmit
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Key question: How Correlated are Failures?

California Sydney Failures not likely to be 
correlated

D
E
L
L

H
P
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California

Rack

Key question: How Correlated are Failures?

• Top-of-Rack (ToR) switch 
malfunctions

• Shared UPS breaks
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California

Rack Rack

Key question: How Correlated are Failures?

● Fire in the datacenter
● AC breakdown*
● Natural disaster

D
E
L
L

H
P

* Facebook's first data center drenched by actual 
cloud, 2013
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Key question: How Correlated are Failures?

Correlation reduces value of redundancy

All of your replicas are virtual machines 
running on the same physical host?

Everything fails
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Fault Tolerant Design
When designing a fault tolerant system, consider

1. The probability of failure of each component
2. The cost of failure
3. The cost of implementing fault tolerance
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Outline

• Errors (focus on errors in DRAM and disk drives)
• Presence, impact, availability metric

• Tools/options for dealing with errors
• Retries, checksums, CRC, error detection/correction codes, …

• RAID levels and performance
• For disk systems

• Estimating availability
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Back to Hard Drives...
● Stack of spinning disks
● Sequence of small data sectors 

○ Usually 4KB

*Image source:Storage subsystem performance: analysis and 
recipes http://gudok.xyz/sspar/

Sectors
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Fault Tolerant Options
1. Silently return the wrong answer.
2. Detect Failure.

• Add CRC to block header/trailer
• CRC mismatch → report error

3. Correct / mask the failure.
• Re-read if received firmware error signal (may help with transient 

errors, may not)
• Use error correcting code
• What errors does ECC help?

• Bit flip: Yes Block damaged: No
• Have data stored in multiple places (RAID)
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RAID Taxonomy
● Redundant Array of Inexpensive Disks (RAID)

● Constructed by UC-Berkeley researchers in late 80s
● Original problem: increase IO capacity with multiple disks

● Solution
● Use multiple disks to form single logical disk
● Enhance reliability and fault tolerance
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RAID Levels
RAID 0 - Data striping without redundancy

RAID 1 - Mirroring of independent disks

RAID 4 - Data striping plus parity disk

RAID 5 - Data striping plus stripped (rotating) parity

Others (RAID 2, 3, 6)
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Preliminaries
● Definitions

● Reliability: # of disk failures we can tolerate
● Latency: time to process Read/Write requests
● Throughput: bandwidth for R/W requests

● Assumptions:
● Only consider random R/W in this class
● Same throughput, latency for R/W access

56



Single Disk

Level Capacity Reliability Write 
Throughput

Write 
Latency

Read 
Throughput

Read 
Latency

Single Disk B 0

B

...

2

1

B: # of blocks

1

B: # of blocks per disk
R: R/W throughput per disk
N: # of disks D: time to R/W 1 block
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Single Disk

Level Capacity Reliability Write 
Throughput

Write 
Latency

Read 
Throughput

Read 
Latency

Single Disk B 0 R R

B

...

2

1

B: # of blocks

1

B: # of blocks per disk
R: R/W throughput per disk
N: # of disks D: time to R/W 1 block

R/W Access
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Single Disk

Level Capacity Reliability Write 
Throughput

Write 
Latency

Read 
Throughput

Read 
Latency

Single Disk B 0 R D R D

B

...

2

1

B: # of blocks

1

B: # of blocks per disk
R: R/W throughput per disk
N: # of disks D: time to R/W 1 block

R/W Access
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RAID-0: Striping 
• To optimize performance
• Interleave data across multiple disks

• Large file streaming à parallel transfers 
• Small requests benefit from load balancing (If hot files evenly 

distributed on all disks) 

60

File: 1 2 3 4
1 2 3 4

D1 D2 D3 D4



RAID-0: Striping 

61

Level Capacity Reliability Write 
Throughput

Write 
Latency

Read 
Throughput

Read 
Latency

RAID 0 N*B 0

B: # of blocks per disk
R: R/W throughput per disk
N: # of disks D: time to R/W 1 block

1 2 3 4

D1 D2 D3 D4

File: 1 2 3 4



RAID-0: Striping 
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Level Capacity Reliability Write 
Throughput

Write 
Latency

Read 
Throughput

Read 
Latency

RAID 0 N*B 0 N*R N*R

1 2 3 4

D1 D2 D3 D4

File: 1 2 3 4

B: # of blocks per disk
R: R/W throughput per disk
N: # of disks D: time to R/W 1 block



RAID-0: Striping 
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Level Capacity Reliability Write 
Throughput

Write 
Latency

Read 
Throughput

Read 
Latency

RAID 0 N*B 0 N*R D N*R D

1 2 3 4

D1 D2 D3 D4

File: 1 2 3 4

B: # of blocks per disk
R: R/W throughput per disk
N: # of disks D: time to R/W 1 block



What If A Disk Fails? 

• In a striped system
• Part of the file system is lost

•Periodic Backups?
• Takes time and effort
• Newer data after last backup will be lost
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RAID-1: Mirroring

• To achieve better reliability
• Two (or more) copies
• Write both, read either 
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File: 1 2 3 4 3

1

3

1

4

2

4

2

D1 D2 D3 D4



RAID-1: Mirroring 
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Level Capacity Reliability Write 
Throughput

Write 
Latency

Read 
Throughput

Read 
Latency

RAID 1 N/2
*B

1;
N/2 (if 
lucky)

File: 1 2 3 4 3

1

3

1

4

2

4

2

D1 D2 D3 D4

B: # of blocks per disk
R: R/W throughput per disk
N: # of disks D: time to R/W 1 block



RAID-1: Mirroring 
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Level Capacity Reliability Write 
Throughput

Write 
Latency

Read 
Throughput

Read 
Latency

RAID 1 N/2
*B

1;
N/2 (if 
lucky)

N/2
*R

D

File: 1 2 3 4 3

1

3

1

4

2

4

2

D1 D2 D3 D4

B: # of blocks per disk
R: R/W throughput per disk
N: # of disks D: time to R/W 1 block



RAID-1: Mirroring 
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Level Capacity Reliability Write 
Throughput

Write 
Latency

Read 
Throughput

Read 
Latency

RAID 1 N/2
*B

1;
N/2 (if 
lucky)

N/2
*R

D N*R D

File: 1 2 3 4 3

1

3

1

4

2

4

2

D1 D2 D3 D4

B: # of blocks per disk
R: R/W throughput per disk
N: # of disks D: time to R/W 1 block



Is Mirroring the Best Approach? 
• High data redundancy
• Only tolerate 1 disk failure
• Parity disks: same reliability, higher usable capacity
• RAID 4/5
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P

Calculating Parity
• Erasure code: 

• Forward error correction code
• Detect and correct errors
• Common example: XOR
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⨁ ≠

=

⨁

⨁ ⨁

1 2 3 P

12 3
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RAID-4: Parity Disk
• Capacity: one extra disk needed per stripe
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File:

D1 D2 D3

21 3⨁ ⨁ =

D4

P123

21 P123⨁ ⨁ = 3

1 2 3



RAID-4: Parity Disk 
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Level Capacity Reliability Write 
Throughput

Write 
Latency

Read 
Throughput

Read 
Latency

RAID 4 (N-1)B 1

1 2 3File:

D1 D2 D3

21 3

D4

P123

B: # of blocks per disk
R: R/W throughput per disk
N: # of disks D: time to R/W 1 block



RAID-4: Parity Disk 
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Level Capacity Reliability Write 
Throughput

Write 
Latency

Read 
Throughput

Read 
Latency

RAID 4 (N-1)B 1 R/2

D1 D2 D3

21 3

D4

P123

B: # of blocks per disk
R: R/W throughput per disk
N: # of disks D: time to R/W 1 block

1 2 3File:

1’ 2 3File:

P 1 1’ P’⨁ ⨁ =
P’123

1
1’



RAID-4: Parity Disk 
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Level Capacity Reliability Write 
Throughput

Write 
Latency

Read 
Throughput

Read 
Latency

RAID 4 (N-1)B 1 R/2 2D

D1 D2 D3

21 3

D4

P123

B: # of blocks per disk
R: R/W throughput per disk
N: # of disks D: time to R/W 1 block

1’ 2 3File:

P 1 1’ P’⨁ ⨁ =
P’1231’



RAID-4: Parity Disk 
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Level Capacity Reliability Write 
Throughput

Write 
Latency

Read 
Throughput

Read 
Latency

RAID 4 (N-1)B 1 R/2 2D (N-1)R

1 2 3File:

D1 D2 D3

21 3

D4

P123

B: # of blocks per disk
R: R/W throughput per disk
N: # of disks D: time to R/W 1 block



RAID-4: Parity Disk 
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Level Capacity Reliability Write 
Throughput

Write 
Latency

Read 
Throughput

Read 
Latency

RAID 4 (N-1)B 1 R/2 2D (N-1)R D

1 2 3File:

D1 D2 D3

21 3

D4

P123

B: # of blocks per disk
R: R/W throughput per disk
N: # of disks D: time to R/W 1 block



Parity Disk Bottleneck 

• Reads go to the data disks
• Hopefully load balanced across the disks 

• All writes go to the parity disk 
• Even worse: usually result in Read-Modify-Write sequence 
• Parity disk can easily be a bottleneck 
• Wear out very fast! à prone to failures

• Adding disk does not provide any performance gain
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• Distribute parity blocks in round-robin manner

78

1 2 3File:

D1 D2 D3 D4

4 5 6

4
1

5 P456 6
2 3 P123

RAID-5: 
Rotating Parity



RAID-5: 
Rotating Parity
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Level Capacity Reliability Write 
Throughput

Write 
Latency

Read 
Throughput

Read 
Latency

RAID 5 (N-1)B 1

1 2 3File: 4 5 6

D1 D2 D3 D4

4
1

5 P456 6
2 3 P123

B: # of blocks per disk
R: R/W throughput per disk
N: # of disks D: time to R/W 1 block



RAID-5: 
Rotating Parity
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Level Capacity Reliability Write 
Throughput

Write 
Latency

Read 
Throughput

Read 
Latency

RAID 5 (N-1)B 1

1 2 3File: 4 5 6

D1 D2 D3 D4

4
1

5 P456 6
2 3 P123

B: # of blocks per disk
R: R/W throughput per disk
N: # of disks D: time to R/W 1 block



RAID-5: 
Rotating Parity
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Level Capacity Reliability Write 
Throughput

Write 
Latency

Read 
Throughput

Read 
Latency

RAID 5 (N-1)B 1 N/4 * R

B: # of blocks per disk
R: R/W throughput per disk
N: # of disks D: time to R/W 1 block

1 2 3File: 4 5 6

D1 D2 D3 D4

4
1

5 P456 6
2 3 P1231’



RAID-5: 
Rotating Parity
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Level Capacity Reliability Write 
Throughput

Write 
Latency

Read 
Throughput

Read 
Latency

RAID 5 (N-1)B 1 N/4 * R

B: # of blocks per disk
R: R/W throughput per disk
N: # of disks D: time to R/W 1 block

1 2 3File: 4 5 6

D1 D2 D3 D4

4
1

5 P456 6
2 3 P123

1. Read old Data block from Data disk
2. Read old Parity block from Parity disk
3. Write (update) new Data block to Data disk
4. Write (update) new Parity block to Parity disk



RAID-5: 
Rotating Parity
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Level Capacity Reliability Write 
Throughput

Write 
Latency

Read 
Throughput

Read 
Latency

RAID 5 (N-1)B 1 N/4 * R 2D

B: # of blocks per disk
R: R/W throughput per disk
N: # of disks D: time to R/W 1 block

1 2 3File: 4 5 6

D1 D2 D3 D4

4
1

5 P456 6
2 3 P123

1. Read old Data block from Data disk
2. Read old Parity block from Parity disk
3. Write (update) new Data block to Data disk
4. Write (update) new Parity block to Parity disk



RAID-5: 
Rotating Parity
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Level Capacity Reliability Write 
Throughput

Write 
Latency

Read 
Throughput

Read 
Latency

RAID 5 (N-1)B 1 N/4 * R 2D N * R D

B: # of blocks per disk
R: R/W throughput per disk
N: # of disks D: time to R/W 1 block

1 2 3File: 4 5 6

D1 D2 D3 D4

4
1

5 P456 6
2 3 P123



Recap: RAID
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* Latency Omitted

Level Scheme Capacity Reliability Write 
Throughput

Read 
Throughput

Single Disk B 0 R R

RAID 0 Striping N * B 0 N * R N * R

RAID 1 Mirroring N/2 * B 1 (for sure)
N/2 (lucky)

N/2 * R N * R

RAID 4 Parity 
Disk

(N-1)B 1 R/2 (N-1)R

RAID 5 Rotating
Parity

(N-1)B 1 N/4 * R N * R



Outline

• Errors (focus on errors in DRAM and disk drives)
• Presence, impact, availability metric

• Tools/options for dealing with errors
• Retries, checksums, CRC, error detection/correction codes, …

• RAID levels and performance
• For disk systems

• Estimating availability
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Availability / Reliability Metrics

• Mean Time To First Data Loss (MTTDL) for RAID
• Calculate from single disk MTTF

• Back of envelop calculation, with simplifying assumptions
• Independent failures across devices
• Independent failures over time
• Failure rate from bottom of bathtub curve 
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How often are failures
• MTTF of a disk (Mean Time to Failure)

• MTTFdisk ~ 1,200,000 hours (~136 years, <1% per year)

• With 2 disks,
• Twice more likely to fail
• Mean time to first disk failure ~ MTTFdisk / 2

• So, we approximate
• With n disks, n times more likely to fail, and
• Mean time to first disk failure ~ MTTFdisk / n
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Reliability without Rebuild
• Assumption: failed disks stay failed

• We do not try to rebuild it

• If we want to store data size of 200 disks
• RAID-0: lose data after first disk fails
• MTTDLRAID-0 == mean time to first disk failure
•MTTDLRAID-0 = 136 years / 200 drives 

= 0.65 years
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Reliability without Rebuild
•Add 200 more disks to build RAID-1 (Mirroring)
• In total: 200 disk pairs (Di & Di+1), 400 drives
•RAID-1 fails if at least one disk pair fails
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i+200

i

i+200

i

Di Di+1

× 200



Reliability without Rebuild
•MTTDLpair = (MTTFdrive / 2) + MTTFdrive = 1.5 * MTTFdrive

•MTTDLRAID-1 = MTTDLpair / (# of pairs)
• RAID-1 fails if at least one pair fails

• RAID-1 of 400 drives (200 mirrored pairs)
• MTTDLRAID-1 = 1.5 * 136 years / 200 pairs = 1.02 years
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Mean time to first disk failure
Mean time to second disk failure



Reliability without Rebuild
• RAID-4 with capacity of 200 drives
• In total: 250 drives (with 50 parity drives)
• 50 disk sets 

• 1 Set : 4 data disk + 1 parity disk
• RAID-4 fails if at least one set fails
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5
1

6
2

7
3

P5678

P1234
8
4

1 SET



Reliability without Rebuild
• RAID-4: 50 sets (250 disks in total)
• MTTDLRAID-4 

• MTTDLset = MTTFdrive / 5 + MTTFdrive / 4 = 0.45 * MTTF

• MTTDLRAID-4 = MTTDLset / (# of sets)

• MTTDLRAID-4 = 0.45 * 136 years / 50 sets = 1.22 years
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Mean time to first disk failure

Mean time to second disk failure



Reliability without Rebuild
•Comparisons

• To keep data whose size is equal to capacity of 200 drives
• MTTF: the longer the better!

• RAID 0: Striping
• With total 200 drives, MTTDL = 0.65 years

• RAID 1: Mirroring
• With total 400 drives, MTTDL = 1.02 years

• RAID 4: Parity Disk
• With total 250 drives, MTTDL =  1.22 years
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Rebuild: restoring redundancy after failure
• After a drive failure 
• Data still accessible
• A second failure is BAD 

• Reconstruct the lost data onto a new drive 
• online spares are common features of high-end disk arrays 

• reduce time to start rebuild
• must balance rebuild rate with foreground performance impact 

• a performance vs. reliability trade-offs 

• How data is reconstructed 
• Mirroring: just read good copy 
• Parity: read all remaining drives (including parity) and compute 
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Reliability consequences of adding rebuild 
(extra)
• Simplified math works with approximation
• Based on the canonical Markov model for storage systems
• Interested students: check out this paper (esp. Section 2)

Greenan, Kevin M., James S. Plank, and Jay J. Wylie. "Mean Time to 
Meaningless: MTTDL, Markov Models, and Storage System 
Reliability." In HotStorage, pp. 1-5. 2010.
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Reliability consequences of adding rebuild 
(extra)
• No data loss, if fast enough

• That is, if first failure fixed before second one happens 

• Now MTTR is considered

• New math is...
• MTTDLarray = 1/ prob of 1st failure *

1/ prob of 2nd failure before repair)

... where prob of 2nd failure before repair is
MTTR_drive / MTTF_secondDrive
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1/ prob of 1st failure = Mean time to first disk failure



• For mirroring
• MTTDLpair = (MTTFdrive / 2) * (MTTFdrive / MTTRdrive)

• MTTDLRAID-1 = MTTDLpair / (# of pairs)

• For 5-disk parity-protected arrays
• MTTDLset = (MTTFdrive / 5) * ((MTTFdrive / 4 )/ MTTRdrive)

• MTTDLRAID-4 = MTTDLset / (# of sets)
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Mean time to first disk failure
Inverse of prob. of second disk failure before repair

Mean time to first disk failure
Inverse of prob. of second disk failure before repair

Reliability consequences of adding rebuild 
(extra)



Three modes of operation 

• Normal mode
• everything working; maximum efficiency 

• Degraded mode 
• some disk unavailable 
• must use degraded mode operations 

• Rebuild mode 
• reconstructing lost disk’s contents onto spare 
• degraded mode operations plus competition with rebuild 
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Rebuild Mechanisms
• Background process 

• use degraded mode read to reconstruct data 
• then, write it to replacement disk 

• Implementation issues 
• Interference with foreground activity and controlling rate 

• Rebuild is important for reliability
• Foreground activity is important for performance 

• Using the rebuilt disk
• For rebuilt part, reads can use replacement disk
• Must balance performance benefit with rebuild interference 
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Summary
• Definition of MTTF/MTBF/MTTR:  Understanding availability 

in systems.
• Failure detection and fault masking techniques
• Engineering tradeoff:  Cost of failures vs. Cost of failure 

masking
• To what degree should a system mask failures?
• Replications as a general strategy for fault tolerance

• Thought to leave you with:
• What if you have to survive the failure of entire computers?  Of a 

rack?  Of a datacenter?
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Summary
• RAID turns multiple disks into a larger, faster, more reliable 

disk
• RAID-0: Striping

High performance and capacity, but poor reliability
• RAID-1: Mirroring

High reliability and write performance, but poor capacity
• RAID-5: Rotating Parity

High capacity, save cost,  good performance for read-heavy 
workload
*Good compromise choice
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