
Distributed Replication
15-440/15-640 Distributed Systems

Lecture 12 – Thursday, Oct 7th, 2021

• Midterm-1 in class, Tuesday Oct 12th, 10:10am – 11:30am
• Please try and arrive early. Between 10am and 10:05am
• 1 page (double sided) cheat sheet allowed. First time for the course!
• However, you must add your name, Andrew ID, and submit with exam.

• P1 Part A (Due 10/08), Part B (10/14)

• HW2 Due 10/10 – we will release solutions promptly after deadline

Announcements
F I R S T,

Redundancy: information / time / physical redundancy
• E.g., used in airplanes

Recovery: checkpointing and logging (ARIES)
• E.g., used in commercial databases

Previous (concurrency) protocols rely on recovery techniques
• E.g., Two Phase Commit is not fault tolerant by itself

Why not always use these techniques?
•à Long wait in the case of failure

Fault Tolerance Techniques So Far?
C O N T E X T

• Provide a service

• Replicate the machines that serve clients

• Survive the failure of up to f replicas

• Provide identical service to a non-replicated version
• (except more reliable, and perhaps different performance)

Stay Up During Failures
O U R G O A L T O D AY :

• Consistency when content is replicated

• Primary-backup replication model

• Consensus replication model

Outline for Today
L O O K I N G A H E A D

• Consistency when content is replicated

• Primary-backup replication model

• Consensus replication model

Outline for Today
L O O K I N G A H E A D

• Replicated web sites
• e.g., Google or Amazon:
• DNS-based load balancing (DNS returns multiple IP addresses for each

name)
• Hardware load balancers put multiple machines behind each IP address

• When is replication easy? When hard?
• Workload assumptions

Simple Examples of Replication
C O N T E X T

Easy to replicate - just make multiple copies of it.

• Performance boost 1: Get to use multiple servers to handle the load;

• Performance boost 2: Locality. We’ll see this later when we discuss
CDNs, can often direct client to a replica near it

• Availability boost: Can fail-over (done at both DNS level -- slower,
because clients cache DNS answers -- and at front-end hardware
level)

Read-Only Content
C O N T E X T

Requires write replication, and some degree of consistency

• Strict Consistency
• Read always returns value from latest write

• Sequential Consistency
• All nodes see operations in some sequential order
• Operations of each process appear in-order in this sequence

But Read-Write Data
C O N T E X T

Is this example demonstrating strict consistency?

A note on notation: Wi(x)a denotes that process Pi writes value to data item x.
Similarly, Ri(x)a represents Pi reading x and is returned value b.

A Question…
B U T F I R S T,

P1:
P2:

W(x)a
R(x)NIL R(x)a

Behavior of two processes operating on the same data item. The
horizontal axis is time.

• P1: Writes W value a to variable x
• P2: Reads NIL from x first and then a

Sequential Consistency (1)
C O N S I S T E N C Y

P1:
P2:

W(x)a
R(x)NIL R(x)a

(a) A sequentially consistent data store.

Sequential Consistency (2)
C O N S I S T E N C Y

P1:
P2:

W(x)a

P3:
P4:

W(x)b
R(x)b

R(x)b
R(x)a
R(x)a

(b) A data store
that is not

sequentially
consistent

P1:
P2:

W(x)a

P3:
P4:

W(x)b
R(x)b

R(x)a
R(x)a
R(x)b

Requires write replication, and some degree of consistency

• Strict Consistency
• Read always returns value from latest write

• Sequential Consistency
• All nodes see operations in some sequential order
• Operations of each process appear in-order in this sequence

• Causal Consistency
• All nodes see potentially causally related writes in same order
• But concurrent writes may be seen in different order on different

machines

But Read-Write Data
C O N T E X T

This sequence is allowed with a causally-consistent store, but not with
a sequentially consistent store.

Causal Consistency (1)
C O N S I S T E N C Y

P1:
P2:

W(x)a

P3:
P4:

R(x)a
R(x)a
R(x)a

R(x)c
R(x)b

W(x)b
W(x)c

R(x)b
R(x)c

A violation of a causally-consistent store.

(W(x)a causally related to R(x)a, W(x)b.)

Causal Consistency (2)
C O N S I S T E N C Y

P1:
P2:

W(x)a

P3:
P4:

R(x)a
R(x)b
R(x)a

W(x)b
R(x)a
R(x)b

In practice we often have a choice

Google Mail
• Sending mail is replicated to ~2 physically separated datacenters

(users hate it when they think they sent mail and it got lost); mail
will pause while doing this replication.
• Q: How long would this take with 2-phase commit? in the wide area?

• Marking mail read is only replicated in the background - you can
mark it read, the replication can fail, and you’ll have no clue (re-
reading a read email once in a while is no big deal)

Weaker consistency is cheaper if you can get away with it.

Consistency Guarantees in the Real World
E X A M P L E S

What to replicate: State versus Operations
• Propagate only a notification of an update
• Sort of an “invalidation” protocol

• Transfer data from one copy to another
• Read-to-Write ratio high, can propagate logs (save bandwidth)

• Propagate the update operation to other copies
• Don’t transfer data modifications, only operations – “Active replication”

When to replicate: Push vs Pull
• Pull Based
• Replicas/Clients poll for updates (caches)

• Push Based
• Server pushes updates (stateful)

Replication Strategies
R E P L I C AT I O N

• Consistency when content is replicated

• Primary-backup replication model

• Consensus replication model

Outline for Today
L O O K I N G A H E A D

Group membership manager
• Allow replica nodes to join/leave

Fail-stop (not Byzantine) failure model
• Servers might crash, might come up again
• Delayed/lost messages

Failure detector
• E.g., process-pair monitoring, etc.

Assumptions Today
B U T F I R S T,

•Writes always go to primary, read from any
backup

• Implementation
• Stream the log

• Common in practice
• Simple

• Are updates blocking?

Remote Write Protocol
P R I M A R Y B A C K U P

• Primary migrates to the process wanting to process update
• For performance, use non-blocking op.
• What does this scheme remind you of?

Local-Write P-B Protocol
P R I M A R Y B A C K U P

This looks cool. How many failures can we deal with? What are
some problems?
•What do we do if a replica has failed?
•We wait... how long? Until it’s marked dead.

• Advantage: With N servers, can tolerate loss of N-1 copies
•Not a great solution if you want very tight response time even

when something has failed: Must wait for failure detector

Note: If you don’t care about strong consistency (e.g., the “mail
read” flag), you can reply to client before reaching agreement
with backups (sometimes called “asynchronous replication”).

Properties of Primary Backup
P R I M A R Y B A C K U P

• Consistency when content is replicated

• Primary-backup replication model

• Consensus replication model

Outline for Today
L O O K I N G A H E A D

• Designed to have fast response time even under failures
• Operate as long as majority of machines is still alive

• No master, per se
• To handle f failures, must have 2f + 1 replicas
• Also, for replicated-write => write to all replicas not just one

• Usually boils down to Paxos [Lamport]

Quorum-Based Consensus
C O N S E N S U S

Decompose the problem:

Basic Paxos (“single decree”):
• One or more servers propose values
• System must agree on a single value as chosen
• Only one value is ever chosen

Multi-Paxos:
• Combine several instances of Basic Paxos to agree on a series of

values forming the log

The Paxos Approach
C O N S E N S U S

Correctness (safety):
• Only a single value may be chosen
• A machine never learns that a value has been chosen unless it really has

been
• The agreed value X has been proposed by some node

Liveness (termination) :
• Some proposed value is eventually chosen
• If a value is chosen, servers eventually learn about it

Fault-tolerance:
• If less than N/2 nodes fail, the rest should reach agreement eventually w.h.p
• Liveness is not guaranteed

Requirements for Basic Paxos
P A X O S

• Synchronous DS: bounded amount of time node can take to
process and respond to a request

• Asynchronous DS: timeout is not perfect

Fischer-Lynch-Paterson Result
It is impossible for a set of processors in an asynchronous system
to agree on a binary value, even if only a single processor is
subject to an unannounced failure.

[FLP’85] Impossibility Result
P A X O S

• Proposers:
• Active: put forth particular values to be chosen
• Handle client requests

• Acceptors:
• Passive: respond to messages from proposers
• Responses represent votes that form consensus
• Store chosen value, state of the decision process

• For this presentation:
• Each Paxos server contains both components
• Ignore third role, aka Learner

• “Round”: (proposal, messages/voting, decision)
• We may need several rounds

Paxos Components
P A X O S

Proposer Acceptor

Proposer Acceptor

Proposer Acceptor

• Coordinator tells replicas: “Value V”
• Replicas ACK
• Coordinator broadcasts “Commit!”

• This isn’t enough
• What if some of the nodes or the coordinator fails during the

communication?
• What if there is a network partition?
• What if there’s more than 1 coordinator at the same time?
• What if new coordinator chooses a different value?

Basic Two-Phase (Strawman)
P A X O S

• Problem: can’t trust a single node
• Solution: everyone can potentially propose

• Problem: several concurrent proposers
• Solution: Quorum (require majority of acceptors)

• Problem: split votes, no proposer reaches majority
• Solution: acceptors need to allow updating of their value

• Problem: conflicting choices (due to updating)
• Solution a): prioritize proposal with highest unique time stamp

(Lamport clocks)
• Solution b): once majority has agreed on value, future proposals

forced to propose/choose same value

Let’s Discuss Some Problems & Solutions
P A X O S

• Phase 1: Prepare message
• Find out about any chosen values
• Block older proposals that have not yet completed

• Phase 2: Accept message
• Ask acceptors to accept a specific value

• (Phase 3): Proposer decides
• If majority again: chosen value, commit.
• If no majority: delay and restart Paxos

Single Decree Paxos: Informal Description
P A X O S

Proposers Acceptors
Prepare Check,

Return

Accept

Wait for
majority

Check Again,

Return
Wait for
majority

Decision

Single Decree Paxos: Protocol
P A X O S

Acceptors

3) Respond to Prepare(n):
• If n > minProposal then minProposal = n
• Return(acceptedProposal, acceptedValue)

6) Respond to Accept(n,value):
• If n ≥ minProposal then

acceptedProposal = minProposal = n
acceptedValue = value

• Return(minProposal)

Acceptors must record minProposal, acceptedProposal, and acceptedValue
on stable storage (disk)

Proposers
1) Choose new proposal number n
2) Broadcast Prepare(n) to all

servers

4) When responses received from
majority:
• If any acceptedValues returned, replace

value with acceptedValue
for highest acceptedProposal

5)Broadcast Accept(n,value) to
all servers

7) When responses received from
majority:

• Any rejections (result > n)? goto (1)
• Otherwise, value is chosen

Single Decree Paxos: Protocol
P A X O S

Acceptors

3) Respond to Prepare(n):
• If n > minProposal then minProposal = n
• Return(acceptedProposal, acceptedValue)

6) Respond to Accept(n,value):
• If n ≥ minProposal then

acceptedProposal = minProposal = n
acceptedValue = value

• Return(minProposal)

Acceptors must record minProposal, acceptedProposal, and acceptedValue
on stable storage (disk)

Proposers
1) Choose new proposal number n
2) Broadcast Prepare(n) to all

servers

4) When responses received from
majority:
• If any acceptedValues returned, replace

value with acceptedValue
for highest acceptedProposal

5)Broadcast Accept(n,value) to
all servers

7) When responses received from
majority:

• Any rejections (result > n)? goto (1)
• Otherwise, value is chosen

Single Decree Paxos: Protocol
P A X O S

Acceptors

3) Respond to Prepare(n):
• If n > minProposal then minProposal = n
• Return(acceptedProposal, acceptedValue)

6) Respond to Accept(n,value):
• If n ≥ minProposal then

acceptedProposal = minProposal = n
acceptedValue = value

• Return(minProposal)

Acceptors must record minProposal, acceptedProposal, and acceptedValue
on stable storage (disk)

Proposers
1) Choose new proposal number n
2) Broadcast Prepare(n) to all

servers

4) When responses received from
majority:
• If any acceptedValues returned, replace

value with acceptedValue
for highest acceptedProposal

5)Broadcast Accept(n,value) to
all servers

7) When responses received from
majority:

• Any rejections (result > n)? goto (1)
• Otherwise, value is chosen

Single Decree Paxos: Protocol
P A X O S

Acceptors

3) Respond to Prepare(n):
• If n > minProposal then minProposal = n
• Return(acceptedProposal, acceptedValue)

6) Respond to Accept(n,value):
• If n ≥ minProposal then

acceptedProposal = minProposal = n
acceptedValue = value

• Return(minProposal)

Acceptors must record minProposal, acceptedProposal, and acceptedValue
on stable storage (disk)

Proposers
1) Choose new proposal number n
2) Broadcast Prepare(n) to all

servers

4) When responses received from
majority:
• If any acceptedValues returned, replace

value with acceptedValue
for highest acceptedProposal

5)Broadcast Accept(n,value) to
all servers

7) When responses received from
majority:

• Any rejections (result > n)? goto (1)
• Otherwise, value is chosen

Single Decree Paxos: Protocol
P A X O S

Acceptors

3) Respond to Prepare(n):
• If n > minProposal then minProposal = n
• Return(acceptedProposal, acceptedValue)

6) Respond to Accept(n,value):
• If n ≥ minProposal then

acceptedProposal = minProposal = n
acceptedValue = value

• Return(minProposal)

Acceptors must record minProposal, acceptedProposal, and acceptedValue
on stable storage (disk)

Proposers
1) Choose new proposal number n
2) Broadcast Prepare(n) to all

servers

4) When responses received from
majority:
• If any acceptedValues returned, replace

value with acceptedValue
for highest acceptedProposal

5)Broadcast Accept(n,value) to
all servers

7) When responses received from
majority:

• Any rejections (result > n)? goto (1)
• Otherwise, value is chosen

Single Decree Paxos: Protocol
P A X O S

Acceptors

3) Respond to Prepare(n):
• If n > minProposal then minProposal = n
• Return(acceptedProposal, acceptedValue)

6) Respond to Accept(n,value):
• If n ≥ minProposal then

acceptedProposal = minProposal = n
acceptedValue = value

• Return(minProposal)

Acceptors must record minProposal, acceptedProposal, and acceptedValue
on stable storage (disk)

Proposers
1) Choose new proposal number n
2) Broadcast Prepare(n) to all

servers

4) When responses received from
majority:
• If any acceptedValues returned, replace

value with acceptedValue
for highest acceptedProposal

5)Broadcast Accept(n,value) to
all servers

7) When responses received from
majority:

• Any rejections (result > n)? goto (1)
• Otherwise, value is chosen

Single Decree Paxos: Protocol
P A X O S

Acceptors

3) Respond to Prepare(n):
• If n > minProposal then minProposal = n
• Return(acceptedProposal, acceptedValue)

6) Respond to Accept(n,value):
• If n ≥ minProposal then

acceptedProposal = minProposal = n
acceptedValue = value

• Return(minProposal)

Acceptors must record minProposal, acceptedProposal, and acceptedValue
on stable storage (disk)

Proposers
1) Choose new proposal number n
2) Broadcast Prepare(n) to all

servers

4) When responses received from
majority:
• If any acceptedValues returned, replace

value with acceptedValue
for highest acceptedProposal

5)Broadcast Accept(n,value) to
all servers

7) When responses received from
majority:

• Any rejections (result > n)? goto (1)
• Otherwise, value is chosen

Single Decree Paxos: Protocol
P A X O S

Acceptors

3) Respond to Prepare(n):
• If n > minProposal then minProposal = n
• Return(acceptedProposal, acceptedValue)

6) Respond to Accept(n,value):
• If n ≥ minProposal then

acceptedProposal = minProposal = n
acceptedValue = value

• Return(minProposal)

Acceptors must record minProposal, acceptedProposal, and acceptedValue
on stable storage (disk)

Proposers
1) Choose new proposal number n
2) Broadcast Prepare(n) to all

servers

4) When responses received from
majority:
• If any acceptedValues returned, replace

value with acceptedValue
for highest acceptedProposal

5)Broadcast Accept(n,value) to
all servers

7) When responses received from
majority:

• Any rejections (result > n)? goto (1)
• Otherwise, value is chosen

Basic Paxos Examples
P A X O S

Three possibilities when later proposal prepares:

1. Previous value already chosen:
•New proposer will find it and use it

time

s1
s2
s3
s4
s5

P 4.5

A 3.1 XP 3.1

P 3.1

P 3.1

A 3.1 X

A 3.1 X

P 4.5

P 4.5

A 4.5 X

A 4.5 X

A 4.5 X

“Prepare proposal 3.1 (from s1)”

“Accept proposal 4.5
with value X (from s5)”

X

Y

values

Basic Paxos Examples, cont’d
P A X O S

Three possibilities when later proposal prepares:

2. Previous value not chosen, but new proposer sees it:
•New proposer will use existing value
•Both proposers can succeed

time

s1
s2
s3
s4
s5

P 4.5

A 3.1 XP 3.1

P 3.1

P 3.1

A 3.1 X

A 3.1 X

P 4.5

P 4.5

A 4.5 X

A 4.5 X

A 4.5 X

X

Y

values

Basic Paxos Examples, cont’d
P A X O S

Three possibilities when later proposal prepares:

3. Previous value not chosen, new proposer doesn’t see it:
•New proposer chooses its own value
•Older proposal blocked

time

s1
s2
s3
s4
s5

P 4.5

A 3.1 XP 3.1

P 3.1

P 3.1

A 3.1 X

A 3.1 X

P 4.5

P 4.5

A 4.5 Y

A 4.5 Y

A 4.5 Y

X

Y

values

Liveness
P A X O S

•Competing proposers can livelock:

•One solution: randomized delay before restarting
• Give other proposers a chance to finish choosing

•Multi-Paxos will use leader election instead

time

s1
s2
s3
s4
s5

A 3.1 XP 3.1

P 3.5

A 3.5 Y

P 3.1

P 3.1

P 3.5

P 3.5

A 3.1 X

A 3.1 X

P 4.1

P 4.1

P 4.1

A 3.5 Y

A 3.5 Y

P 5.5

P 5.5

P 5.5 A 4.1 X

A 4.1 X

A 4.1 X

45

P A X O S

a) Successful
Round with a

Single Proposer b) Dueling
Proposers

Paxos
Examples

Single Decree Paxos: Protocol
P A X O S

Acceptors

3) Respond to Prepare(n):
• If n > minProposal then minProposal = n
• Prepare-OK(acceptedProposal, acceptedValue)
• else
• Prepare-REJECT()

6) Respond to Accept(n,value):
• If n ≥ minProposal then

acceptedProposal = minProposal = n
acceptedValue = value

• Accept-OK()
• else
• Accept-REJECT()

Proposers
1) Choose new proposal number n
2) Broadcast Prepare(n) to all

servers

4) When responses received from
majority:
• If any acceptedValues returned, replace

value with acceptedValue
for highest acceptedProposal

5)Broadcast Accept(n,value) to
all servers

7) When responses received from
majority:

• Any rejections (result > n)? goto (1)
• Otherwise, value is chosen

• Only proposer knows chosen value (majority accepted)
• Only a single value is chosen -> MultiPaxos

• No guarantee that proposer’s original value v is chosen by itself

• Number n is basically a Lamport clock -> always unique n
• Key invariant:
• If a proposal with value v is chosen, all higher proposals must have value v

• Dueling proposer
• Resolved using number n in prepare

• There are challenging corner cases

Some Remarks
P A X O S

• Industry and academia
• Google: Chubby (distributed lock service)
• Yahoo: Zookeeper (distributed lock service)
• MSR: Frangipani (distributed lock service)
• OpenSource implementations
• Libpaxos (paxos based atomic broadcast)
• Zookeeper is open source, integrated w/Hadoop

Paxos is Widespread!
P A X O S

It took 25 years to come up with safe protocol
• 2PC proposed in 1979 (Gray)
• In 1981, Stonebraker proposed a basic, unsafe 3PC
• 1988, Brian Oki and Barbara Liskov created Viewstamped Replication,

which has the core protocol.
• In 1998, Lamport rediscovered it and explained the protocol formally,

naming it Paxos
• 2001 ”Paxos made simple”.
• In ~2007 RAFT appears, presenting the Viewstamped Replication approach

to Paxos as a cleanly isolated protocol.

Paxos History
P A X O S

• Paxos is painful to get right, particularly the corner cases. Start from a
good implementation if you can. See Yahoo’s “Zookeeper” as a starting
point.

• There are lots of optimizations to make the common / no or few failures
cases go faster; if you find yourself implementing, research these.

• Paxos is expensive. Usually, used for critical, smaller bits of data and to
coordinate cheaper replication techniques such as primary-backup for big
bulk data.

More Remarks
P A X O S

• Many follow ups and variants
• RAFT consensus algorithm
• https://raft.github.io/
• Great visualization of how it works
• http://thesecretlivesofdata.com/raft/

Beyond Paxos
C O N S E N S U S

• Primary-backup
• Writes handled by primary, stream log to backup(s)
• Replicas are “passive”, follow primary
• Good: Simple protocol. N machines, can handle N-1 failures
• Bad: Slow response times in case of failures.

• Quorum consensus
• Designed to have fast response time even under failures
• Replicas are “active” - participate in protocol; there is no master, per se.
• Good: Clients don’t even see the failures
• Bad: More complex (corner cases). To handle f failures, must have 2f + 1

replicas.

Summary
W R A P P I N G U P

