
Announcements

• P0: Grades released on Gradescope

• For any private communication, use course staff email < ds-
staff-f21-private@lists.andrew.cmu.edu>. Not individual 
instructor email addresses.

• For everyone’s safety: 
§ Please do not congregate after the class for Q/A -- ask 

questions during the lecture or make use of Piazza and office 
hours

§ If you are sick, please watch the lectures remotely
§ Wear your mask properly covering your nose and mouth 

entirely at all times during the lecture



15-440/640 Distributed Systems

Distributed File Systems
(… continued)



Quick recap

• Why Distributed File Systems?

• Basic mechanisms for building DFSs
§ Using NFS and AFS as examples

• Design choices and their implications
§ Caching
§ Consistency
§ Naming
§ Authentication and Access Control 



What Distributed File Systems Provide
• Access to data stored at servers using file system interfaces

• What are the file system interfaces?
§ Open a file, check status of a file, close a file
§ Read data from a file
§ Write data to a file
§ Lock a file or part of a file
§ List files in a directory, create/delete a directory
§ Delete a file, rename a file, add a symlink to a file
§ etc



Why are DFSs Useful?

• Data sharing among multiple users

• User mobility

• Location transparency

• Backups and centralized management



Challenges

• Heterogeneity (lots of different computers & users)

• Scale (10s of thousands of users!)

• Security (my files!  hands off!)

• Failures

• Concurrency



Prioritized goals / Assumptions

• Often very useful to have an explicit list of prioritized goals  
• Distributed filesystems almost always involve trade-offs

• Scale, scale, scale
• User-centric workloads... how do users use files (vs. big 

programs?)
§ Most files are personally owned
§ Not too much concurrent access;  user usually only at one or a few 

machines at a time
§ Sequential access is common;  reads much more common that writes
§ There is locality of reference (if you’ve edited a file recently, you’re 

likely to edit again)
• If you change the workload assumptions the design parameters change! 



Components in a DFS Implementation
• Client side:

§ What has to happen to enable applications to access a 
remote file the same way a local file is accessed?

§ Accessing remote files in the same way as accessing local 
files à requires kernel support

• Communication layer:
§ How are requests sent to server?

• Server side:
§ How are requests from clients serviced?



A Simple Approach

• Use RPC to forward every filesystem operation to the server
§ Server serializes all accesses, performs them, and sends back 

result.

Needing to hit the server for every detail impairs performance and 
scalability.



Caching

• Client-side caching: Having a copy of the data on client 
machine

• Consistency challenges

• Read-only files à easy

• Data that is written by other machines (“cache staleness”)à
§ How to know that the data has changed?  

• Data written by the client machine (“update visibility”)à
§ When is data written to the server? 



Approaches to handle cache staleness
• Update propagation policy

• Key ideas
§ Broadcast invalidations
§ Check on use
§ Callbacks
§ Leases (we will continue looking into this idea today)
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4. Leases

• Granting exclusive/shared control of the cached objects for a 
limited amount of time

• Lease period: duration of the control
• Lease renewal: control expires without renewal

§ Client has to request lease renewal
§ Need to take latency of communication into account

• Read lease vs write lease
§ multiple sites can obtain read lease 
§ only one can get write lease 

• Clock synchronization
§ Not necessary: absolute time not relevant
§ But clock tick rate matters

12



Failures

• Server crashes
§ Data in memory but not disk  à lost
§ So... what if client does

- seek() ;  /* SERVER CRASH */; read()
- If server maintains file position, this will fail.  Ditto for open(), 

read()
• Lost messages:  what if we lose acknowledgement for 

delete(“foo”)
§ And in the meantime, another client created a new file called 

foo?
• Client crashes

§ Might lose data in client cache
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Client Caching in NFS v2

• Cache both clean and dirty file data and file attributes

• Generally, clients do not cache data on local disks

• File attributes in the client cache expire after 60 seconds 

(file data doesn’t expire)

• File data is checked against the modified-time in file 

attributes (which could be a cached copy)

§ Changes made on one machine can take up to 60 seconds to be 
reflected on another machine



NFS’s Failure Handling – Stateless Server
• Server exports files without creating extra state

§ No list of “who has this file open” (permission check on each 
operation on open file!)

§ No “pending transactions” across crash

• Crash recovery is “fast”

§ Reboot, let clients figure out what happened

• Stateless protocol:  requests specify exact state.  

read() à read( [position])

no seek on server
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NFS’s Failure Handling – Stateless Server

• Operations are idempotent
• How can we ensure this?  

• Lost messages:  what if we lose acknowledgement for 

delete(“foo”). And in the meantime, another client created 

a new file called foo?

§ Unique IDs on files/directories.  It’s not delete(“foo”), 
it’s delete(1337f00f), where that ID won’t be reused.

• Not perfect à e.g., mkdir
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Client Caching in AFS

• NFS gets us partway there, but

§ Not ideal for handling large scale (* - you can buy huge NFS 
appliances today that will, but they’re $$$-y).

§ Is very sensitive to network latency

• How can we improve this?

§ More aggressive caching (AFS caches on disk in addition to just in 
memory)

§ Prefetching (on open,  AFS gets entire file from server, making 
later ops local & fast).
- Remember:  with traditional hard drives, large sequential 

reads are much faster than small random reads.  So easier to 
support (client a:  read whole file;  client B: read whole file) 
than having them alternate.  Improves scalability, particularly if 
client is going to read whole file anyway eventually.
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Client Caching in AFS

• Callbacks!  

• What if server crashes? Lose all callback state!
§ Reconstruct callback information from client: go ask 

everyone “who has which files cached?”
• What if client crashes?

§ Must revalidate any cached content it uses since it may have 
missed callback



AFS v2 RPC Procedures

• Some procedures that are not in NFS related to callbacks

§ Fetch: return status and optionally data of a file or directory, 
and place a callback on it

§ RemoveCallBack: specify a file that the client has flushed 
from the local machine

§ BreakCallBack: from server to client, revoke the callback on a 
file or directory
- What should the client do if a callback is revoked?



Server cache
F1:V1F1:V2

Update/consistency semantics

Read (RPC)
Return (Data)

Write (RPC)

ACK

Client

cache

Client

cache

F1:V1

F1:V2

read(f1)

write(f1)

®V1
read(f1)®V1
read(f1)®V1

®OK

read(f1)®V1

read(f1)®V2
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Ideal (One copy semantics)

• As though there is a single copy of the file that everyone is 
editing
§ No functional differences (as though no caches)
§ Difficult to achieve in distributed setting

- Network (connection) failures
- Lots of read/write sharing across clients
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Server cache
F1:V1F1:V2

One copy semantics

Read (RPC)
Return (Data)

Write (RPC)

ACK

Client

cache

Client

cache

F1:V1

F1:V2

read(f1)

write(f1)

®V1
read(f1)®V1
read(f1)®V1

®OK

read(f1)®V2

read(f1)®V2
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File Access Consistency

• In UNIX local file system, concurrent file reads and writes 
have “sequential” consistency semantics
§ Each file read/write from user-level app is an atomic 

operation
- The kernel locks the file vnode

§ Each file write is immediately visible to all file readers
• Neither NFS nor AFS provides such concurrency control

§ NFS: “sometime within 30 seconds”
§ AFS: session semantics for consistency



NFS Write Policy

• Dirty data buffered on the client machine until file close or 

up to 30 seconds

§ If the machine crashes before then, the changes are lost

• Write-through caching:  When file is closed, all modified 

blocks sent to server.  close() does not return until bytes 

safely stored.

§ Close failures? 
- retry until things get through to the server
- return failure to client

§ Most client apps can’t handle failure of close() call
§ Usual option:  hang for a long time trying to contact server
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NFS Results

• NFS provides transparent, remote file access
Advantages:
• Simple, portable, popular (it’s gotten a little more complex 

over time, but...)
• No network traffic if open/read/write/close can be done 

locally. 
Disadvantages:
• Weak consistency semantics

§ Simply unacceptable for some distributed applications
§ Productivity apps tend to tolerate such loose consistency

• Requires hefty server resources to scale (write-through, 
server queried for lots of operations)



Session Semantics in AFS v2

• What it means:
§ A file write is visible to processes on the same machine 

immediately, but not visible to processes on other machines 
until the file is closed

§ When a file is closed, changes are visible to new opens, but 
are not visible to “old” opens

§ Last writer (i.e. the last close()) wins

• Implementation
§ Dirty data are buffered at the client machine until file close, 

then flushed back to server, which leads the server to send 
“break callback” to other clients



Server cache
F1:V1F1:V1

Session semantics

Read (RPC)
Return (Data)

Client

cache

Client

cache

F1:V1

F1:V2

read(f1)

write(f1)

®V1
read(f1)®V1
read(f1)®V1

®OK

read(f1)®?

read(f1)®V2
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Server cache
F1:V1F1:V2

Session semantics

Read (RPC)
Return (Data)

Write (RPC)

ACK

Client

cache

Client

cache

F1:V1

F1:V2

read(f1)

write(f1)

®V1
read(f1)®V1
read(f1)®V1

®OK

read(f1)®V1

read(f1)®V2

close(f1)
Open & read(f1)®?

close(f1)
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AFS: Cache Consistency Timeline

Source: 
Remzi, OS Book,  “AFS” 



AFS Write Policy

• Writeback cache (specifically “session semantics”)
§ Opposite of NFS “every write is sacred”
§ Store back to server

- When cache overflows
- On close()

§ ...or don't (if client machine crashes)
• Is writeback crazy?

§ Write conflicts “assumed rare”
§ Who wants to see a half-written file? (matters for 

collaborative editing applications though!)
• AFS also operates on a file granularity, so the last writer wins



AFS vs NFS

• AFS has lower server load than NFS

§ More files cached on clients
§ Callbacks:  server not busy if files are read-only (common case)

• But maybe slower:  Access from local disk is much slower 

than from another machine’s memory over LAN

• For both:

§ Central server is bottleneck:  all reads and writes hit it at least 
once;

§ is a single point of failure.
§ is costly to make them fast, beefy, and reliable servers.



Outline

• Why Distributed File Systems?

• Basic mechanisms for building DFSs
§ Using NFS and AFS as examples

• Design choices and their implications
§ Caching
§ Consistency
§ Naming
§ Security



Naming

Naming in NFS

• NFS: clients mount NFS volume where they want

§ Server: export  /root/disk1
§ Client1: mount  server:/root/disk1  /remote
§ Client2: mount  server:/root/disk1  /home/rashmi



Naming in NFS (1)

• Figure 11-11. Mounting (part of) a remote file system in NFS.

No naming transparency since both clients have the files 
(eg.mbox) stored in different hierarchcal namespaces. 



Naming in NFS (2)
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Naming

• NFS: clients mount NFS volume where they want

§ Server: export  /root/disk1
§ Client1: mount  server:/root/disk1  /remote
§ Client2: mount  server:/root/disk1  /home/yuvraj

• AFS: name space consistent across clients

§ Global name space
- Global directory /afs; 
- Client1:  /afs/andrew.cmu.edu/disk1/
- Client2:  /afs/andrew.cmu.edu/disk1/

§ Each file is identified as fid = <vol_id, vnode #, unique identifier>
§ All AFS servers keep a copy of “volume location database”, which 

is a table of vol_idà server_ip mappings

• More details in the textbook (specified in additional reading)



Implications on Location Transparency
• NFS: no transparency

§ If a directory is moved from one server to another, client 
must remount

• AFS: transparency
§ If a volume is moved from one server to another, only the 

volume location database on the servers needs to be 
updated



Outline

• Why Distributed File Systems?

• Basic mechanisms for building DFSs
§ Using NFS and AFS as examples

• Design choices and their implications
§ Caching
§ Consistency
§ Naming
§ Security



User Authentication and Access 

Control

• User X logs onto workstation A, wants to access files on 

server B

§ How does A tell B who X is?
§ Should B believe A?



Widely used solution: Kerberos

• Based on symmetric key cryptography (shared secrets)
§ User proves to KDC who he is; KDC generates shared secret 

between client and file server

client

ticket server
generates S

“Need to access fs”

K clie
nt[S

] file serverK
fs [S]

S: specific to {client,fs} pair; 
“short-term session-key”; expiration time (e.g. 8 hours)

KDC = Key Dist. Center

encrypt S with
client’s key



Outline

• Why Distributed File Systems?

• Basic mechanisms for building DFSs
§ Using NFS and AFS as examples

• Design choices and their implications
§ Caching
§ Consistency
§ Naming
§ Security

• Disconnected operation with CODA as example
§ Optimistic and pessimistic replica control



Background on CODA
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CODA
• Successor of the very successful Andrew File System (AFS)
• Allows owners of laptops  to operate them in disconnected 

mode (Opposite of ubiquitous connectivity)
• Developed as a research project at CMU!

• We work in many different places
• Mobile Users appeared in 1990s

§ 1st Thinkpad, cell phones, ..
• Network is slow and not stable, 

clients ”powerful” 
• We work at client without network 

connectivity



Accessibility

• Must handle two types of failures
§ Server failures:

- Data servers are replicated
§ Communication failures and voluntary disconnections



Replica Control

• Pessimistic
§ Disable all partitioned writes 
- Require a client to acquire control (lock) of a cached object 

prior to disconnection

• Optimistic
§ Assuming no others touching the file
- conflict detection 
+ fact: low write-sharing 
+ high availability: access anything in range



Pessimistic Replica Control

• Pessimistic replication control protocols guarantee the 
consistency of replicated in the presence of any non-
Byzantine failures
§ Typically require a quorum of replicas to allow access to the 

replicated data
§ Would not support disconnected mode 
§ We shall cover Byzantine Faults and Failures later. 



Pessimistic Replica Control

• Would require client to acquire  exclusive (RW) or shared (R) 
control of cached objects before accessing them in 
disconnected mode:
§ Acceptable solution for voluntary disconnections
§ Does not work for involuntary disconnections

• What if the laptop remains disconnected for a long time?



Leases?

• We could grant exclusive/shared control of the cached 
objects for a limited amount of time

• Works very well in connected mode
§ Reduces server workload

• Would only work for very short disconnection periods



Optimistic Replica Control

• Optimistic replica control allows access in every
disconnected mode
§ Tolerates temporary inconsistencies
§ Promises to detect them later
§ Provides much higher data availability



Coda States

1. Hoarding:
Normal operation mode

2. Emulating:
Disconnected operation mode

3. Reintegrating:
Propagates changes and detects inconsistencies

Hoarding

Emulating Recovering



Hoarding

• Hoard useful data for disconnection
• Balance the needs of connected and disconnected operation

§ Cache size is limited
§ Unpredictable disconnections

• Uses user specified preferences + usage patterns to decide on 
files to keep in hoard



Emulation

• In emulation mode:
§ Attempts to access files that are not in the client caches 

appear as failures to application
§ All changes are written in a persistent log,

the client modification log (CML)
§ Coda removes from log all obsolete entries like those 

pertaining to files that have been deleted



Reintegration

• When workstation gets reconnected, Coda initiates a reintegration 
process
§ Performed one volume at a time
§ Ships replay log to all volumes
§ Each volume performs a log replay algorithm

• Only care about write/write conflict
§ Conflict resolution succeeds?

- Yes. Free logs, keep going…
- No. Save logs to a tar. Ask for help

• In practice:
§ No Conflict at all! Why?
§ Over 99% modification by the same person
§ Two users modify the same object within a day: <0.75%



Outline

• Why Distributed File Systems?

• Basic mechanisms for building DFSs
§ Using NFS and AFS as examples

• Design choices and their implications
§ Caching
§ Consistency
§ Naming
§ Security

• Disconnected operation with CODA as example
• Other popular DFSs: Dropbox, G drive, etc.



Other popular DFSs

• Dropbox, Google Drive, OneDrive, BOX 
• 100s of Millions of users, syncing petabytes (?)
§ Basic function: Storing, sharing, synchronizing data between 

multiple devices, anytime, over any network
§ General architecture (esp. Dropbox) 

Picture Credit: Yong Cui, QuickSync: Improving Synchronization Efficiency for Mobile Cloud Storage Services



Features and Comparisons

• Chunking: splitting a large file into multiple data units
• Bundling: multiple small chunks as a single chunk
• Deduplication: avoiding sending existing content in the cloud
• Delta-encoding: transmit only the modified portion of a file

Question: Dropbox’s consistency model for conflicts? 
Question: Why don’t we do data deduplication always? 



Summary

• Distributed filesystems almost always involve a tradeoff:  
consistency, performance, scalability.

• Client-side caching is a fundamental technique to improve 
scalability and performance
§ But raises important questions of cache consistency

• We’ll see a related tradeoffs, also involving consistency, in a 
while:  the CAP tradeoff.  Consistency, Availability, Partition-
resilience.


