Announcements

* PO: Grades released on Gradescope

* For any private communication, use course staff email < ds-
staff-f21-private@lists.andrew.cmu.edu>. Not individual
instructor email addresses.

* For everyone’s safety:

« Please do not congregate after the class for Q/A -- ask
guestions during the lecture or make use of Piazza and office

hours
= |f you are sick, please watch the lectures remotely

« Wear your mask properly covering your nose and mouth
entirely at all times during the lecture

15-440/640 Distributed Systems

Distributed File Systems

(... continued)

Quick recap

 Why Distributed File Systems?

e Basic mechanisms for building DFSs
= Using NFS and AFS as examples

* Design choices and their implications
« Caching
= Consistency
= Naming
« Authentication and Access Control

What Distributed File Systems Provide

* Access to data stored at servers using file system interfaces

 What are the file system interfaces?

Open a file, check status of a file, close a file
Read data from a file

Write data to a file

Lock a file or part of a file

List files in a directory, create/delete a directory
Delete a file, rename a file, add a symlink to a file
etc

Why are DFSs Useful?

* Data sharing among multiple users

* User mobility

* Location transparency

* Backups and centralized management

Challenges

 Heterogeneity (lots of different computers & users)
e Scale (10s of thousands of users!)

e Security (my files! hands off!)

* Failures

* Concurrency

Prioritized goals / Assumptions

* Often very useful to have an explicit list of prioritized goals
* Distributed filesystems almost always involve trade-offs

e Scale, scale, scale

* User-centric workloads... how do users use files (vs. big
programs?)
= Most files are personally owned

» Not too much concurrent access; user usually only at one or a few
machines at a time

= Sequential access is common; reads much more common that writes
- There is locality of reference (if you’ ve edited a file recently, you' re
likely to edit again)
* |If you change the workload assumptions the design parameters change!

Components in a DFS Implementation

e Client side:

« What has to happen to enable applications to access a
remote file the same way a local file is accessed?

= Accessing remote files in the same way as accessing local
files = requires kernel support

e Communication layer:
« How are requests sent to server?

e Server side:
« How are requests from clients serviced?

A Simple Approach

 Use RPC to forward every filesystem operation to the server

= Server serializes all accesses, performs them, and sends back
result.

Needing to hit the server for every detail impairs performance and
scalability.

Caching

* Client-side caching: Having a copy of the data on client
machine

* Consistency challenges

e Read-only files 2 easy

» Data that is written by other machines (“cache staleness”)—>
« How to know that the data has changed?

» Data written by the client machine (“update visibility”)—>
« When is data written to the server?

Approaches to handle cache staleness

« Update propagation policy

* Key ideas
» Broadcast invalidations
» Check on use
= Callbacks

» Leases (we will continue looking into this idea today)

11

4. Leases

* Granting exclusive/shared control of the cached objects for a
limited amount of time

* Lease period: duration of the control
* Lease renewal: control expires without renewal
» Client has to request lease renewal
« Need to take latency of communication into account

* Read lease vs write lease
= multiple sites can obtain read lease
= only one can get write lease

* Clock synchronization
» Not necessary: absolute time not relevant
» But clock tick rate matters

12

Failures

e Server crashes
« Data in memory but not disk - lost

= So... what if client does
- seek() ; /* SERVER CRASH */; read()

- If server maintains file position, this will fail. Ditto for open(),
read()

* Lost messages: what if we lose acknowledgement for
delete(“foo”)

= And in the meantime, another client created a new file called
foo?

* Client crashes
« Might lose data in client cache

13

Client Caching in NFS v2

Cache both clean and dirty file data and file attributes

Generally, clients do not cache data on local disks

File attributes in the client cache expire after 60 seconds
(file data doesn’t expire)

* File data is checked against the modified-time in file
attributes (which could be a cached copy)

« Changes made on one machine can take up to 60 seconds to be
reflected on another machine

NFS’ s Failure Handling — Stateless Server

e Server exports files without creating extra state

= No list of “who has this file open” (permission check on each
operation on open file!)

« No “pending transactions” across crash

* Crash recovery is “fast”
« Reboot, let clients figure out what happened

e Stateless protocol: requests specify exact state.
read() =2 read([position])
no seek on server

15

NFS’ s Failure Handling — Stateless Server

Operations are idempotent
How can we ensure this?

Lost messages: what if we lose acknowledgement for

delete(“foo”). And in the meantime, another client created
a new file called foo?

. Unique IDs on files/directories. It’ s not delete(“foo”),
it’ s delete(1337f00f), where that ID won’ t be reused.

Not perfect =2 e.g., mkdir

16

Client Caching in AFS

* NFS gets us partway there, but
« Not ideal for handling large scale (* - you can buy huge NFS
appliances today that will, but they’ re $3S-y).

= |s very sensitive to network latency

* How can we improve this?
« More aggressive caching (AFS caches on disk in addition to just in

memory)
Prefetching (on open, AFS gets entire file from server, making
later ops local & fast).

- Remember: with traditional hard drives, large sequential
reads are much faster than small random reads. So easier to
support (client a: read whole file; client B: read whole file)
than having them alternate. Improves scalability, particularly if
client is going to read whole file anyway eventually.

17

Client Caching in AFS

e (Callbacks!

e What if server crashes? Lose all callback state!

« Reconstruct callback information from client: go ask
everyone “who has which files cached?”

e What if client crashes?

« Must revalidate any cached content it uses since it may have
missed callback

AFS v2 RPC Procedures

 Some procedures that are not in NFS related to callbacks

« Fetch: return status and optionally data of a file or directory,
and place a callback on it
« RemoveCallBack: specify a file that the client has flushed
from the local machine
= BreakCallBack: from server to client, revoke the callback on a
file or directory
- What should the client do if a callback is revoked?

Update/consistency semantics

(

read(f1)—>V1
read(f1)—>V1
read(f1)—>V1

write(f1)->OK
read(f1)—>V2

cache

=

Client

..

Client

Return (Data)
G

\%
=

Server

cache

20

Ideal (One copy semantics)

* Asthough there is a single copy of the file that everyone is
editing
» No functional differences (as though no caches)
= Difficult to achieve in distributed setting
- Network (connection) failures
- Lots of read/write sharing across clients

21

One copy semantics

read(f1)—>V1

(
read(f1)—>V1

(
read(f1)—>V2

write(f1)->OK
read(f1)—>V2

cache

=

Client

Client

Return (Data)
G

\%
=

&

>

Server

cache

22

File Access Consistency

* In UNIX local file system, concurrent file reads and writes
have “sequential” consistency semantics

« Each file read/write from user-level app is an atomic
operation

- The kernel locks the file vnode
= Each file write is immediately visible to all file readers
* Neither NFS nor AFS provides such concurrency control
= NFS: “sometime within 30 seconds”
= AFS: session semantics for consistency

NFS Write Policy

* Dirty data buffered on the client machine until file close or

up to 30 seconds
« |f the machine crashes before then, the changes are lost

* Write-through caching: When file is closed, all modified
blocks sent to server. close() does not return until bytes
safely stored.

« Close failures?
- retry until things get through to the server
- return failure to client

- Most client apps can’ t handle failure of close() call
« Usual option: hang for a long time trying to contact server

24

NFS Results

* NFS provides transparent, remote file access
Advantages:

« Simple, portable, popular (it’ s gotten a little more complex
over time, but...)

* No network traffic if open/read/write/close can be done
locally.

Disadvantages:
* Weak consistency semantics
« Simply unacceptable for some distributed applications
« Productivity apps tend to tolerate such loose consistency

* Requires hefty server resources to scale (write-through,
server queried for lots of operations)

Session Semantics in AFS v2

e What it means:

= A file write is visible to processes on the same machine
immediately, but not visible to processes on other machines
until the file is closed

« When afile is closed, changes are visible to new opens, but
are not visible to “old” opens

» Last writer (i.e. the last close()) wins

* Implementation

« Dirty data are buffered at the client machine until file close,
then flushed back to server, which leads the server to send
“break callback” to other clients

Session semantics

read(f1) /1 ‘

read(f)sv1 (e &

read(f1)—V1 | <:>
read(f1)—? Client

cache

cache

write(f1)->OK
F1:VZ
read(f1)—>V2 Client

Session semantics

read(f1) /1 ‘
read(f)sv1 (e & =
read(f1)->V1 e (e <:>
Client
:::é:;)rw o 2 cache
WE .
Open & read(f1)—?

cache
write(f1)->OK -

F1:VZ2
read(f1)—>V2 " Client

close(f1)

AFS: Cache Consistency Timeline

Client; Clients Server Comments
P; P Cache| P3 Cache| Disk
open(F) - - - File created
write(A) A - -
close() A - A
open(F) A - A
read) > A A - A
close() A - A
open(F) A - A
write(B) B - A
open(F) B - A Local processes
read() » B B - A see writes immediately
close() B - A
B open(F) A A Remote processes
B read) > A A A do not see writes...
B close() A A
close() B /(B ... until close()
B open(F) B B has taken place
B read() - B B B
B close() B B
B open(F) B B
open(F) B B B
write(D) D B B
D write(C) C B
D close() C <
close() D ¢ D
D open(F) D D Unfortunately for P3
D read) - D D D the last writer wins
D close() D D

Source:

Remzi, OS Book, “AFS”

Figure 50.3: Cache Consistency Timeline

AFS Write Policy

* Writeback cache (specifically “session semantics”)
« Opposite of NFS “every write is sacred”
= Store back to server

- When cache overflows
- On close()

» ...or don't (if client machine crashes)
* |s writeback crazy?
= Write conflicts “assumed rare”

» Who wants to see a half-written file? (matters for
collaborative editing applications though!)

* AFS also operates on a file granularity, so the last writer wins

AFS vs NFS

e AFS has lower server load than NFS

More files cached on clients

« Callbacks: server not busy if files are read-only (common case)

 But maybe slower: Access from local disk is much slower
than from another machine’ s memory over LAN

 For both:

Central server is bottleneck: all reads and writes hit it at least
once;

is a single point of failure.
is costly to make them fast, beefy, and reliable servers.

Outline

 Why Distributed File Systems?

e Basic mechanisms for building DFSs
= Using NFS and AFS as examples

* Design choices and their implications
« Caching
= Consistency
= Naming
= Security

Naming

Naming in NFS

* NFS: clients mount NFS volume where they want
« Server: export /root/diskl

- Clientl: mount server:/root/diskl /remote
= Client2: mount server:/root/diskl /home/rashmi

Naming in NFS (1)

Client A

emote/ \ tin
O

Server

/T
O

/ steen
vV A

Exported directory
mounted by client

Client B

ol / \8
'
s B

Exported directory
mounted by client

! mbox
)// \\
/] \
] \
] \
\ !

Network

No naming transparency since both clients have the files
(eg.mbox) stored in different hierarchcal namespaces.

Naming in NFS (2)

Exported directory
contains imported

Server B

\

Y \O
s
/ Ensté_l\l

, subdirector
Client d SeHe
b‘y \ cii packa97 \
ient
" imports e e
\\\ direCtOl'y Y \\\ Q
aw from / draw
-~ _ | serverA | / -t pridei
\\\ \\< /I // \\ \\ lmports
XN ,llQ / N \\\ ifogton
. : : I [:
install. i / install, | _from
L | ;i) | server B
1 | / H
[! , |
o) i (o Re))
\ \ d
P, b .

i i’ i o) s s 5%

Network

Client needs to
explicitly import
subdirectory from
server B

35

Naming

* AFS: name space consistent across clients

» Global name space

- Global directory /afs;
- Clientl1: /afs/andrew.cmu.edu/disk1/
- Client2: /afs/andrew.cmu.edu/disk1/

« Each file is identified as fid = <vol _id, vnode #, unique identifier>

= All AFS servers keep a copy of “volume location database”, which
is a table of vol_id—> server_ip mappings

 More details in the textbook (specified in additional reading)

Implications on Location Transparency

* NFS: no transparency

« |f a directory is moved from one server to another, client
must remount

* AFS: transparency

« |f a volume is moved from one server to another, only the
volume location database on the servers needs to be
updated

Outline

 Why Distributed File Systems?

e Basic mechanisms for building DFSs
= Using NFS and AFS as examples

* Design choices and their implications
« Caching
= Consistency
= Naming
= Security

User Authentication and Access
Control

* User X logs onto workstation A, wants to access files on
server B
» How does A tell Bwho X is?
« Should B believe A?

Widely used solution: Kerberos

* Based on symmetric key cryptography (shared secrets)

= User proves to KDC who he is; KDC generates shared secret
between client and file server

KDC = Key Dist. Center

ticket server
generates S

file server

_ A
‘(\é\e(;\/encrypt S with Sy

client’s key

client

S: specific to {client,fs} pair;
“short-term session-key”; expiration time (e.g. 8 hours)

Outline

 Why Distributed File Systems?

e Basic mechanisms for building DFSs
» Using NFS and AFS as examples

* Design choices and their implications
« Caching
= Consistency
= Naming
= Security

* Disconnected operation with CODA as example
Optimistic and pessimistic replica control

Background on CODA

* We work in many different places
* Mobile Users appeared in 1990s
« 1st Thinkpad, cell phones, ..

* Network is slow and not stable,
clients "powerful”

e We work at client without network
connectivity

CODA
e Successor of the very successful Andrew File System (AFS)

* Allows owners of laptops to operate them in disconnected
mode (Opposite of ubiquitous connectivity)
« Developed as a research project at CMU!

42

Accessibility

 Must handle two types of failures
= Server failures:
- Data servers are replicated
« Communication failures and voluntary disconnections

Replica Control

* Pessimistic
« Disable all partitioned writes

Require a client to acquire control (lock) of a cached object
prior to disconnection

* Optimistic
= Assuming no others touching the file
- conflict detection
+ fact: low write-sharing
+ high availability: access anything in range

Pessimistic Replica Control

* Pessimistic replication control protocols guarantee the
consistency of replicated in the presence of any non-
Byzantine failures

= Typically require a quorum of replicas to allow access to the
replicated data

« Would not support disconnected mode

« We shall cover Byzantine Faults and Failures later.

Pessimistic Replica Control

 Would require client to acquire exclusive (RW) or shared (R)
control of cached objects before accessing them in
disconnected mode:

« Acceptable solution for voluntary disconnections

« Does not work for involuntary disconnections

 What if the laptop remains disconnected for a long time?

Leases?

* We could grant exclusive/shared control of the cached
objects for a limited amount of time

* Works very well in connected mode
= Reduces server workload

 Would only work for very short disconnection periods

Optimistic Replica Control

* Optimistic replica control allows access in every
disconnected mode

« Tolerates temporary inconsistencies
« Promises to detect them later
« Provides much higher data availability

Coda States

emining

1. Hoarding:
Normal operation mode
2. Emulating:
Disconnected operation mode
3. Reintegrating:
Propagates changes and detects inconsistencies

Hoarding

* Hoard useful data for disconnection

* Balance the needs of connected and disconnected operation
« Cache size is limited
« Unpredictable disconnections

* Uses user specified preferences + usage patterns to decide on
files to keep in hoard

Emulation

* |n emulation mode:

« Attempts to access files that are not in the client caches
appear as failures to application

= All changes are written in a persistent log,
the client modification log (CML)

« Coda removes from log all obsolete entries like those
pertaining to files that have been deleted

Reintegration

* When workstation gets reconnected, Coda initiates a reintegration
process

» Performed one volume at a time
= Ships replay log to all volumes
= Each volume performs a log replay algorithm

* Only care about write/write conflict
= Conflict resolution succeeds?
- Yes. Free logs, keep going...
- No. Save logs to a tar. Ask for help

* In practice:
No Conflict at alll Why?
= Over 99% modification by the same person
= Two users modify the same object within a day: <0.75%

Outline

 Why Distributed File Systems?

e Basic mechanisms for building DFSs
= Using NFS and AFS as examples

* Design choices and their implications

« Caching

= Consistency

= Naming

= Security
* Disconnected operation with CODA as example
* Other popular DFSs: Dropbox, G drive, etc.

Other popular DFSs

* Dropbox, Google Drive, OneDrive, BOX
* 100s of Millions of users, syncing petabytes (?)

» Basic function: Storing, sharing, synchronizing data between
multiple devices, anytime, over any network

» General architecture (esp. Dropbox)

upload process

download process

' B Q — .
/4 7 ~
K < QC @
Upd, & / client NS
W((4 Chunk \
Ude ! unker ,
W} indexer [3 !
g Notifier O .
i
E).do‘ﬁ""\(‘fa N

client

|
AR T T~
/" \\'
/

Chunker

Indexer I}
|' Notifier OO

= =
<P
:

Data Storage Server

%

Picture Credit: Yong Cui, QuickSync: Improving Synchronization Efficiency for Mobile Cloud Storage Services

Features and Comparisons

* Chunking: splitting a large file into multiple data units
 Bundling: multiple small chunks as a single chunk

* Deduplication: avoiding sending existing content in the cloud
* Delta-encoding: transmit only the modified portion of a file

Capabilities Wi.ndows -
Dropbox xoogle Drive | OneDrive Seafile
Chunking 4 MB 8 MB var. var.
Bundling Vv X X X
Deduplication 4 X X 74
Delta encoding V4 x X X
Data compression Vv vV X X

Question: Dropbox’s consistency model for conflicts?
Question: Why don’t we do data deduplication always?

Summary

* Distributed filesystems almost always involve a tradeoff:
consistency, performance, scalability.

* Client-side caching is a fundamental technique to improve
scalability and performance

= But raises important questions of cache consistency

 We’ll see a related tradeoffs, also involving consistency, in a
while: the CAP tradeoff. Consistency, Availability, Partition-

resilience.

