Announcements

* P1teams
« |f you still don’t have a teammate: make use of Piazza posts
« Don’t wait for too long — let us know soon

e Start P1 early!

15-440/640 Distributed Systems

Distributed File Systems

(Two lectures)

Outline

 Why Distributed File Systems?

e Basic mechanisms for building DFSs
= Using NFS and AFS as examples

* Design choices and their implications
« Caching
= Consistency
= Naming
« Authentication and Access Control

andrew.cmu.edu

® Let’ s start with a familiar example: andrew

Terabytes of
disk

« Have a consistent namespace for files across computers
« Allows any authorized user to access files from any
computer

10,000s
of
machines

Network File System (NFS)

|

Client 0
Client 1 \\
Network
Client 2 / /
Client 3

RAID

Picture credit: The Wisconsin OS book

What Distributed File Systems Provide

* Access to data stored at servers using file system interfaces

 What are the file system interfaces?

Open a file, check status of a file, close a file
Read data from a file

Write data to a file

Lock a file or part of a file

List files in a directory, create/delete a directory
Delete a file, rename a file, add a symlink to a file
etc

Why are DFSs Useful?

* Data sharing among multiple users

* User mobility

* (File) Location transparency

* Backups and centralized management

Challenges

 Heterogeneity (lots of different computers & users)
e Scale (10s of thousands of users!)

e Security (my files! hands off!)

* Failures

* Concurrency

? 1
e ohno... we ve got em all.

How can we build this??

Prioritized goals? / Assumptions

* Often very useful to have an explicit list of prioritized goals
* Distributed filesystems almost always involve trade-offs

e Scale, scale, scale

e User-centric workloads... how do users use files (vs. big
programs?)
= Most files are personally owned

» Not too much concurrent access; user usually only at one or a few
machines at a time

= Sequential access is common; reads much more common that writes
- There is locality of reference (if you’ ve edited a file recently, you' re
likely to edit again)
* |If you change the workload assumptions the design parameters change!

Components in a DFS Implementation

e (Client side:

« What has to happen to enable applications to access a
remote file the same way a local file is accessed?

= Accessing remote files in the same way as accessing local
files = requires kernel support

e Communication layer:
= How are requests sent to server?

e Server side:
« How are requests from clients serviced?

10

VFS Interception

VFS = virtual file system

Client Server
System call layer System call layer
Virtual file system Virtual file system
(VFS) layer (VFS) layer
Local file : Local file
system interface NFS client NFS server system interface
RPC client RPC server
stub stub
_ j
Network

11

A Simple Approach

 Use RPC to forward every filesystem operation to the server

= Server serializes all accesses, performs them, and sends back
result.

* Same behavior as if both programs were running on the
same local filesystem!

Remote Procedure Calls in NFS

Client Server

LOOKUP

\\
) Lookup name

, "\ Read file data
Time ot

 Reading data from a file

* Lookup takes directory+name and return filehandle

13

Some NFS v2 RPC Calls

* NFS RPCs using XDR over, e.g., TCP/IP

Proc. Input args

Results

LOOKUP |dirth, name

status, thandle, fattr

READ fthandle, offset, count

status, fattr, data

CREATE |dirth, name, fattr

status, thandle, fattr

WRITE fhandle, offset, count,
data

status, fattr

e fhandle: 32-byte opaque data (64-byte in v3)

14

Server Side Examples

 mountd: provides the initial file handle for the exported directory
« Client issues nfs_mount request to mountd

« mountd checks if the pathname is a directory and if the directory
should be exported to the client

* nfsd: answers the RPC calls, gets reply from local file system, and
sends reply via RPC

» Usually listening at port 2049

* Both mountd and nfsd use underlying RPC implementation

15

A Simple Approach

Use RPC to forward every filesystem operation to the server

= Server serializes all accesses, performs them, and sends back
result.

Great: Same behavior as if both programs were running on
the same local filesystem!

Bad: Performance can stink. Latency of access to remote
server often much higher than to local memory.

In Andrew context: server would get hammered!

A Simple Approach

 Use RPC to forward every filesystem operation to the server

= Server serializes all accesses, performs them, and sends back
result.

 Great: Same behavior as if both programs were running on the
same local filesystem!

* Bad: Performance can stink. Latency of access to remote server
often much higher than to local memory.

* In Andrew context: server would get hammered!

Lesson 1: Needing to hit the server for every detail impairs
performance and scalability.

Question: How can we avoid going to the server for everything? What
do we lose in the process?

Outline

 Why Distributed File Systems?

e Basic mechanisms for building DFSs
= Using NFS and AFS as examples

* Design choices and their implications
« Caching
= Consistency
= Naming
« Authentication and Access Control

18

Caching

* Client-side caching: Having a copy of the data on client
machine

 E.g., AFS, newer versions of NFS

19

Caching

AFS Goals

* Have a consistent namespace for files across computers
* LARGE numbers of clients, servers

« 1000 machines could cache a single file,

» Most local, some (very) remote

* Goal: Minimize/eliminate work per client operation

20

Caching

* AFS uses client-side whole file caching

AFS Assumptions

* Client machines have disks(!!)
= Can cache whole files over long periods

* Write/write and write/read sharing are rare
= Most files updated by one user, on one machine

21

Caching

 So, what do we cache?
* On-demand caching
Cache data that was requested by the client
* Pre-fetching
Cache data in advance
Take latency affects on pre-fetching into account

22

Caching

read(f1) - v1 ‘

read(flysv1 (e &

read(f1)—V1 | <:>
read(f1)—? Client

cache

cache

write(f1)->OK _
read(f1)—>V2

Caching

And if we cache... doesn’ t that risk making things
inconsistent?

Read-only files 2 easy
Data that is written by other machines (“cache staleness”)—>
« How to know that the data has changed?
« How to ensure data consistency?
Data written by the client machine (“update visibility”)—>
« When is data written to the server?
« What happens if the client machine goes down?

24

Approaches to handle cache staleness

* Update propagation policy
* Lots and lots of research papers on this topic

* We will learn a few key ideas
» Broadcast invalidations
» Check on use
= Callbacks
= Leases

25

1. Broadcast invalidations

* When there is an update, every possible cache location is
notified

e Used in early (70’s, 80’s, 90’s) multiprocessor caches
* Pros?

« Simple

» Can provide strict consistency
* Cons?

« Can lead to useless network communication

= Not scalable

26

2. Check on use

Client checks with the server before each use
NFS v2

e Pros?

« Simple
» Can provide strict consistency
e Cons?
= Slow reads
« Can lead to useless network communication

» Not scalable: too high load on server

27

3. Callbacks

* Clients register with server that they have a copy of file
- Server tells them: “Invalidate!” if the file changes

* This trades server state for improved consistency

 What if server crashes? Lose all callback state!

e Reconstruct callback information from client: go ask
everyone “who has which files cached?”

e What if client crashes?

« Must revalidate any cached content it uses since it may have
missed callback

e AFS uses callbacks

28

4. Leases

* Granting exclusive/shared control of the cached objects for a
limited amount of time

* Lease period: duration of the control
* Lease renewal: control expires without renewal

» Client has to request lease renewal
« Need to take latency of communication into account

* Read lease vs write lease

« multiple sites can obtain read lease
= only one can get write lease

* Clock synchronization
= Not necessary: absolute time not relevant
« But clock tick rate matters

29

