
Announcements
• P1 teams

§ If you still don’t have a teammate: make use of Piazza posts
§ Don’t wait for too long – let us know soon

• Start P1 early!

15-440/640 Distributed Systems

Distributed File Systems
(Two lectures)

Outline
• Why Distributed File Systems?

• Basic mechanisms for building DFSs
§ Using NFS and AFS as examples

• Design choices and their implications
§ Caching
§ Consistency
§ Naming
§ Authentication and Access Control

3

andrew.cmu.edu
• Let’s start with a familiar example: andrew

10,000s
of
machines

10,000s
of
people

• Have a consistent namespace for files across computers
• Allows any authorized user to access files from any

computer

Disk Disk Disk

Terabytes of
disk

Network File System (NFS)

Picture credit: The Wisconsin OS book

What Distributed File Systems Provide
• Access to data stored at servers using file system interfaces

• What are the file system interfaces?
§ Open a file, check status of a file, close a file
§ Read data from a file
§ Write data to a file
§ Lock a file or part of a file
§ List files in a directory, create/delete a directory
§ Delete a file, rename a file, add a symlink to a file
§ etc

6

Why are DFSs Useful?
• Data sharing among multiple users
• User mobility
• (File) Location transparency
• Backups and centralized management

7

Challenges
• Heterogeneity (lots of different computers & users)
• Scale (10s of thousands of users!)
• Security (my files! hands off!)
• Failures
• Concurrency
• oh no... we’ve got ‘em all.

How can we build this??

Prioritized goals? / Assumptions

• Often very useful to have an explicit list of prioritized goals
• Distributed filesystems almost always involve trade-offs

• Scale, scale, scale
• User-centric workloads... how do users use files (vs. big

programs?)
§ Most files are personally owned
§ Not too much concurrent access; user usually only at one or a few

machines at a time
§ Sequential access is common; reads much more common that writes
§ There is locality of reference (if you’ve edited a file recently, you’re

likely to edit again)
• If you change the workload assumptions the design parameters change!

Components in a DFS Implementation
• Client side:

§ What has to happen to enable applications to access a
remote file the same way a local file is accessed?

§ Accessing remote files in the same way as accessing local
files à requires kernel support

• Communication layer:
§ How are requests sent to server?

• Server side:
§ How are requests from clients serviced?

10

VFS Interception

11

VFS = virtual file system

A Simple Approach
• Use RPC to forward every filesystem operation to the server

§ Server serializes all accesses, performs them, and sends back
result.

• Same behavior as if both programs were running on the
same local filesystem!

Remote Procedure Calls in NFS

• Reading data from a file
• Lookup takes directory+name and return filehandle

13

Some NFS v2 RPC Calls

• NFS RPCs using XDR over, e.g., TCP/IP

• fhandle: 32-byte opaque data (64-byte in v3)

14

Proc. Input args Results
LOOKUP dirfh, name status, fhandle, fattr
READ fhandle, offset, count status, fattr, data

CREATE dirfh, name, fattr status, fhandle, fattr
WRITE fhandle, offset, count,

data
status, fattr

Server Side Examples

• mountd: provides the initial file handle for the exported directory
§ Client issues nfs_mount request to mountd
§ mountd checks if the pathname is a directory and if the directory

should be exported to the client

• nfsd: answers the RPC calls, gets reply from local file system, and
sends reply via RPC
§ Usually listening at port 2049

• Both mountd and nfsd use underlying RPC implementation

15

A Simple Approach
• Use RPC to forward every filesystem operation to the server

§ Server serializes all accesses, performs them, and sends back
result.

• Great: Same behavior as if both programs were running on
the same local filesystem!

• Bad: Performance can stink. Latency of access to remote
server often much higher than to local memory.

• In Andrew context: server would get hammered!

A Simple Approach

• Use RPC to forward every filesystem operation to the server
§ Server serializes all accesses, performs them, and sends back

result.
• Great: Same behavior as if both programs were running on the

same local filesystem!
• Bad: Performance can stink. Latency of access to remote server

often much higher than to local memory.
• In Andrew context: server would get hammered!

Lesson 1: Needing to hit the server for every detail impairs
performance and scalability.

Question: How can we avoid going to the server for everything? What
do we lose in the process?

Outline
• Why Distributed File Systems?

• Basic mechanisms for building DFSs
§ Using NFS and AFS as examples

• Design choices and their implications
§ Caching
§ Consistency
§ Naming
§ Authentication and Access Control

18

Caching

• Client-side caching: Having a copy of the data on client
machine

• E.g., AFS, newer versions of NFS

19

Caching
AFS Goals

• Have a consistent namespace for files across computers

• LARGE numbers of clients, servers
§ 1000 machines could cache a single file,
§ Most local, some (very) remote

• Goal: Minimize/eliminate work per client operation

20

Caching

• AFS uses client-side whole file caching

AFS Assumptions

• Client machines have disks(!!)
§ Can cache whole files over long periods

• Write/write and write/read sharing are rare
§ Most files updated by one user, on one machine

21

Caching

• So, what do we cache?
• On-demand caching

• Cache data that was requested by the client
• Pre-fetching

• Cache data in advance
• Take latency affects on pre-fetching into account

22

Server cache
F1:V1F1:V2

Caching

23

Read (RPC)
Return (Data)

Write (RPC)

ACK

Client

cache

Client

cache

F1:V1

F1:V2

read(f1)

write(f1)

®V1
read(f1)®V1
read(f1)®V1

®OK

read(f1)®?

read(f1)®V2

Caching
• And if we cache... doesn’t that risk making things

inconsistent?

• Read-only files à easy
• Data that is written by other machines (“cache staleness”)à

§ How to know that the data has changed?
§ How to ensure data consistency?

• Data written by the client machine (“update visibility”)à
§ When is data written to the server?
§ What happens if the client machine goes down?

24

Approaches to handle cache staleness
• Update propagation policy
• Lots and lots of research papers on this topic

• We will learn a few key ideas
§ Broadcast invalidations
§ Check on use
§ Callbacks
§ Leases

25

1. Broadcast invalidations
• When there is an update, every possible cache location is

notified
• Used in early (70’s, 80’s, 90’s) multiprocessor caches
• Pros?

§ Simple
§ Can provide strict consistency

• Cons?
§ Can lead to useless network communication
§ Not scalable

26

2. Check on use
• Client checks with the server before each use
• NFS v2
• Pros?

§ Simple
§ Can provide strict consistency

• Cons?
§ Slow reads
§ Can lead to useless network communication
§ Not scalable: too high load on server

27

3. Callbacks
• Clients register with server that they have a copy of file

§ Server tells them: “Invalidate!” if the file changes
• This trades server state for improved consistency
• What if server crashes? Lose all callback state!
• Reconstruct callback information from client: go ask

everyone “who has which files cached?”
• What if client crashes?

§ Must revalidate any cached content it uses since it may have
missed callback

• AFS uses callbacks

28

4. Leases
• Granting exclusive/shared control of the cached objects for a

limited amount of time
• Lease period: duration of the control
• Lease renewal: control expires without renewal

§ Client has to request lease renewal
§ Need to take latency of communication into account

• Read lease vs write lease
§ multiple sites can obtain read lease
§ only one can get write lease

• Clock synchronization
§ Not necessary: absolute time not relevant
§ But clock tick rate matters 29

