
Remote Procedure Calls
15-440/15-640 Distributed Systems

Lecture 07 – Tuesday, Sept 21st, 2021

• P1 Released last week.
• Do you have a partner? If not, please look at the Piazza post.
• Post on Piazza, talk to course staff if still having trouble finding a partner
• Checkpoint Due: 9/28, Part A Due: 10/8, Part B Due: 10/14
• Oct 11th, course drop deadline. Talk with your partner early about any issues

• P1 Recitation (Wednesday, Sept 22nd)

• General Debugging Recitation (Wednesday, Sept 29th)

• Pandemic related exception to OH, form fill in OHQueue

Announcements
F I R S T,

• Abstractions for Communication
• EXAMPLE: TCP masks some of the pain of communicating

across unreliable IP

• Abstractions for Computation

Building up to today
C O N T E X T

• We’ve looked at primitives for computation and for communication.

• Today, we’ll put them together

• Key question:

Splitting computation across the network
C O N T E X T

What programming abstractions work well to split
work among multiple networked computers?

Spoiler: there are many abstractions.

• 1970s: development of Local Area
Networks (LANs)

• 1980s: standard deployment involves
small number of servers, plus many
workstations

– Servers: always-on, powerful machines

– Workstations: personal computers

– Workstations request ‘service’ from
servers over the network, e.g. access to
a shared file-system.

Client-Server Model
C O N T E X T

Let’s start with the most common system model

(there are others, of course, e.g., peer-to-peer)

Typical Communication Pattern
C O N T E X T

Client-server still looks much the same today!

Client Server

Hey, show
me my
timeline

kk!

Why not use an abstraction
to communicate with the
server that resembles this
pattern?

S O …

• A type of client/server
communication

• Attempts to make
remote procedure calls
look like local ones

Remote Procedure Calls (RPC)
E N T E R :

• A nicer abstraction than programming on the network
• Programmer simply invokes a procedure…
• …but it executes on a remote machine (the server)
• RPC subsystem handles message formats, sending & receiving, handling

timeouts, etc
• Aim is to make distribution (mostly) transparent
• Certain failure cases wouldn’t happen locally
• Distributed and local function call performance different

Goals of RPC
W H Y A N E W A B S T R A C T I O N ?

• Machines and network can fail

• Calling and called procedures run on different machines, with different
address spaces
• And perhaps different environments, or operating systems…

• Must convert to local representation of data

But it’s not always simple!
S O U N D S N I C E …

Flavors of Transparency
T R A N S PA R E N C Y ?

Transparency Description
Access Hide differences in data representation and how a resource is accessed

Location Hide where a resource is located

Migration Hide that a resource may move to another location

Relocation Hide that a resource may be moved to another location while in use

Replication Hide that a resource may be provided by multiple cooperating systems

Concurrency Hide that a resource may be simultaneously shared by several competitive users

Failure Hide the failure and recovery of a resource

Persistence Hide whether a (software) resource is in memory or on disk

This is the sort of
transparency we are
concerned about for RPC!

Where are we in the stack?
Z O O M I N G O U T …

Machine A Machine B Machine C

Distributed Applications

Middleware Services

Local network/OS
services

Local network/OS
services

Local network/OS
services

Kernel Kernel Kernel

E.g., TCP/IP Network

E.g., Java
runtime

E.g., Linux,
BSD, Windows

E.g., RMI/RPC

Your app!

How does RPC work?
Z O O M I N G I N O N R P C

{ …
foo()

}
void foo() {

invoke_remote_foo()
}

How to think about RPC in Go
R P C I N G O

RPC Package in Go
• Provides access to the exported methods of an object across a network or other I/O

connection.
• A server registers an object, making it visible as a service with the name of the type of

the object.

• After registration, exported methods of the object will be accessible remotely.

• A server may register multiple objects (services) of different types but it is an error to
register multiple objects of the same type.

Basic RPC code:
package server
import "errors"
type Args struct { A, B int }
type Quotient struct { Quo, Rem int }
type Arith int

func (t *Arith) Multiply(args *Args, reply *int) error {
*reply = args.A * args.B
return nil

}

func (t *Arith) Divide(args *Args, quo *Quotient) error {
if args.B == 0 {

return errors.New("divide by zero")
}
quo.Quo = args.A / args.B
quo.Rem = args.A % args.B
return nil

}

Go Example, server side
R P C I N G O

Let’s say we
have a server
with an object
of type Arith
that it wishes
to export.

Wait, what do we mean by “export”?

Basic RPC code:
package server
import "errors"
type Args struct { A, B int }
type Quotient struct { Quo, Rem int }
type Arith int

func (t *Arith) Multiply(args *Args, reply *int) error {
*reply = args.A * args.B
return nil

}

func (t *Arith) Divide(args *Args, quo *Quotient) error {
if args.B == 0 {

return errors.New("divide by zero")
}
quo.Quo = args.A / args.B
quo.Rem = args.A % args.B
return nil

}

Go Example, server side
R P C I N G O

The server then calls
(for HTTP service):
arith := new(Arith)
rpc.Register(arith)
rpc.HandleHTTP()
l, e := net.Listen("tcp", ":1234")
if e != nil {

log.Fatal("listen error:", e)
}
go http.Serve(l, nil)

Client first dials the server
client, err := rpc.DialHTTP("tcp", serverAddress + ":1234")
if err != nil {

log.Fatal("dialing:", err)
}

Go Example, client side
R P C I N G O

Client first dials the server
client, err := rpc.DialHTTP("tcp", serverAddress + ":1234")
if err != nil {

log.Fatal("dialing:", err)
}

Go Example, client side
R P C I N G O

Then it can make a remote call:
// Synchronous call
args := &server.Args{7,8}
var reply int
err = client.Call("Arith.Multiply", args, &reply)
if err != nil {

log.Fatal("arith error:", err)
}
fmt.Printf("Arith: %d*%d=%d", args.A, args.B, reply)

1. client procedure calls the client stub in the normal way
2. client stub builds a message and calls the local OS
3. client OS sends the message to the remote OS
4. the remote OS gives the message to the server stub
5. server stub unpacks the parameters and calls the server
6. server does the work and returns the result to the stub
7. server stub packs the result in a message and calls its local OS
8. server’s OS sends the message to the client’s OS
9. client’s OS gives the message to the client stub
10. client stub unpacks the result and returns it to the client

How RPC works
V I S U A L I Z I N G R P C O P E R AT I O N

RPC occurs in the following steps

Compiler generates from API stubs for a procedure on the client and server

Client stub
• Marshals arguments into machine-independent format
• Sends request to server
• Waits for response
• Unmarshals result and returns to caller

Server stub
• Unmarshals arguments and builds stack frame
• Calls procedure
• Server stub marshals results and sends reply

Stubs
W H AT ’ S T H E P O I N T O F A S T U B ?

•E.g., if you had to write a, say,
password cracker

Writing an RPC by hand

• (From example) htonl() -- “host to network-byte-order, long”.
• network-byte-order (big-endian) standardized to deal with cross-

platform variance
•Note how we arbitrarily decided to send the string by sending
its length followed by L bytes of the string? That’s
marshalling, too.
• Floating point...
•Nested structures? (Design question for the RPC system - do
you support them?)
•Complex datastructures? (Some RPC systems let you send
lists and maps as first-order objects)

Marshaling/Unmarshaling
H O W T O G E T D ATA O N T O T H E N E T W O R K ?

Example:
Serialize a string. First,
integer representing length
of the string, next, bytes
representing the string.

•a)Original message on x86 (Little Endian)
•b)The message after receipt on the SPARC (Big Endian)
•c)The message after being inverted. The little numbers in boxes indicate the address
of each byte

Endianness matters

• RPC stubs do the work of marshaling and unmarshaling data

• But how do they know how to do it?

• Typically: Write a description of the function signature using an IDL --
interface definition language.

Stubs & IDLs

Lots of these. Some look like C, some look like
XML, ... details don’t matter much.

count = read(fd, buf, nbytes)

(a) Parameter passing in a local procedure call: the
stack before the call to read

(b) The stack while the called procedure –
read(fd, buf, nbytes) - is active.

Parameter Passing in Local Procedure Calls
W H AT A B O U T PA R A M E T E R S ?

Passing value parameters
W H AT A B O U T PA R A M E T E R S ?

The steps involved in a doing a remote computation through RPC.

Replace with pass by copy/restore
Need to know size of data to copy

•Difficult in some programming languages

Solves the problem only partially
What about data structures containing pointers?
Access to memory in general?

Passing value parameters
W H AT A B O U T PA R A M E T E R S ?

Shallow integration.
• Must use lots of library calls to set things up:
• How to format data
• Registering which functions are available and how they are invoked.

Deep integration.
• Data formatting done based on type declarations
• (Almost) all public methods of object are registered.

Go is the latter.

Two styles of RPC implementations
I M P L E M E N T I N G R P C

3 properties of distributed computing that make achieving transparency difficult:

• Memory access
• Partial failures
• Latency

RPCs want to look like LPCs
But they’re fundamentally different!

RPC semantics in the face of
– Communication failures

• delayed and lost messages
• connection resets
• expected packets never arrive

– Machine failures
• Server or client failures
• Did server fail before or after processing the request?

–Might be impossible to tell communication failures from machine failures

Key Challenges of RPC
W H AT S H O U L D R P C S E M A N T I C S B E I F …

• Request from cli -> srv lost

• Reply from srv -> cli lost

• Server crashes after receiving request

• Client crashes after sending request

RPC Failures

••In local computing:
••if machine fails, application fails

••In distributed computing:
•if a machine fails, part of application fails
•one cannot tell the difference between a machine failure and
network failure

••How to make partial failures transparent to client?

Partial Failures

••Make remote behavior identical to local behavior:
•Every partial failure results in complete failure
•You abort and reboot the whole system
•You wait patiently until system is repaired

••Problems with this solution:
•Many catastrophic failures
•Clients block for long periods
•System might not be able to recover

Strawman Solution

Possible semantics for RPC:

•Exactly-once
• Impossible in practice

•At least once:
•Only for idempotent operations

•At most once
•Zero, don’t know, or once

•Zero or once
•Transactional semantics

Real Solution: Break Transparency

•Sorry – impossible to do in general.

•Imagine that message triggers an external physical thing
(say, a robot fires a nerf dart at the professor)

•The robot could crash immediately before or after firing
and lose its state. Don’t know which one happened. Can,
however, make this window very small.

Exactly Once?

••At-least-once: Just keep retrying on client side until you get a response.
•Server just processes requests as normal, doesn‘t remember anything. Simple!
(as long as idempotent)

••At-most-once: Server might get same request twice...
•Must re-send previous reply and not process request (implies: keep cache of
handled requests/responses)
•Must be able to identify requests
•Strawman: remember all RPC IDs handled.
• Ugh! Requires infinite memory.
•Real: Keep sliding window of valid RPC IDs, have client number them
sequentially.

Real Solution: Break Transparency

••As a general library, performance is often a big concern for RPC
systems

••Major source of overhead: copies and marshaling/unmarshaling
overhead

•• Zero-copy tricks (example in the book)
• If buffer is an input or output to the server stub, can eliminate a copy
•E.g. if input parameter (e.g. call to write) need not be copied back

•Topic of Research, data center RPCs

Implementation Concerns

•If my function does: read(foo, ...)
•Can I make it look like it was really a local procedure call??

•Maybe!
•Distributed filesystem…

•But what about address space?
•This is called distributed shared memory
•People have kind of given up on it - it turns out often better to
admit that you are doing things remotely

Dealing with Environmental Differences

Asynchronous RPCs (1)

•The interaction between client and server in
a traditional synchronous RPC.

Asynchronous RPCs (2)

•The interaction between client and server in
an asynchronous RPC.

Asynchronous RPCs (3)

•A client-sever interaction using two
asynchronous RPCs.

Client first dials the server
client, err := rpc.DialHTTP("tcp", serverAddress + ":1234")
if err != nil {

log.Fatal("dialing:", err)
}

Go Example, client side
R P C I N G O

Then it can make a remote call:
// Asynchronous call
quotient := new(Quotient)
divCall := client.Go("Arith.Divide", args, quotient, nil)
replyCall := <-divCall.Done // will be equal to divCall
// check errors, print, etc.

Binding a Client to a Server
• Registration of a server enables a client to
locate the server and bind to it

•Step 1: Locate the servers machine
•Step 2: Locate the server on that machine

Basic RPC code:
package server
import "errors"
type Args struct { A, B int }
type Quotient struct { Quo, Rem int }
type Arith int

func (t *Arith) Multiply(args *Args, reply *int) error {
*reply = args.A * args.B
return nil

}

func (t *Arith) Divide(args *Args, quo *Quotient) error {
if args.B == 0 {

return errors.New("divide by zero")
}
quo.Quo = args.A / args.B
quo.Rem = args.A % args.B
return nil

}

Go Example, server side
R P C I N G O

The server then calls
(for HTTP service):
arith := new(Arith)
rpc.Register(arith)
rpc.HandleHTTP()
l, e := net.Listen("tcp", ":1234")
if e != nil {

log.Fatal("listen error:", e)
}
go http.Serve(l, nil)

RPC is widely used

At Google, 1010
RPCs per
second

https://www.youtube.com/watch?v=xb8u2s7cxzg&t=486s

https://www.youtube.com/watch?v=xb8u2s7cxzg&t=486s

RPC systems worth knowing about

gRPC, by Google (2015)

Apache Thrift, by Facebook
(2007) Finagle, by Twitter (2011)

Apache Avro (2009)

• Remote procedure calls
• Simple way to pass control and data
• Elegant transparent way to distribute applications
• Not the only way…

• Hard to provide true transparency
• Failures
• Performance
• Memory access
• Etc.

• Application writers have to decide how to deal with partial failures
• Consider: E-commerce application vs. game

Takeaways

