
• Project 1 (P1) is coming out this week (dates on course website)

§ P1 recitation next week

• We will do the partner matching for those who don’t have partners yet

§ Make sure your team has been declared via the survey

• HW1 is coming out today

• For everyone’s safety:

§ Please do not congregate after the class for Q/A -- ask questions during the lecture or

make use of Piazza and office hours

§ If you are sick, please watch the lecture remotely

• For any private communication, use course staff email < ds-staff-f21-

private@lists.andrew.cmu.edu>. Not individual instructor email addresses!

Announcements

Distributed Mutual Exclusion
15-440/15-640 Distributed Systems

2

3

• Must ensure that only one instance of code is in critical section

while true:
Perform local operations
Acquire(lock)
Execute critical section
Release(lock)

Mutual Exclusion
C O N T E X T

1. Correctness/Safety: At most one process holds the lock/enter Critical Section at
a time.

2. Fairness: Any process that makes a request must be granted lock
§ Implies that system must be deadlock-free
§ Assumes that no process will hold onto a lock indefinitely
§ Eventual fairness: Waiting process will not be excluded forever
§ Bounded fairness: Waiting process will get lock within some bounded number of

cycles

Mutex Requirements
C O N T E X T

4

1. Low message overhead
2. No bottlenecks
3. Tolerate out-of-order messages
4. Allow processes to join protocol or to drop out
5. Tolerate failed processes
6. Tolerate dropped messages

Distributed Mutex Requirements
C O N T E X T

• Total number of processes is fixed at n
• No process fails or misbehaves
• Communication never fails, but messages from different senders may be reordered

Assumptions

No shared memory → message passing.

Fo
cu

s
to

da
y

5

Outline

Centralized Mutual Exclusion
Bully algorithm for leader election

Decentralized Mutual Exclusion
Distributed Mutual Exclusion

Totally-Ordered Multicast
Lamport Mutual Exclusion
Ricart & Agrawala Mutual Exclusion
Token Ring Mutual Exclusion

6

Outline

Centralized Mutual Exclusion
Bully algorithm for leader election

Decentralized Mutual Exclusion
Distributed Mutual Exclusion

Totally-Ordered Multicast
Lamport Mutual Exclusion
Ricart & Agrawala Mutual Exclusion
Token Ring Mutual Exclusion

7

Centralized Algorithm (1)
C E N T R A L I Z E D M U T UA L E XC L U S I O N

@ Server:
while true:
m = Receive()
If m == (Request, i):
If Available():
Send (Grant) to i

1 20

3

Request OK

Coordinator
Queue is
empty

@ Client → Acquire:
Send (Request, i) to coordinator
Wait for reply

8

Centralized Algorithm (2)
C E N T R A L I Z E D M U T UA L E XC L U S I O N

@ Server:
while true:
m = Receive()
If m == (Request, i):
If Available():
Send (Grant) to I

else:
Add i to Queue

1 20

3

Request

No Reply

Coordinator

2

9

Queue

Centralized Algorithm (3)
C E N T R A L I Z E D M U T UA L E XC L U S I O N

@ Server:
while true:
m = Receive()
If m == (Request, i):
If Available():
Send (Grant) to I

else:
Add i to Q

If m == (Release)&&!empty(Q):
Remove ID j from Q
Send (Grant) to j

1 20

3

Release
OK

Coordinator

@ Client → Acquire:
Send (Release) to coordinator

10

Queue

• Correctness:
§ Clearly safe
§ Fairness depends on queuing policy

- Example of an unfair policy?

• Performance:
§ "cycle" is a complete round of the protocol with one process i requesting access,

entering the critical section and then exiting.
§ 3 messages per cycle (1 request, 1 grant, 1 release)
§ Lock server creates bottleneck

• Issues:
§ What happens when coordinator crashes?
§ What happens when it reboots?

Centralized Algorithm: Summary
C E N T R A L I Z E D M U T UA L E XC L U S I O N

Q: What can we do
when the coordinator
crashes?

11

Outline

Centralized Mutual Exclusion
Bully algorithm for leader election

Decentralized Mutual Exclusion
Distributed Mutual Exclusion

Totally-Ordered Multicast
Lamport Mutual Exclusion
Ricart & Agrawala Mutual Exclusion
Token Ring Mutual Exclusion

12

Selecting a Leader (Elections)
B U L LY L E A D E R E L E C T I O N

Stage 1: Process P notices that leader has failed
Stage 2 (Election Algorithm) The Bully Algorithm
1. P sends an ELECTION message to all processes with higher numbers.
2. If no one responds, P wins the election and becomes coordinator.
3. If one of the higher-ups answers, it takes over. P’s job is done.

• Select a unique process as the leader
• It does not matter which process becomes the leader (all processes identical)
• In general, goal is to identify the process with the largest identifier

13

The Bully Leader-Election Algorithm (1)
B U L LY L E A D E R E L E C T I O N

(a)
Process 4 holds an

election

2 5

1

4 6

3

7

0

Election
Election

Election

✘

2 5

1

4 6

3

7

0

(b)
Processes 5 and 6 respond,

telling 4 to stop

OK

OK

Previous coordinator has
crashed

✘

2 5

1

4 6

3

7

0

(c)
Now 5 and 6 each
hold an election

✘

El
ec

tio
n

Ele
cti

on

Election

14

The Bully Leader-Election Algorithm (2)
B U L LY L E A D E R E L E C T I O N

(a)
Process 6 tells 5 to

stop

2 5

1

4 6

3

7

0

OK

✘

2 5

1

4 6

3

7

0

(b)
Process 6 wins and tells

everyone.

Coordinator

Previous coordinator has
crashed

✘

15

Outline

Centralized Mutual Exclusion
Bully algorithm for leader election

Decentralized Mutual Exclusion
Distributed Mutual Exclusion

Totally-Ordered Multicast
Lamport Mutual Exclusion
Ricart & Agrawala Mutual Exclusion
Token Ring Mutual Exclusion

16

• Assume that there are n coordinators
§ Get a majority vote from m > n/2 coordinators
§ A coordinator replies immediately to a request with GRANT or DENY

Decentralized Algorithm (1)
D E C E N T R A L I Z E D M U T UA L E XC L U S I O N

Opposite extreme to centralized algorithm

0

21

Request

Request
Request

17

• Assume that there are n coordinators
§ Get a majority vote from m > n/2 coordinators
§ Reply immediately with GRANT or DENY

Decentralized Algorithm (2)
D E C E N T R A L I Z E D M U T UA L E XC L U S I O N

What if you get less than m votes?

• Backoff and retry later
• Large numbers of nodes requesting access

can affect availability
• Starvation!

0

21

Grant

Grant
Deny

18

Opposite extreme to centralized algorithm

• Correctness:
§ Majority ensures safety
§ Fairness depends on random chance

• Performance:
§ 2m + m messages per attempt to get majority
§ unbounded number of messages per cycle

• Issues:
§ Node failures are still a problem (forgetting vote on reboot)
§ Backoff and retry problem
§ Starvation

Decentralized Algorithm: Summary
D E C E N T R A L I Z E D M U T UA L E XC L U S I O N

19

Outline

Centralized Mutual Exclusion
Bully algorithm for leader election

Decentralized Mutual Exclusion
Distributed Mutual Exclusion

Totally-Ordered Multicast
Lamport Mutual Exclusion
Ricart & Agrawala Mutual Exclusion
Token Ring Mutual Exclusion

20

A Total Order Would be Useful
C O N T E X T

• Can use Lamport’s to totally order

San Francisco New York

+$100 +1%Initial account
balance: $1,000

21

Logical Lamport Clocks
R E C A L L F R O M L A S T T I M E

Total order: break ties using the process ID: L(e) = M * Li (e) + i
3*1 + 0 = 3 3*2 + 0 = 6

3*3 + 1
= 10 3*4 + 1 = 13

3*5 + 2 = 173*1 + 2 = 5
22

A Total Order Would be Useful

C O N T E X T

• Can use Lamport’s to totally order

• But would need to be able to roll back events

Maybe a large number of them!

• Could we make sure things are in the right order before processing?

San Francisco New York

+$100 +1%
Initial account

balance: $1,000

23

• A multicast operation by which all messages are delivered in the same order to
each receiver.
§ Distributed data structure (priority queue)

Algorithm in a nutshell
1. Message to be sent is timestamped with sender’s logical time
2. Message is multicast (including to the sender itself)
3. When message is received

a) It is put into local queue
b) Ordered according to timestamp
c) Receiver multicasts acknowledgement

(Assume all messages sent by one sender are received in the order they were sent and
that no messages are lost)

Totally-Ordered Multicast
P U T T I N G T H I N G S I N O R D E R

24

Algorithm using TO-Lamport Clocks
1. Message to be sent is timestamped with sender’s logical time
2. Message is multicast (including to the sender itself)
3. When message is received

a) It is put into local queue
b) Ordered according to timestamp,
c) Receiver multicasts acknowledgement

Totally-Ordered Multicast
P U T T I N G T H I N G S I N O R D E R

But when does the banking application get the message?

25

Algorithm in a nutshell
1. Message to be sent is timestamped with sender’s logical time
2. Message is multicast (including to the sender itself)
3. When message is received

a) It is put into local queue
b) Ordered according to timestamp,
c) Receiver multicasts acknowledgement

Message is delivered to applications only when
• It is at head of queue
• It has been acknowledged by all involved processes

Totally-Ordered Multicast
P U T T I N G T H I N G S I N O R D E R

But when does the banking application get the message?

26

• Why does this work?
§ Key observation: by getting an ACK, we must have received all prior messages from

this node
§ If that node had messages from before ACK, queue order will ensure correctness.
§ If that node has messages after ACK, their timestamp must be larger than the

timestamp of the ACK
§ All processes will eventually have the same copy of the local queue → consistent global

ordering.

Totally-Ordered Multicast: Summary
T OTA L LY- O R D E R E D M U LT I C A S T

27

Outline

Centralized Mutual Exclusion
Bully algorithm for leader election

Decentralized Mutual Exclusion
Distributed Mutual Exclusion

Totally-Ordered Multicast
Lamport Mutual Exclusion
Ricart & Agrawala Mutual Exclusion
Token Ring Mutual Exclusion

28

• Based on Lamport TO-multicast
• ACK only to requestor (fewer messages)
• Release after finished (additional message)

Lamport Mutual Exclusion (1)
L A M P O R T M U T UA L E XC L U S I O N

29

• Every process maintains a queue of pending requests for entering critical section
in order. The queues are ordered by virtual time stamps derived from Lamport
timestamps

On the sending/requestor side:
• When node i wants to enter C.S., it sends time-stamped request to all other

nodes (including itself)
§ Wait for replies from all other nodes.
§ If own request is at the head of its queue and all replies have been received, enter C.S.
§ Upon exiting C.S., remove its request from the queue and send a release message to

every process.

More Details: Lamport Mutual Exclusion
L A M P O R T M U T UA L E XC L U S I O N

30

On the receiving/not-requesting side:
• Other nodes:

§ After receiving a request, enter the request in its own request queue (ordered by time
stamps) and reply with a time stamp.
- This reply is unicast unlike the Lamport totally order multicast example. Why?
• Only the requester needs to know the message is ready to commit.
• Release messages are broadcast to let others to move on

§ After receiving release message, remove the corresponding request from its own
request queue.

§ If own request is at the head of its queue and all replies have been received, enter C.S.

More Details: Lamport Mutual Exclusion
L A M P O R T M U T UA L E XC L U S I O N

31

Lamport Mutual Exclusion: Summary
L A M P O R T M U T UA L E XC L U S I O N

• Correctness:
§ When process x generates request with time stamp Tx , and it has received replies

from all y in Nx , then its Q contains all requests with time stamps ≤ Tx

• Performance:
§ Process i sends n-1 request messages
§ Process i receives n-1 reply messages
§ Process i sends n-1 release messages

• Issues:
§ What if node fails?
§ Performance compared to centralized
§ What about message reordering?

32

Outline

Centralized Mutual Exclusion
Bully algorithm for leader election

Decentralized Mutual Exclusion
Distributed Mutual Exclusion

Totally-Ordered Multicast
Lamport Mutual Exclusion
Ricart & Agrawala Mutual Exclusion
Token Ring Mutual Exclusion

33

Ricart & Agrawala Mutual Exclusion

Also, requires a total ordering of all events in the system:
therefore, relies on Lamport totally ordered clocks.

Algorithm Overview:
• When node i wants to enter C.S., it sends time-stamped request to all other

nodes. These other nodes reply (eventually).
• When i receives n-1 replies, then can enter C.S.

Trick:
Node j having earlier request doesn't reply to i until after it has completed its C.S.

34

Ricart & Agrawala Mutual Exclusion
On the receiving processes end, 3 possible cases:

1. Receiver uninterested in resource. If the receiver is not accessing the resource and does
not want to access it, it sends back an OK message to the sender.

2. Receiver already has access to resource. If the receiver already has access to the
resource, it simply does not reply. Instead, it queues the request.

3. Receiver wants access to resource, but doesn’t have it yet. If the receiver wants to access
the resource as well but has not yet done so, it compares the timestamp of the incoming
message with the one contained in the message that it has sent everyone. The lowest one
wins. If the incoming message has a lower timestamp, the receiver sends back an OK
message. If its own message has a lower timestamp, the receiver queues the incoming
request and sends nothing.

Lowest timestamp wins!
35

Ricart & Agrawala Mutual Exclusion

Two processes (0 and 2) want to access a shared resource at the same moment.

0

21 12
12

12
88

8

36

Ricart & Agrawala Mutual Exclusion

Process 0 has the lowest timestamp, so it wins.

0

21 OK

OK OK

Accesses
resource

37

Ricart & Agrawala Mutual Exclusion

When process 0 is done, it sends an OK also, so 2 can now go ahead.

0

21

OK

Accesses
resource

38

Ricart & Agrawala Mutex Summary
• Correctness:

• Performance:

• Issues:

R I C A R T & A G R AWA L A

Why is it correct? (Hint: proof by contradiction)

39

Ricart & Agrawala: Correctness
• Look at nodes A & B. Suppose both are allowed to be in their critical

sections at same time.
§ A must have sent message (Request, A, Ta) & gotten reply (Reply, A).
§ B must have sent message (Request, B, Tb) & gotten reply (Reply, B).

• Case 1: One received request before other sent request.
§ E.g., B received (Request, A, Ta) before sending (Request, B, Tb). Then would have Ta

< Tb . A would not have replied until after leaving its C.S.

• Case 2: Both sent requests before receiving others request.
§ But still, Ta & Tb must be ordered. Suppose Ta < Tb . Then A would not sent reply to

B until after leaving its C.S.

R I C A R T & A G R AWA L A

40

Ricart & Agrawala: Deadlock Free
• Cannot have cycle where each node waiting for some other

• Consider two-node case: Nodes A & B are causing each other to deadlock
§ This would result if A deferred reply to B & B deferred reply to A, but this would

require both Ta < Tb & Tb < Ta

• For general case, would have set of nodes A, B, C, ..., Z, such that A is holding
deferred reply to B, B to C, ... Y to Z, and Z to A. This would require Ta < Tb <
... < Tz < Ta , which is not possible

R I C A R T & A G R AWA L A

41

Ricart & Agrawala: Starvation Free
• If node makes request, it will be granted eventually

• Claim: If node A makes a request with time stamp Ta, then eventually, all
nodes will have their local clocks > Ta

• Justification: From the request onward, every message A sends will have
time stamp > Ta
§ All nodes will update their local clocks upon receiving those messages.

• So, eventually, A's request will have a lower time stamp than any other
node's request, and it will be granted.

R I C A R T & A G R AWA L A

42

Ricart & Agrawala Mutex Summary
• Correctness:

§ Case-based argument
§ Deadlock free
§ Starvation free

• Performance:
§ Each cycle involves 2(n-1) messages
§ n-1 requests by i
§ n-1 replies to i

• Issues:
§ What if node fails?
§ Performance compared to centralized

R I C A R T & A G R AWA L A

43

Outline

Centralized Mutual Exclusion
Bully algorithm for leader election

Decentralized Mutual Exclusion
Distributed Mutual Exclusion

Totally-Ordered Multicast
Lamport Mutual Exclusion
Ricart & Agrawala Mutual Exclusion
Token Ring Mutual Exclusion

44

A Token Ring Algorithm

• Organize the processes involved into a logical ring
• One token at any time → passed from node to node along ring

T O K E N R I N G M U T UA L E XC L U S I O N

2 5

1

4 6

3

7

0

45

Token Ring Algorithm Summary
• Correctness:

§ Clearly safe: Only one process can hold token

• Fairness:
§ Will pass around ring at most once before getting access.

• Performance:
§ Each cycle requires between 1 - ∞ messages
§ Latency of protocol between 0 & n-1

• Issues:
§ Lost token

T O K E N R I N G M U T UA L E XC L U S I O N

46

A Comparison of the 5 Mutex Algorithms
P U T T I N G I T T O G E T H E R

Algorithm # Messages
per cycle

Delay before
entry Problems

Centralized 3 2 Coordinator Crash

Decentralized 2mk + m, k≥1 2mk Starvation

Lamport 3(N-1) 2(N-1) Crash of any process, inefficient

Ricart & Agrawala 2(N-1) 2(N-1) Crash of any process

Token Ring 1 to infinite 0 to (N-1) Lost token, process crash

47
k = number of retries in getting majority

Lecture Takeaways
• Lamport algorithm demonstrates how distributed processes can maintain

consistent replicas of a data structure (the priority queue).

• Ricart & Agrawala's algorithm demonstrate utility of logical clocks.

• Centralized & ring based algorithms have much lower message counts

• None of these algorithms can tolerate failed processes or dropped
messages.

P U T T I N G I T T O G E T H E R

48

