
• Project 1 (P1) is coming out this week (dates on course website)
§ P1 recitation next week

• Find your partner for P1
§ Solo teams not allowed
§ Fill out the survey on team declaration before Wed 11:59pm (pinned post on Piazza)

- Only one entry per team needed – please do not respond multiple times
- Via the form you can also inform us if you want us to find a partner for you

• HW1 is coming out this week (dates on course website)

• Recall: No debugging help on the day of the deadline
§ Some TA office hours moved earlier – thanks to the amazing TA team!

Announcements (1)

• For everyone’s safety please do not congregate after the class for Q/A
§ Ask during the lecture or make use of Piazza and office hours

• For any private communication, use course staff email < ds-staff-f21-
private@lists.andrew.cmu.edu>. Not individual instructor email addresses!

Announcements (2)

Time Synchronization
15-440/15-640 Distributed Systems

3

Agenda

Need for time Synchronization

Basic Time Synchronization Techniques

Lamport Clocks

Vector Clocks

4

Agenda

Need for time Synchronization

Basic Time Synchronization Techniques

Lamport Clocks

Vector Clocks

5

Impact of Clock Synchronization
C O N T E X T

When each machine has its own clock, an event that occurred after another
event may nevertheless be assigned an earlier time.

Think of Unix make. How does make know which modules need
recompiling?

6

Time Standards
C O N T E X T

UT1 (Universal Time)
• Based on astronomical observations
• “Greenwich Mean Time”

TAI (Temps Atomique International / International Atomic Time)
• Started Jan 1, 1958
• Each second is 9,192,631,770 cycles of radiation emitted by Cesium atom
• Has diverged from UT1 due to slowing of earth’s rotation

UTC (Temps universel coordonné/ Universal Coordinated Time)
• TAI + leap seconds to be within 0.9s of UT1
• Currently 27 leap seconds
• Most recent: Dec 31, 2016

7

Comparing Time Standards
C O N T E X T

UT
1

−
UT

C

8

Universal Coordinated Time (UTC)
C O N T E X T

• Is broadcast from radio stations on land and satellite (e.g. GPS)

• Computers with receivers can synchronize their clocks with these timing
signals

• Signals from land-based stations are accurate to about 0.1-10 millisecond

• Signals from GPS are accurate to about 1 microsecond

Q: Why can't we put GPS receivers on all our computers?

9

Clocks in a Distributed System
E N T E R : D I S T R I B U T E D C L O C K S

Computer clocks are not generally in perfect agreement
• Skew: the difference between the times on two clocks (at any instant)

Computer clocks are subject to clock drift (they count time at different rates)
• Clock drift rate: the difference per unit of time from some ideal reference clock
• Ordinary quartz clocks drift by about 1 sec in 11-12 days (10-6 secs/sec).
• High precision quartz clocks drift rate is about 10-7 or 10-8 secs/sec

Network

10

Fast and Slow Clocks
E N T E R : D I S T R I B U T E D C L O C K S

The relation between clock time and UTC when clocks tick at different rates.
11

How fast do clocks drift in real DS?
E N T E R : D I S T R I B U T E D C L O C K S

Geng, Yilong, et al. "Exploiting a natural network
effect for scalable, fine-grained clock
synchronization." NSDI, 2018.

After 1 minute, errors almost 2 milliseconds
Still assumes constant temperature

Timestamping datacenter network packets: need nanosecond accuracy!
12

Agenda

Need for time Synchronization

Basic Time Synchronization Techniques

Lamport Clocks

Vector Clocks

Time Synchronization in Recent Years

13

Perfect Networks
B A S I C T I M E S Y N C R O N I Z AT I O N T E C H N I Q U E S

Say, messages always arrive with propagation delay exactly d

Sender sends time T in a message
Receiver sets clock to T + d
• Synchronization is exact

Sender

Receiver

T

d time

What is the problem here?

14

Synchronous Networks
B A S I C T I M E S Y N C R O N I Z AT I O N T E C H N I Q U E S

Say, messages always arrive with propagation delay at most D

Sender sends time T in a message
Receiver sets clock to T + D/2
• What is the bound on synchronization error?

Sender

Receiver

T

D time

15

Synchronous in the real world
B A S I C T I M E S Y N C R O N I Z AT I O N T E C H N I Q U E S

Real networks are asynchronous
• Message delays are arbitrary

Real networks are unreliable
• Messages don’t always arrive

16

Setting:
A time server S receives signals from a UTC source
Process p wants to know the time

Cristian’s Time Sync
B A S I C T I M E S Y N C R O N I Z AT I O N T E C H N I Q U E S

Time Server, S
Process, p

How can process p get to know the time?
17

Setting:
A time server S receives signals from a UTC source
Process p wants to know the time

Cristian’s Time Sync
B A S I C T I M E S Y N C R O N I Z AT I O N T E C H N I Q U E S

Time Server, S
Process, p

Message, mr

Message, mt

How?
•Process p requests time in mr
and receives time value t in mt
from S
• p sets its clock to t + RTT/2

(RTT is the round trip time recorded by p)

18

Setting:
A time server S receives signals from a UTC source
Process p wants to know the time

Cristian’s Time Sync
B A S I C T I M E S Y N C R O N I Z AT I O N T E C H N I Q U E S

Time Server, S
Process, p

Message, mr

Message, mt

Process p sets its clock to t + RTT/2
(RTT is the round trip time recorded by p)

19

Accuracy?

• Say, min is an estimated minimum one way
delay

• What is the possible range of time at S when
the process p receives response?

[t + min, t + RTT– min]

• Width of this range?

RTT– 2*min

• Accuracy = ?

RTT/2 – min

Setting:
A time server S receives signals from a UTC source
Process p wants to know the time

Cristian’s Time Sync
B A S I C T I M E S Y N C R O N I Z AT I O N T E C H N I Q U E S

Time Server, S
Process, p

Message, mr

Message, mt

Process p sets its clock to t + RTT/2
(RTT is the round trip time recorded by p)

20

Accuracy = RTT/2 – min

Q: Can you think of
any problems with
Cristian’s Algorithm?

• Works well only for
RTT << desired accuracy

• Key issue: reliance on
only one time server

Network Time Protocol (NTP)
B A S I C T I M E S Y N C R O N I Z AT I O N T E C H N I Q U E S

A time service for the Internet - synchronizes clients to UTC
Reliability from multiple, scalable, authenticated time sources

21

Servers arranged in
a hierarchy

Uses a hierarchy of time servers

• Stratum 1 servers have highly-accurate clocks
§ connected directly to atomic clocks, etc.

• Stratum 2 servers get time from only Stratum 1 and Stratum 2 servers

• Stratum 3 servers get time from Stratum 2

• And so on …

Network Time Protocol (NTP)
B A S I C T I M E S Y N C R O N I Z AT I O N T E C H N I Q U E S

22

Network Time Protocol (NTP)
B A S I C T I M E S Y N C R O N I Z AT I O N T E C H N I Q U E S

1

2 2

333

A time service for the Internet - synchronizes clients to UTC
Reliability from multiple, scalable, authenticated time sources

Stratum 1 servers are
connected to UTC sources

23

Spectracom 8170 WWVB Receiver

Spectracom 8183 GPS Receiver

Spectracom 8170 WWVB Receiver

Spectracom 8183 GPS Receiver

Hewlett Packard 105A Quartz
Frequency Standard

Hewlett Packard 5061A Cesium Beam
Frequency Standard

Udel Master Time Facility (MTF)
B A S I C T I M E S Y N C R O N I Z AT I O N T E C H N I Q U E S

Inventor of NTPv0 (today v4): David Mills
(http://www.eecis.udel.edu/~mills) 24

Network Time Protocol (NTP)
B A S I C T I M E S Y N C R O N I Z AT I O N T E C H N I Q U E S

1

2 2

333

Stratum 2 servers are
synchronized to
Stratum 1 servers

25

A time service for the Internet - synchronizes clients to UTC
Reliability from multiple, scalable, authenticated time sources

Network Time Protocol (NTP)
B A S I C T I M E S Y N C R O N I Z AT I O N T E C H N I Q U E S

1

2 2

333

Stratum 3 servers etc..

26

A time service for the Internet - synchronizes clients to UTC
Reliability from multiple, scalable, authenticated time sources

Lowest (leaf) – user’s computers

Uses a hierarchy of time servers
• Stratum 1 servers have highly-accurate clocks

§ connected directly to atomic clocks, etc.
• Stratum 2 servers get time from only Stratum 1 and Stratum 2 servers
• Stratum 3 servers get time from Stratum 2 servers
• So on …

Synchronization similar to Cristian’s algorithm
• Modified to use multiple one-way messages instead of immediate round-trip

Accuracy: Local ~1ms, Global ~10ms

Network Time Protocol (NTP)
B A S I C T I M E S Y N C R O N I Z AT I O N T E C H N I Q U E S

27

All messages use UDP
Each message bears timestamps of recent events:
• Local times of Send and Receive of previous message
• Local times of Send of current message
Recipient notes the time of receipt T3
(we have T0, T1, T2, T3)

NTP Protocol
B A S I C T I M E S Y N C R O N I Z AT I O N T E C H N I Q U E S

T3

T2T1

T0

Server

Client

Time

m m'

Time

28

Timestamps
• t0 is the client's timestamp of the request packet transmission,
• t1 is the server's timestamp of the request packet reception,
• t2 is the server's timestamp of the response packet transmission and
• t3 is the client's timestamp of the response packet reception.

RTT = wait_time_client – server_proc_time
= (t3-t0) – (t2-t1)

Time adjustment at client: t3 + Offset
Offset = t2 + RTT/2 - t3
= ((t1-t0) + (t2-t3))/2

NTP Protocol
B A S I C T I M E S Y N C R O N I Z AT I O N T E C H N I Q U E S

29

30

Each server exchanges multiple such messages

Each such exchange give a <rtt, offset> pair

NTP servers filter pairs <rtt_i, offset_i>, estimating reliability from variation, allowing
them to select peers

8 measurements ⇒ take the one with minimum packet delay

NTP Protocol
B A S I C T I M E S Y N C R O N I Z AT I O N T E C H N I Q U E S

31

• An algorithm for internal synchronization of a group of servers
• In scenarios where no server has a UTC receiver

• A time server/daemon polls to collect clock values from the others (workers)
§ It’s time manually set from time to time

• The daemon uses Christian’s algorithm to estimate the workers clock values
• It takes an average (eliminating any above average round trip time or with faulty clocks)
• It sends the required adjustment to the workers (better than sending the time which

depends on the round trip time)

Berkeley Algorithm
B A S I C T I M E S Y N C R O N I Z AT I O N T E C H N I Q U E S

Berkeley Algorithm (1)
B A S I C T I M E S Y N C R O N I Z AT I O N T E C H N I Q U E S

Network

3:00

3:00

3:00

2:50 3:25

Time Daemon

3:00
The time daemon asks all the
other machines for their
clock values.

32

Berkeley Algorithm (1)
B A S I C T I M E S Y N C R O N I Z AT I O N T E C H N I Q U E S

Network

3:00

3:00

3:00

2:50 3:25

Time Daemon

3:00
The time daemon asks all
the other machines for their
clock values.

33

Berkeley Algorithm (2)
B A S I C T I M E S Y N C R O N I Z AT I O N T E C H N I Q U E S

Network

3:00

0

-10

2:50 3:25

Time Daemon

+25
The machines answer.

34

Berkeley Algorithm (3)
B A S I C T I M E S Y N C R O N I Z AT I O N T E C H N I Q U E S

Network

3:05

+5

+15

3:05 3:05

Time Daemon

-20
The time daemon tells
everyone how to adjust
their clock.

35

36

• An algorithm for internal synchronization of a group of servers
• In scenarios where no server has a UTC receiver

• A time server/daemon polls to collect clock values from the others (workers)
§ It’s time manually set from time to time

• The daemon uses Christian’s algorithm to estimate the workers clock values
• It takes an average (eliminating any above average round trip time or with faulty clocks)
• It sends the required adjustment to the workers (better than sending the time which

depends on the round trip time)

• If daemon fails?
§ Can elect a new one to take over (not in bounded time)

Berkeley Algorithm
B A S I C T I M E S Y N C R O N I Z AT I O N T E C H N I Q U E S

Can’t just change time
• Why not?

Solution?

Change the update rate for the clock
• Changes time in a more gradual fashion
• Prevents inconsistent local timestamps

How to Change Time
B A S I C T I M E S Y N C R O N I Z AT I O N T E C H N I Q U E S

37

Do we actually need to know the exact
time to manage a distributed system?

B U T WA I T,

Agenda

Need for time Synchronization

Basic Time Synchronization Techniques

Lamport Clocks

Vector Clocks

Time Synchronization in Recent Years

39

40

Lamport in 1978:
What usually matters is not that all processes agree on exactly what time
it is, but rather that they agree on the order in which events occur.

Logical Time
L A M P O R T ’s

Capture just the “happens before” relationship between events
•Discard the infinitesimal granularity of time
•Corresponds roughly to causality

Lamport Clocks

The expression a → b is read “event a happens before event b”
Means: All processes agree that first event a occurs, then afterward, event b occurs.

Events at three processes

Logical time (Lamport 1978)
E X A M P L E

41

Instead of synchronizing clocks, event ordering can be used

Two scenarios where “happens-before” relation can be directly observed:
1. Two events occurred at same process pi (i = 1, 2, … N): then they occurred in the

order observed by pi.
2. When a message, m, is sent between two processes: send(m) happens before

receive(m).

Logical time (Lamport 1978)
L O G I C A L T I M E

42

The “happened before” relation is transitive.

Logical time (Lamport 1978)
L O G I C A L T I M E

43

a → b (at p1) and b → c because of m1 => a → c

c →d (at p2) and d → f because of m2

=> a → f

Not all events are related by “happens before” (→)

Consider a and e (different processes and no chain of messages to relate them)
• they are not related by → ; they are said to be concurrent
• written as a || e

Logical time (Lamport 1978)
L O G I C A L T I M E

44

45

A logical clock is a monotonically increasing software counter
§ It need not relate to a physical clock.

Each process pi has a logical clock Li which can be used to apply logical timestamps to
events

§ Rule 1: Li is incremented by 1 before each event at process pi

§ Rule 2:
- (a) when process pi sends message m, it piggybacks t = Li

- (b) when pj receives (m,t) it sets Lj := max(Lj, t) and applies Rule 1 before timestamping the
event receive (m)

Lamport Clocks (1)
L A M P O R T

Each of p1, p2, p3 has its logical clock initialized to zero,
(The clock values are shown by the numbers immediately after the event.)
E.g. 1 for a, 2 for b.

For m1, 2 is piggybacked and c gets max(0,2)+1 = 3

Lamport Clocks (2)
L A M P O R T

when pj receives (m,t) it
sets Lj := max(Lj, t) and
applies Rule 1 before
timestamping the event
receive (m)

RECALL Rule 2(b) from
previous slide:

46

e →e’ implies L(e)<L(e’)

The converse is not true, that is L(e)<L(e') does not imply e →e’
e.g. L(b) > L(e) but b || e

Lamport Clocks (3)
L A M P O R T

47

Similar rules for concurrency
• L(e) = L(e’) implies e||e’ (for distinct e, e’)
• e||e’ does not imply L(e) = L(e’)
• i.e., Lamport clocks arbitrarily order some concurrent events

Lamport Clocks (4)
L A M P O R T

48

Many systems require a total-ordering of events, not a partial-ordering

Is Lamport’s algorithm sufficient?

Use Lamport’s algorithm, but break ties using the process ID

Mathematically,
§ L(e) = M * Li(e) + i

- M = maximum number of processes
- i = process ID

Total-Order Lamport Clocks
L A M P O R T

Practice a few examples of Lamport clocks!
49

Agenda

Need for time Synchronization

Basic Time Synchronization Techniques

Lamport Clocks

Vector Clocks

Time Synchronization in Recent Years

50

A shortcoming of Lamport logical clocks:
e happened before e’ implies L(e) < L(e’)
But L(e) < L(e’) does not imply e happened before e’

Goal:
Want ordering that matches causality

V(e) < V(e’) if and only if e → e’

Vector clocks!
Label each event by vector V(e) [c1, c2 …, cn]
ci = # events in process i that causally precede e

Vector Clocks

51

Initially, all vectors [c1, c2 …, cn] = [0,0,…,0]

For event on process i, increment the vector element corresponding to ci

Label message sent with local vector

When process j receives message with vector [d1, d2, …, dn]:
• Set local each local entry k to max(ck, dk)
• Increment value of cj

Vector Clock Algorithm

52

At p1

• a occurs at (1,0,0); b occurs at (2,0,0)
• piggyback (2,0,0) on m1

At p2 on receipt of m1 use max ((0,0,0), (2,0,0)) = (2,0,0) and
add 1 to own element = (2,1,0)

Vector Clocks

53

Meaning of =, <=, max etc for vector timestamps: compare elements pairwise
Properties:

e → e’ implies V(e)<V(e’)
The converse is also true

Can you see a pair of parallel events?
c || e (parallel) because neither V(c) <= V(e) nor V(e) <= V(c)

Vector Clocks

54

Clocks on different systems can (will almost always) behave differently
• Skew and drift between clocks

Time disagreement between machines can result in undesirable behavior

Two paths to solution:
• synchronize clocks, or
• ensure consistent clocks for event ordering

Clock Sync Important Lessons
I N S U M M A R Y

55

Clock synchronization
• Rely on a time-stamped network messages
• Estimate delay for message transmission
• Can synchronize to UTC or to local source
• Clocks never exactly synchronized
• Often inadequate for distributed systems

§ Might need totally-ordered events
§ Might need very high precision

Logical Clocks
• Encode causality relationship between events
• Lamport clocks provide only one-way encoding
• Vector clocks provide exact causality information

Clock Sync Important Lessons
I N S U M M A R Y

56

