
Distributed Systems

15-440/640

Fall 2021

Lecture 3 – Communication:
The Internet in a Day (ctnd)

Announcements

• Lectures will be recorded by staff going forward
• Project P0 released yesterday (Sept 6th)

• Due Sept. 16th, 2021
• Recitations

• This week –to go over the basics of Golang
• Look at the recitation you are registered for and go to that one
• We will be recording the Recitations sessions

• Prepare by going over the Tour of Go
https://tour.golang.org

• Installation of Go
https://golang.org/doc/install

2

https://tour.golang.org

What you learned so far

Network links and LANs

Inter-network Communication

Layering & Protocols

Internet design

Transport protocols

Application design

What you will learn next

Network links and LANs

Inter-network Communication

Layering & Protocols

Internet design

Transport protocols

Application design

Network Service Model

• What is the service model for inter-network?
• Defines what promises that the network gives for any

transmission
• Defines what type of failures to expect

5

⇒ Development of “failure models” in DS design

• best-effort

• Ethernet/Internet– packets can get lost, etc.

Possible Failure models
• Fail-stop:

• When something goes wrong, the process stops / crashes /
etc.

• Byzantine:
• Anything that can go wrong, will.
• Including malicious entities taking over your computers and

making them do whatever they want.
• Fail-slow or fail-stutter:

• Performance may vary on failures

• These models are useful for proving things;
• The real world typically has a bit of everything.

• Deciding which model to use is important!

Fancier Network Service Models
• What if you want more?

7

• Performance guarantees (QoS)
• Reliability

• Corruption
• Lost packets

• Flow and congestion control
• Fragmentation
• In-order delivery
• Etc…

If network provides this ⇒ reuse across applications

How would you implement these?

What if the Data gets Corrupted?

Internet
GET

inrex.html

GET
index.html

Solution: Add a checksum

Problem: Data Corruption

0,9 9 6,7,
8

2
1 4,5 7 1,2,

3 6
X

8

What if the Data gets Lost?

Internet
GET index.html

Problem: Lost Data

Internet
GET index.html

Solution: Timeout and Retransmit

GET index.htmlGET index.html

9

Solution: Add Sequence Numbers

Problem: Out of Order

What if the Data is Out of Order?

GETx.htindeml

GET x.htindeml

GET index.html

ml 4 inde 2 x.ht 3 GET 1

10

Networks [including end points]
Implement Many Functions

• Link
• Multiplexing
• Routing
• Addressing/naming (locating peers)
• Reliability
• Flow control
• Fragmentation
• Etc….

11

But note limitations: these
can’t turn a byzantine failure
model into a fail-stop model!

Where would you implement each function?

What is Layering?

• Modular approach to network functionality
• Example:

Link hardware

Host-to-host connectivity

Application-to-application channels

Application

12

What is Layering?

Host Host

Application

Transport

Network

Link

User A User B

Modular approach to network functionality

Peer
Layer

Peer
Layer

13

Layering Characteristics

14

• Each layer relies on services from layer below and
exports services to layer above

• Interface defines interaction with peer on other
hosts

• Protocols define:
• Interface to higher layers (API)
• Interface to peer (syntax & semantics)

• Actions taken on receipt of a messages
• Format and order of messages
• Error handling, termination, etc.

• Hides implementation - layers can change without
disturbing other layers (black box)

Internet Protocol Layering

• Relatively simple

Bridge/Switch Router/GatewayHost Host

Application

Transport

Network

Link

Physical

15

The Internet Protocol Suite

UDP TCP

Data Link

Physical

Applications

The Hourglass Model

Waist

The waist facilitates interoperability:
IP over anything, anything over IP

FTP HTTP TFTPNV

TCP UDP

IP

NET1 NET2 NETn…

16
What’s the disadvantage of the “IP waist”?

Layer Encapsulation

Get index.html

Connection ID

Source/Destination

Link Address

User A User B

17

Application

Transport

Network

Link

Application

Transport

Network

Link

Multiplexing and Demultiplexing
• There may be multiple

implementations of each layer.
• How does the receiver know

what version of a layer to use?
• Each header includes a

demultiplexing field that is
used to identify the next layer.
• Filled in by the sender
• Used by the receiver

IP

TCP

IP

TCP

V/HL TOS Length
ID Flags/Offset

TTL Prot. H. Checksum
Source IP address

Destination IP address
Options..

18

TCP/UDPIP

Port
Number

Link

Protocol
Field

Type
Field

Recall: IP header

Today’s Lecture

Network links and LANs

Inter-network Communication

Layering & Protocols
Internet design
Transport protocols

Application design

Goals [Clark88]

0 Connect existing networks
1.Survivability

ensure communication service even in the presence of
network and router failures

2.Support multiple types of services
3. Must accommodate a variety of networks
4. Allow distributed management
5. Allow host attachment with a low level of effort
6. Be cost effective
7. Allow resource accountability

20

Goal 1: Survivability

• If network is disrupted and reconfigured…
• Communicating entities should not care!
• No higher-level state reconfiguration

• How to achieve such reliability?
• Where can communication state be stored?

Network Host

Failure handing Replication “Fate sharing”
Net Engineering Tough Simple
Switches Maintain state Stateless
Host trust Less More

21

Fate Sharing

• Lose state information for an entity if and only if the entity
itself is lost.

• Examples:
• OK to lose TCP state if one endpoint crashes

• NOT okay to lose if an intermediate router reboots

• Tradeoff
• Survivability: Heterogeneous network → less information available

to end hosts and Internet level recovery mechanisms

Connection
State StateNo State

22

End-to-End Argument/Reasoning
• Deals with where to place functionality

• Inside the network (in switching elements)
• At the edges

• Argument
• If you have to implement a function end-to-end anyway

(e.g., because it requires the knowledge and help of the
end-point host or application), don’t implement it
inside the communication system

• Unless there’s a compelling performance enhancement

• Key motivation for split of functionality between
TCP,UPD and IP

Further Reading: “End-to-End Arguments in System Design.” Saltzer, Reed, and Clark. 23

Today’s Lecture

Network links and LANs

Inter-network Communication

Layering & Protocols

Internet design

Transport protocols

Application design

Design Question

• If you want reliability, where should you implement
it?

Host Switch Switch Switch Switch Host

Option 1: Hop-by-hop

Option 2: end-to-end

25
Hint: End-to-end argument

Design Question
• If you want reliability, where should you implement

it?

Host Switch Switch Switch Switch Host

Option 1: Hop-by-hop

Option 2: end-to-end

26

Needs careful thought (decision to be based on performance
rather than correctness)
• Sometimes adding functionality at a lower level might be more efficient.

Example?
• Sometimes might decrease efficiency since lower level subsystems

common to many applications. Example?

Transport Protocols

• Types of Service
• Elastic apps that need reliability:

• remote login or email
• Inelastic, loss-tolerant apps:

• real-time voice or video
• Others in between, or with stronger requirements
• Biggest cause of delay variation: reliable delivery

• Today’s net: ~100ms RTT
• Reliable delivery can add seconds.

• Original Internet model: “TCP/IP” one layer
• First app was remote login…
• But then came debugging, voice, etc.
• These differences caused the layer split, added UDP

27

Transport Protocols

• UDP provides just basic functionality with demux
• TCP adds…

• Connection-oriented
• Reliable
• Ordered
• Point-to-point
• Byte-stream
• Full duplex
• Flow and congestion controlled

28

User Datagram Protocol (UDP):
An Analogy

29

Postal Mail
• Single mailbox to receive

messages
• Unreliable ☺
• Not necessarily in-order

delivery
• Each letter is independent
• Must address each reply

Example UDP applications
Multimedia, voice over IP

UDP
• Single socket to receive

messages
• No guarantee of delivery
• Not necessarily in-order

delivery
• Datagram – independent

packets
• Must address each packet

Postal Mail
• Single mailbox to receive

letters
• Unreliable ☺
• Not necessarily in-order

delivery
• Letters sent independently
• Must address each letter

Transmission Control Protocol (TCP):
An Analogy

30

TCP
• Reliable – guarantee

delivery
• Byte stream – in-order

delivery
• Connection-oriented –

single socket per
connection

• Setup connection
followed by data transfer

Telephone Call
• Guaranteed delivery

• In-order delivery

• Connection-oriented

• Setup connection
followed by conversation

Example TCP applications
Web, Email, Telnet

Rough view of TCP

Time

Source Destination
Data pkt

ACKnowledgement

What TCP does:
1) Figures out which packets got through/lost
2) Figures out how fast to send packets to use all of the unused capacity,
- But not more
- And to share the link approx. equally with other senders

(This is a very incomplete view - take 15-441. :)

31

Questions to ponder

• If you have a whole file to transmit,
how do you send it over the Internet?
• You break it into packets (packet-switched medium)
• TCP, roughly speaking, has the sender tell the receiver “got it!”

every time it gets a packet. The sender uses this to make sure that
the data’s getting through.

• If you acknowledge the correct receipt of the entire file... why
bother acknowledging the receipt of the individual packets???

32

• The answer: Imagine the waste if you had to retransmit
the entire file because one packet was lost. Ow.

Today’s Lecture

Network links and LANs

Inter-network Communication

Layering & Protocols

Internet design

Transport protocols

Application design

Today’s Lecture

Network links and LANs

Inter-network Communication

Layering & Protocols

Internet design

Transport protocols

Application design

Client-Server Paradigm
Typical network app has two pieces: client and server

application
transport
network
data link
physical

application
transport
network
data link
physical

Client:
• Initiates contact with server

(“speaks first”)
• Typically requests service from

server,
• For Web, client is implemented in

browser; for e-mail, in mail
reader

Server:
• Provides requested service to

client
• e.g., Web server sends

requested Web page, mail server
delivers e-mail

request

reply

35

Client /
Server
Session

Client Server

socket socket

bind

listen

read

writeread

write

Connection
request

read

close

close EOF

open_listenfd

acceptconnect

open_clientfd

Socket API Operation Overview

36

What Service Does an Application Need?

• Some apps (e.g., audio) can
tolerate some loss

• Other apps (e.g., file transfer,
telnet) require 100% reliable
data transfer

• Some apps (e.g., Internet
telephony, interactive
games) require low delay to
be “effective”

• Some apps (e.g., multimedia) require minimum amount of
bandwidth to be “effective”

• Other apps (“elastic apps”) make use of whatever bandwidth they
get

Data loss

Bandwidth

Timing

37

Transport Service Requirements of
Common Apps

no loss
no loss
no loss
loss-tolerant
(often)
loss-tolerant
(sometimes)
loss-tolerant
no loss

elastic
elastic
elastic
audio: 5Kb-1Mb
video:10Kb-5Mb

same as above

few Kbps
elastic

no
no
No

yes, 100’s msec

yes, few secs

yes, 100’s msec
yes and no: μs?

file transfer
e-mail

web documents
interactive

audio/video
non-interactive

audio/video
interactive games

financial apps

Application Data loss Bandwidth Time Sensitive

38

Why not always use TCP?

• TCP provides “more” than UDP
• Why not use it for everything??

39

• A: Nothing comes for free...
• Connection setup (take on faith) -- TCP requires one round-

trip time to setup the connection state before it can chat...
• How long does it take, using TCP, to fix a lost packet?

• At minimum, one “round-trip time” (2x the latency of the network)
• That could be 100+ milliseconds!

• If I guarantee in-order delivery,
what happens if I lose one packet in a stream of packets?

One lost packet

40

Pa
ck

et
#

Time

Sent packets

Received packets
(delivered to application)

Time to retransmit
lost packet

Delayed burst

Design trade-off

• If you’re building an app...

• Do you need everything TCP provides?
• If not:

• Can you deal with its drawbacks to take advantage of the
subset of its features you need?

OR
• You’re going to have to implement the ones you need on top

of UDP
• Caveat: There are some libraries, protocols, etc., that can help

provide a middle ground.
• Takes some looking around - they’re not as standard as UDP and

TCP.

41

Blocking sockets

• What happens if an application write()s to a socket
waaaaay faster than the network can send the data?

• TCP figures out how fast to send the data...

• And it builds up in the kernel socket buffers at the
sender... and builds...

• until they fill. The next write() call blocks (by default).

• What’s blocking? It suspends execution of the blocked
thread until enough space frees up...

42

In contrast to UDP

• UDP doesn’t figure out how fast to send data,
or make it reliable, etc.

• So if you write() like mad to a UDP socket...

• It often silently disappears. Maybe if you’re
lucky the write() call will return an error. But
no promises.

43

Web Page Retrieval

1. Static configuration
• IP address, DNS server IP address, IP address of

routers,
2. ARP for router
3. DNS lookup for web server

• Several packet exchanges for lookup
4. TCP SYN exchange
5. HTTP Get request
6. HTTP response

• Slow start, retransmissions, etc.

44

Caching Helps

1. Static configuration
• IP address, DNS server IP address, IP address of

routers,
2. ARP for router
3. DNS lookup for web server

• Several packet exchanges for lookup
4. TCP SYN exchange
5. HTTP Get request
6. HTTP response

• Slow start, retransmissions, etc.

45

Summary: Internet Architecture

• Packet-switched datagram network
• IP is the “compatibility layer”

• Hourglass architecture
• All hosts and routers run IP

• Stateless architecture
• no per flow state inside network IP

TCP UDP

ATM

Satellite

Ethernet

46

Summary: Minimalist Approach

• Dumb network
• IP provide minimal functionalities to support connectivity

• Addressing, forwarding, routing
• Smart end system

• Transport layer or application performs more sophisticated
functionalities
• Flow control, error control, congestion control

• Advantages
• Accommodate heterogeneous technologies (Ethernet,

modem, satellite, wireless)
• Support diverse applications (telnet, ftp, Web, X windows)
• Decentralized network administration

47

Example: project 1

• Project 1: Build a bitcoin miner
• Server --- many clients
• Communication:

• Send job
• ACK job
• do some work
• send result to server
• (repeat)

• IP communication model:
• Messages may be lost, re-ordered, corrupted (we’ll ignore corruption,

mostly, except for some sanity checking)

• Fail-stop node model:
• You don’t need to worry about evil participants faking you out.

49

Proj 1 and today’s material

• You’ll use UDP. Why?
• A1: The course staff is full of sadists who want you to

do a lot of work. This is true in part: timeouts and
retransmission are a core aspect of using the network.

• A2: The communication needed is very small, and you
have to implement a lot of reliability stuff anyway to
ensure that the work gets done...

• Honestly? This one is a middle ground. You might use
TCP for “other” reasons (firewalls that block everything
but TCP), or to avoid the need for the “job ack” part of
the protocol. Or you might stick with UDP to reduce the
overhead at the server.

50

Networks: Common (Interview) Questions

What are Unicasting, Anycasting, Multi-casting and Broadcasting?

What are network “layers”? List some of them.

What is Stop-and-Wait Protocol?

Differences between Bridge/Switch and Router?

What is DHCP, how does it work?

What is ARP, how does it work?

...

