Distributed Systems

15-440/640

Fall 2021

2 – Communication: The Internet in a Day

Course Logistics / Updates

- Course Policies
 - Website: https://www.synergylabs.org/courses/15-440
 - Piazza:<u>https://www.piazza.com/cmu/fall2021/1544015640/home</u>
- TA Office hours are posted online
- No OH this week (talk to me after class if needed)
- Work through the Tour of Go!
 - <u>https://tour.golang.org/welcome/1</u>

Roadmap: First Half of Semester

9/7 9/16 9/17 9/28 (CKPT) 10/8 (P1.A) 10/14 (P1.B)

н	W1		HW2
9/16	9/29	10/3	10/10

Midterm 10/12

All of these dates are tentative!

Warning

These slides (and any other slides posted for class) are *NOT* meant to be a complete guide or class notes

- Please take notes in class
- There is often additional material presented
- Slides are often hard to understand after the fact

Keep an eye out for...

- Modularity, Layering, and Decomposition:
 - Techniques for dividing the work of building systems
 - Hiding the complexity of components from each other
 - Hiding implementation details to deal with heterogeneity
- Naming/lookup/routing
- Resource sharing and isolation
- Models and assumptions about the environment and components
- Understanding and estimating performance

Distributed Systems

15-440/640

Fall 2021

2 – Communication: The Internet in a Day

really: in two days

Today's & Tuesday's Lecture

- Network links and LANs
- Inter-network Communication
- Layering & Protocols
- Internet design
- Transport protocols
- Application design

Basic Building Block: Links

- Electrical questions
 - Voltage, frequency, ...
 - Wired or wireless?
- Link-layer issues: How to send data?
 - When to talk can either side talk at once?
 - What to say low-level format?

What if we want more hosts?

One wire

Wires for everybody!

- When to send?
- Who should receive?

• Scalability?

Multiplexing

Need to share network resources

- How? Switched network
 - Party "A" gets resources sometimes
 - Party "B" gets them sometimes
- Interior nodes act as "Switches"
- What mechanisms to share resources?

In the Old Days...Circuit Switching

In the Old Days...Circuit Switching

Packet Switching

- Source sends information as self-contained packets that have an address.
 - Source may have to break up single message in multiple
- Each packet travels independently to the destination host.
 - Switches use the address in the packet to determine how to forward the packets
 - Store and forward
- Analogy: a letter in surface mail.

Packet Switching

- Source sends information as selfpackets that have an address.
 - Source may have to break up single r multiple
- Each packet travels independent destination host.
 - Switches use the address in the pack how to forward the packets
 - Store and forward
- Analogy: a letter in surface mail.

Packet Switching –

Statistical Multiplexing

- Switches arbitrate between inputs
- Can send from *any* input that's ready
 - Links never idle when traffic to send
 - (Efficiency!)

Packet Switching –

Statistical Multiplexing

- Switches arbitrate between inputs
- Can send from *any* input that's ready
 - Links never idle when traffic to send
 - (Efficiency!)

What if Network is Overloaded?

Solution: Buffering and Congestion Control

- Short bursts: buffer
- What if buffer overflows?
 - Packets dropped
 - Sender adjusts rate until load = resources \rightarrow "congestion control"

Model of a communication channel

- Latency how long does it take for the first bit to reach destination
- Capacity how many bits/sec can we push through? (often termed "bandwidth")
- Jitter how much variation in latency?
- Loss / Reliability can the channel drop packets?
- Packet reordering

Packet Delay

Sum of a number of different delay components:

- Propagation delay on each link.
 - Proportional to the length of the link
- Transmission delay on each link.
 - Proportional to the packet size and 1/link speed
- Processing delay on each router.
 - Depends on the speed of the router
- Queuing delay on each router.
 - Depends on the traffic load and queue size

Packet Delay

Sum of a number of different delay components:

- Propagation delay on each link.
 - Proportional to the length of the link
- Transmission delay on each link.
 - Proportional to the packet size and 1/link speed
- Processing delay on each router.
 - Depends on the speed of the router
- Queuing delay on each router.
 - Depends on the traffic load and queue size

Packet Delay

xmit = transmission delay

When does cut-through matter?

Next: back-of-the-envelope calculations

(What's the xmit? Which protocol are we using?)

Sustained Throughput

- When streaming packets, the network works like a pipeline.
 - All links forward different packets in parallel
- Throughput is determined by the slowest stage.
 - Called the bottleneck link
- Does not really matter why the link is slow.
 - Low link bandwidth
 - Many users sharing the link bandwidth

Polite Networks: Stop & Wait Protocol

- Protocol: agreement between parties on how communication should take place
- Stop & wait: sender sends a single packet to receiver & waits for an acknowledgment
- Example: polite conversation, buying airline ticket over phone

Polite Networks: Stop & Wait Protocol

- A kind of reliable delivery.
 - Accomplished by using acknowledgements (ACK) and timeouts
- Receipt of ACK indicates to sender of original frame that it was successfully delivered
- If sender doesn't receive ACK after a reasonable timeout, it retransmits frame.

Back-of-the-Envelope Bandwidth Calculation

- Cross country latency
 - Distance/speed = 5 * 10^6m / 2x10^8m/s = 25 * 10^-3 s = 25ms
 - 50ms round-trip-time (RTT) for one bit
- Link speed (capacity) 100Mbps
- Packet size = 1250 bytes = 10 kbits
 - Packet size on networks usually = 1500bytes across wide area or 9000bytes in local area
- 1 packet takes
 - 10k/100M = .1 ms to transmit
 - 25ms to reach there
 - ACKs are small \rightarrow so 0ms to transmit
 - 25ms to get back
- Effective bandwidth = 10kbits/50.1ms = 200kbits/sec

Think about this...

- What if we sent two packets before waiting for an ACK
 - What if we sent N packets?
 - How many packets do we need to send before we use up the capacity of the link?
- Performance is critical challenge in DS
 - Examples on HW1

Back to real-world networks: what does a network packet look like?

What does a packet look like?

Example: Ethernet Packet

 Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

	Preamble	Dest. Address	Source Address		Data	CRC
↑ _{Type}						

- Addresses:
 - 6 bytes
 - Each adapter is given a globally unique address at manufacturing time
 - Address space allocated to manufacturers, 24 bits identify manufacturer: e.g., 0:0:15:* → 3com
 - Frame is received by all adapters on a LAN and dropped if address does not match
 - Special addresses
 - Broadcast FF:FF:FF:FF:FF:FF is "everybody"
 - Range of addresses allocated to multicast

What does a packet look like?

Example: Ethernet Packet

 Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

- Each protocol layer needs to provide hooks to upper layer protocols
 - Demultiplexing: identify which upper layer protocol packet belongs to
 - E.g., port numbers allow TCP/UDP to identify target application
 - Ethernet uses Type field
- Type: 2 bytes
 - Indicates the higher layer protocol, mostly IP but others may be supported such as Novell IPX and AppleTalk

Packet Switching

- Source sends information as self-contained packets that have an address.
 - Source may have to break up single message in multiple packets
- Each packet travels independently to the destination host.
 - Switches use the address in the packet to determine how to forward the packets
 - Store and forward
- Analogy: a letter in surface mail.

Frame Forwarding

- A machine with <u>MAC Address</u> lies in the direction of number <u>port</u> of the bridge
- For every packet, the bridge "looks up" the entry for the packets destination MAC address and forwards the packet on that port.
 - Other packets are broadcast why?
- Timer is used to flush old entries

Today's & Tuesday's Lecture

Network links and LANs

Inter-network Communication

Layering & Protocols

Internet design

Transport protocols

Application design

Internet

- An inter-net: a network of networks.
 - Networks are connected using routers that support communication in a hierarchical fashion
 - Often need other special devices at the boundaries for security, accounting, ...
- The Internet: the interconnected set of networks of the Internet Service Providers (ISPs)
 - > 40,000 different networks make up the Internet

Challenges of an internet

- Heterogeneity
 - Address formats
 - Performance bandwidth/latency
 - Packet size
 - Loss rate/pattern/handling
 - Routing
 - Diverse network technologies → satellite links, cellular links, carrier pigeons
 - In-order delivery
- Need a "standard" that everyone can use \rightarrow IP

How To Find Nodes?

Naming

Routing

IP Packets/Service Model

Property	Behavior		
Datagram	Individually-routed		
	packets		
Unreliable	Packets might be		
	dropped		
Best Effort	but only if necessary		
Connectionless	No per-flow state.		
	Packets might be out of		
	order		

IP Packets/Service Model

- Low-level communication model provided by Internet
- Datagram
 - Each packet self-contained
 - All information needed to get to destination
 - No advance setup or connection maintenance
 - Analogous to letter or telegram

Aside: Interaction with Link Layer

- How does one find the Ethernet address of a IP host?
- ARP
 - Broadcast search for IP address
 - E.g., "who-has 128.2.184.45 tell 128.2.206.138" sent to Ethernet broadcast (all FF address)
 - Destination responds (only to requester using unicast) with appropriate 48-bit Ethernet address
 - E.g, "reply 128.2.184.45 is-at 0:d0:bc:f2:18:58" sent to 0:c0:4f:d:ed:c6

IP Addresses: How to Get One?

Network (network portion):

• Get allocated portion of ISP's address space:

ISP's block	<u>11001000</u>	00010111	<u>0001</u> 0000	00000000	200.23.16.0/20
Organization 0	<u>11001000</u>	00010111	00010000	00000000	200.23.16.0/23
Organization 1	<u>11001000</u>	00010111	00010010	00000000	200.23.18.0/23
Organization 2	<u>11001000</u>	00010111	<u>0001010</u> 0	00000000	200.23.20.0/23
Organization 7	<u>11001000</u>	00010111	<u>0001111</u> 0	00000000	200.23.30.0/23

IP Addresses: How to Get One?

- How does an ISP get block of addresses?
 - From Regional Internet Registries (RIRs)
 - ARIN (North America, Southern Africa), APNIC (Asia-Pacific), RIPE (Europe, Northern Africa), LACNIC (South America)
- How about a single host?
 - Hard-coded by system admin in a file
 - DHCP: Dynamic Host Configuration Protocol: dynamically get address: "plug-and-play"
 - Host broadcasts "DHCP discover" msg
 - DHCP server responds with "DHCP offer" msg
 - Host requests IP address: "DHCP request" msg
 - DHCP server sends address: "DHCP ack" msg

CIDR IP Address Allocation

Map of the Internet (IPv4, 2006)

Map of the Internet (IPv4, 2006)

Date

RIR IPv4 Address Run-Down Model

What now?

- Last /8 given to RIR in 1/2011
- Mitigation
 - Reclaim addresses (give back class A=/8 networks)
 - More NAT?
 - Resale markets
 - Slow down allocation from RIRs to LIRs (i.e. ISPs)
- IPv6?

Today's & Tuesday's Lecture

- Network links and LANs
- Inter-network Communication
- Layering & Protocols
- Internet design
- Transport protocols
- Application design

Networks: Common (Interview) Questions

What are Unicasting, Anycasting, Multiccasting and Broadcasting?

What are network "layers"? List some of them.

What is Stop-and-Wait Protocol?

Differences between Bridge/Switch and Router?

What is DHCP, how does it work?

What is ARP, how does it work?