
Distributed Systems

15-440 / 15-640

Fall 2021

Welcome! Course Staff

Instructors

… and a team of 13 Awesome TA’s

Yuvraj Agarwal Rashmi Vinayak

Han Zhang

Young Hun OhQifei Dong Jack Cameron

Karl Xiao

Yiwen Song
(Victor)

William Foy

Kishan Patel Eunice Chen Crystal Jin Riccardo Santoni Nirav Atre

Emma Cohron

Outline

• Course logistics
• Waitlist
• Recitations & Office hours
• Course goals
• Course format
• Course policies
• Introduction to the course

Course Website
• Course website:
https://www.synergylabs.org/courses/15-440/

• The *tentative* schedule for the course is up
• Always check on the website to see latest updates!

https://www.synergylabs.org/courses/15-440/

Communication: Piazza
• Join the class Piazza:
https://www.piazza.com/cmu/fall2021/1544015640/home

• No private posts allowed on Piazza

• For any private discussion, email us at the address below
• Recipients: Yuvraj, Rashmi, PhD TAs (Han Zhang and Nirav Atre)
• Email: ds-staff-f21-private@lists.andrew.cmu.edu

• Emails to individual instructors may not be answered
• Please use Piazza (for all non-private questions) and the email list

(only for something private)

https://www.piazza.com/cmu/fall2021/1544015640/home
mailto:ds-staff-f21-private@lists.andrew.cmu.edu

Video Recording: Canvas
• Join the class on Canvas

• Recorded lecture videos will be posted on Canvas
• Note: Linked to Panopto, but links posted on Canvas.

• If you are not able to attend the lecture in real time,
must watch the video before the next lecture

• Note: We are making recordings available based on the
current COVID posture, will re-evaluate over the Fall

Processing WL/Enrollment
• Unable to take the class if (no exceptions):

• If not taken 213/513 at CMU *before*
• If you are an UGRAD and lower than a “C” in 213
• If you are a Grad and lower than a “B-” in 213/513
• If you have schedule conflict for lecture time

• Priority order
• Required: CS UGrad, MS in SCS (MSCS, MSDC, MITS,..)

• ... Use WL rank + 213 Grade for ECE and INI students

• Questions?
• Mary Widom (ugrad) <marwidom@andrew.cmu.edu>
• Angy Molly (grad) <amalloy@andrew.cmu.edu>

Waitlist
• Class capacity is limited by room size GHC4401 (237)

• As of now, 237 enrolled in 15-440 and 15-640 (!!)
• Current WL is ~75 students: 15-440 (5), 15-640 (70).
• We expect some churn in first few weeks, typically 10-15 drops

• The advice: If you are interested but still on WL:
• Watch the lecture, do P0, P1, but you CANNOT attend in person class
• Reality: 10-15 more students from the WL *may* be admitted
• If you your WL # is higher than 5, no chance of being enrolled

• The plea: Not serious? PLEASE DROP SOON.

• Questions?
• Mary Widom (ugrad) <marwidom@andrew.cmu.edu>
• Angy Molly (grad) <amalloy@andrew.cmu.edu>

Recitations & TA office hours
• Recitations

• Please see S3 for the latest schedule for recitations
• All recitations are in-person, Wednesdays 7-8pm and 8pm-9pm.
• Please attend the section in which you are enrolled. (No

exceptions; need to be strictly adhered to)

• Recitations (6 or 7) primarily to support Projects
• Will be updated on the course website and announced in class

• Introduction to GO (2nd week of class)
• Introduction to P0, P1, P2, P3 + Discussion after projects due

• Lead by TAs, are not meant to go over class lectures
• No recitations this (first) week

Recitations & TA office hours

• TA Office Hours (7 days / week, spread out during the day)
• Will be updated on the website + course Google Calendar

• Will include instructor office hours
• No office hours first (this) week

• Managed using OH Queue (link on the website)
• No office hour help on debugging 24 hours before projects are due

• TA office hours: Practical issues for implementing projects

• Instructor office hours: general questions and discussion of
course content

Course Goals
• Systems requirement:

• Learn something about distributed systems in particular;
• Learn general systems principles (modularity, layering,

naming, security, ...)
• Practice implementing real, larger systems; in teams;

must run in nasty environment;

• One consequence: Must pass homeworks, exams,
and projects independently as well as in total.

• Note, if you fail either you will not pass the class

Course Format
• ~24 lectures: Tu/Th 10:10am – 11:30am in GHC 4401

• 4 projects; 2 solo (p0, p2), 2 person team (p1,p3)
• P0 – warm up project, learn syntax of GO
• P1: Distributed (internet-wide) bitcoin miner
• P2: Project with distributed systems concepts like distributed

commit/consensus (e.g. PAXOS/RAFT)
• P3: Building Tribbler

• 4 Homeworks, cover course lecture topics

Course Format – Midterms
Everything on this slide is tentative, check website

• Current Plan: Two Mid-terms
• *Tentative*: Oct 12 and Dec 2, subject to change
• *Typically* : During scheduled class time

• Registrar: Please do not make any plans to leave for
winter break before the final exam schedule is out.

• If you must, then earliest day you could leave: Dec 15th

• Announce in class and also update the course website

Course Format – Grading

• 45% Projects
• 15% Homeworks
• 20% Midterm 1
• 20% Midterm 2

Collaboration
• Working together important

• Discuss course material
• Work on problem debugging

• Parts must be your own work
• Homeworks, midterm, final, solo projects

• What we hate to say: we run cheat checkers...
• Please *do not* put code on *public* repositories

Collaboration
• Team projects: both students should understand

entire project

• Try to identify partners on your own
• If you are not paired by end of week 2, we will help

• Partner problems: Please address them early

Late Work
• 10% penalty per day

• Cannot be more than 2 days late
• (no exceptions after 48 hours of due date/time)
• No TA help after the official deadline (i.e., for late days)

• Usual exceptions:
• documented medical, emergency, etc.

• Talk to us early if there’s a problem!

• Regrade requests in writing to course admin

Study Material
• Slides and notes on course website

• Not identical to prior 15-440 instances

• Distributed Systems 3.0.1 (2017)
• Free download
• Link to purchase ($25) from syllabus page

• Several useful references on web page

• Go work through the Tour of Go!
• https://tour.golang.org/welcome/1

https://tour.golang.org/welcome/1

About Projects
• Projects are in Go
• Systems programming somewhat different from what you’ve done

• Low-level (C / GO)
• Designed to run indefinitely (error handling must be rock solid)
• Must be secure - horrible environment
• Concurrency
• Interfaces specified by documented protocols

• TA office Hours & “System Hacker’s View of Software Engineering”
• Practical techniques designed to save you time & pain

• WARNINGS
• Many students dropped during Project 1 (started too late!)
• No TA help and office hours on the day before the project deadline

Questions?

Why take this course?
• Huge amounts of computing are now distributed...

• A few years ago, Intel threw its hands up in the air: couldn’t increase GHz much
more without CPU temperatures reaching solar levels

• But we can still stuff more transistors (Moore’s Law)
• Result: Multi-core and GPUs.
• Result 2: Your computer has become
• a parallel/distributed system

• Oh, yeah, and that whole Internet thing...
• my phone syncs its calendar with google, which I can get on my desktop with a

web browser, ...
• (That phone has the computing power of a desktop from 10 years ago and communicates

wirelessly at a rate 5x faster than the average american home could in 1999.)

• Stunningly impressive capabilities now seem mundane. But lots of great stuff
going on under the hood...

• Most things are distributed, and more each day

If you find yourself ...
• In Hollywood....

• ... rendering videos on clusters of 100s of 10,000s of nodes?
• Or getting terabytes of digital footage from on-location to post-

processing?
• On Wall Street...

• tanking our economy with powerful simulations running on large
clusters of machines

• For 11 years, the NYSE ran software from Cornell systems folks to
update trade data

• In biochem...
• using protein folding models that require supercomputers to run

• In gaming...
• Writing really bad distributed systems to enable MMOs to crash on a

regular basis
• Not to mention the obvious places (Internet-of-Things Anyone?)

What Is A Distributed System?
“A collection of independent computers that appears
to its users as a single coherent system.”

• Features:
• No shared memory – message-based communication
• Each runs its own local OS
• Heterogeneity

• Ideal: to present a single-system image:
• The distributed system “looks like” a single computer

rather than a collection of separate computers.

Characteristics of a DS
• Present a single-system image

• Hide internal organization, communication details
• Provide uniform interface

• Easily expandable
• Adding new servers is hidden from users

• Continuous availability
• Failures in one component can be covered by other

components

• Supported by middleware

Distributed System Layer

Figure 1-1. A distributed system organized as middleware. The
middleware layer runs on all machines, and offers a uniform
interface to the system

Goal 1 – Resource Availability
• Support user access to remote resources (printers,

data files, web pages, CPU cycles) and the fair
sharing of the resources

• Economics of sharing expensive resources

• Performance enhancement – due to multiple
processors; also due to ease of collaboration and
info exchange – access to remote services

• Resource sharing introduces security problems.

Goal 2 – Transparency
• Software hides some of the details of the

distribution of system resources.
• Makes the system more user friendly.

• A distributed system that appears to its users &
applications to be a single computer system is said
to be transparent.

• Users & apps should be able to access remote resources
in the same way they access local resources.

• Transparency has several dimensions.

Types of Transparency
Transparency Description

Access Hide differences in data representation &
resource access (enables interoperability)

Location Hide location of resource (can use resource
without knowing its location)

Migration Hide possibility that a system may change
location of resource (no effect on access)

Replication Hide the possibility that multiple copies of the
resource exist (for reliability and/or availability)

Concurrency Hide the possibility that the resource may be
shared concurrently

Failure Hide failure and recovery of the resource. How
does one differentiate betw. slow and failed?

Relocation Hide that resource may be moved during use

Transparency to Handle Failures?

slide from Jeff Dean, Google

Goal 3 - Openness
• An open distributed system “…offers services

according to standard rules that describe the syntax
and semantics of those services.” In other words, the
interfaces to the system are clearly specified and freely
available.
• Compare to network protocols, Not proprietary

• Interface Definition/Description Languages (IDL): used
to describe the interfaces between software
components, usually in a distributed system
• Definitions are language & machine independent
• Support communication between systems using different

OS/programming languages; e.g. a C++ program running on
Windows communicates with a Java program running on
UNIX

• Communication is usually RPC-based.

Open Systems Support …
• Interoperability: the ability of two different

systems or applications to work together
• A process that needs a service should be able to talk to

any process that provides the service.
• Multiple implementations of the same service may be

provided, as long as the interface is maintained

• Portability: an application designed to run on one
distributed system can run on another system
which implements the same interface.
• Extensibility: Easy to add new components,

features

Goal 4 - Scalability
• Dimensions that may scale:

• With respect to size
• With respect to geographical distribution
• With respect to functionality
• With respect to administration
• …

• A scalable system still performs well as it scales up
along any of the dimensions.

Enough advertising
• Let’s look at one real distributed system
• That’s drastically more complex than it might seem

from the web browser...

Lets say you were wondering what
the latest news is on the Pittsburgh Steelers ?!?

... if there is a chance to win the Super Bowl ‘22..

Remember IP...

From: 128.237.206.206
To: 66.233.169.103

<packet contents>

hosts.txt

www.google.com
66.233.169.103
www.cmu.edu 128.2.185.33
www.cs.cmu.edu
128.2.56.91
www.areyouawake.com
66.93.60.192
...

http://www.cs.cmu.edu/
http://www.areyouawake.com/

Domain Name System

CMU DNS server

`
who is www.google.com?

www.google.com is 66.233.169.103
.com DNS server

google.com DNS server

`
. DNS server

who is www.google.com?
ask the .com guy... (here’s his IP)

`
ask the google.com guy... (IP)

`

66.233.169.103

who is www.google.com?

Decentralized - admins update own domains without
coordinating with other domains
Scalable - used for hundreds of millions of domains

Robust - handles load and failures well

http://www.google.com/
http://www.google.com/
http://www.google.com/
http://www.google.com/

But there’s more...

who is www.google.com?

google.com DNS server

`128.237.206.206

Which google
datacenter is
128.237.206.206
closest to?

Is it too busy?

66.233.169.99Search!

http://www.google.com/

A Google Datacenter

How big? Perhaps one million+ machines

usually don’t use more than 20,000 machines to
accomplish a single task. [2009, probably out of
date]

but it’s not that bad...

Search for “Steelers”

Front-end

slide from Jeff Dean, Google

Front-end

i1 i2 i3

i4 ...

i1 i2 i3

i4 ...

i1 i2 i3

i4 ...

Split into chunks:
make single
queries faster

Replicate:
Handle load

GFS distributed filesystem Replicated + Consistent + Fast

How do you index the web?
• Get a copy of the web.
• Build an index.
• Profit.

There are over 1 trillion unique URLs
Billions of unique web pages
Hundreds of millions of websites
30?? terabytes of text

=
• Crawling -- download those web pages
• Indexing -- harness 10s of thousands of machines

to do it
• Profiting -- we leave that to you.

• “Data-Intensive Computing”

MapReduce / Hadoop

Data
Chunks

...

Computers

Data
Transformation

Sort

Data
AggregationStorage

Storage

Why? Hiding details of programming 10,000
machines!

Programmer writes two simple functions:

map (data item) -> list(tmp values)
reduce (list(tmp values)) -> list(out values)

MapReduce system balances load, handles
failures, starts job, collects results, etc.

All that...
• Hundreds of DNS servers
• Protocols on protocols on protocols
• Distributed network of Internet routers to get packets

around the globe
• Hundreds of thousands of servers
• ... to find out what’s the deal with Pittsburgh Steelers!

All excited to learn how to
distributed systems work and how

to build them?

See you in the next class!

Questions?

