
15-440/640 Distributed Systems
Midterm SOLUTION

Name:

Andrew ID:

October 12, 2021

� Please write your name and Andrew ID (IN CAPS) on EVERY page.

� This exam has 15 pages, including this title page. Please confirm that all pages are
present.

� This exam has a total of 100 points.

Question Points Score

1 21

2 13

3 10

4 10

5 9

6 12

7 14

8 10

9 1

Total: 100

1

Andrew ID:

True/False

1. State whether each statement below is true or false. ALSO give a one to two sentence
reason for your answer. Each correct answer is worth 3 points (1 point for the T/F, and
2 points for the reason).

(a) (3 points) Centralized mutual exclusion algorithms are always safe but may not be
fair.

Solution: True. Centralized algorithms are clearly safe, but their fairness de-
pends on the scheduling policy.

(b) (3 points) A text messaging application would best be implemented using UDP.

Solution: False. Text messaging necessitates reliable, in-order service, so TCP
should be used.

(c) (3 points) In Write-Ahead Logging (WAL), the dirty page is written to disk only
after the corresponding logs are written to disk.

Solution: True. WAL writes logs to disk before flushing the dirty page.

(d) (3 points) A Remote Procedure Call (RPC) enables a computer program to execute
a subroutine in its own memory address space.

Solution: False. RPCs enable subroutine execution in a remote address space.

2

Andrew ID:

(e) (3 points) In a program representing a card game, a transaction would be consid-
ered ‘Durable’ (D in ACID) if that transaction maintains some global invariants
(e.g. it does not create any new cards).

Solution: False. The semantics described above correspond to ‘Consistency’,
or the C in ACID. ‘Durability’ implies that once a transaction is completed, it
cannot be undone.

(f) (3 points) DHCP is used to translate hostnames into IP addresses.

Solution: False. Domain Name Service (DNS) is used for name-address trans-
lation, while DHCP (Dynamic Host Configuration Protocol) is used for dynam-
ically assigning IP addresses to networked end-hosts.

(g) (3 points) An attacker discovers a vulnerability in LSP (from Project 1) that allows
them to change any ‘Ack’ packet into a ‘CAck’ packet (only the Message Type is
affected). This bug compromises LSP’s liveness guarantee.

Solution: True. If one or more lost packets get CAck’d, those packets will
never be retransmitted and the receiver will never make progress.

Alternative reasoning: If the attacker tampers with heartbeat messages (ACKs
with SN 0), connections over a lossy network will end up getting terminated,
preventing the protocol from making any progress.

3

Andrew ID:

Short Answers

2. In the following, keep your answers brief and to the point (i.e., 2-3 sentences).

(a) (3 points) Riccardo believes that the ARIES protocol could be optimized by in-
cluding only the new value for each record in a transaction, rather than both the
old and new values. Do you agree with their assessment? Explain why or why not.

Solution: No, this modification does not work. We cannot apply UNDO oper-
ations if we do not store the previous state of the record.

(b) (3 points) Which layer(s) of the network stack do UDP and TCP operate at? If
you were implementing an RPC service, what would be the benefit of building it
atop UDP and TCP, repectively? Answer in one or two sentences for each protocol.

Solution: UDP and TCP are Layer 4 (Transport) protocols. Building an RPC
service atop UDP will impose little communication overhead, and is suitable
when the underlying network is already fairly reliable. Building it over TCP
allows the system to benefit from the reliability, congestion control, and flow
control provided by TCP.

(c) (3 points) Process p attempts to set its clock using Cristian’s Time Sync. At p’s
local time 10:00:13.14 AM, it sends a request to the time server. At local time
10:00:14.21 AM, p receives a response from the server indicating that the ‘real’ time
is 10:00:13.18 AM. p estimates the minimum one-way delay to be 0.40s. Assuming
no clock drift for p, what are the earliest and latest possible ‘real’ times at which p
receives the response?

Solution: Earliest: 10:00:13.58 AM, Latest: 10:00:13.85 AM

(d) (3 points) How many messages are required for a node to gain access to the critical
section (CS) in a system with n nodes that uses the Ricart & Agrawala algorithm
for distributed mutual exclusion? Explain how you arrived at your answer.

Solution: 2(n−1) messages. The requesting node must send a request message
to all other nodes and receive a grant message from all other nodes in order to
enter the CS.

(e) (1 point) What is the secret nonce you saw during the Paxos lecture? :)

Solution: AZ107

4

Andrew ID:

Always Commit Your Work

3. Consider a distributed transaction, T, operating under the two-phase commit (2PC)
protocol. Let N0 denote the coordinator node, and {N1, N2, N3} denote the set of par-
ticipant nodes. The following five messages have been exchanged between the nodes:

Time Message

1 N0 to N1: ‘Phase 1: Prepare’

2 N0 to N2: ‘Phase 1: Prepare’

3 N1 to N0: ‘OK’

4 N0 to N3: ‘Phase 1: Prepare’

5 N2 to N0: ‘OK’

(a) (3 points) Assuming no messages have been dropped in the exchange so far, who
should send a message at time 6? Who is the intended recipient of this message?

Solution: N3 should send a response to N0.

(b) (3 points) Suppose that N0 never receives the ‘OK’ message from N2 due to a
network failure (i.e. the message is dropped). Instead, N0 ‘times out’ after waiting
for an extended period of time. What should happen under the 2PC protocol in
this scenario? Briefly explain why.

Solution: After the timeout, N0 will assume that N2 has failed and it will mark
the transaction as aborted. 2PC requires all participants to respond with ‘OK’.

(c) (4 points) Suppose that, at some point, N0 enters Phase 2 and sends out a ‘Phase
2: Commit’ message to all of the participants. However, N1 crashes before it
receives this message. What is the status of the transaction T when N1 comes back
on-line? Briefly explains why.

Solution: Once the coordinator receives the ‘OK’ message from all partici-
pants, the transaction is deemed to be committed even if a node crashes during
the second phase. In this example, N1 would restore T when it comes back
on-line.

Order, Order!

4. The following figure depicts the timeline of multiple events happening across several
different processes. The number at each event corresponds to its Lamport clock value.

5

Andrew ID:

P1

P2

P3

P4

a, 1

b, 5

d, 28

c, 41

e, 42

f, 43

h i

j, 46

(a) (3 points) Based on their Lamport clock values, what is the relationship between
events labelled b and c? Which event happened earlier?

Solution: No relationship, events b and c are parallel (L(b) < L(c) does not
imply that b precedes c).

(b) (3 points) Ignore the Lamport clock values for this subpart. Han proposes a much
simpler algorithm to determine event ordering: each time two processes commu-
nicate, the sender attaches a log of all events it has seen so far, along with their
corresponding local timestamps. For example, when P3 sends event c to P2, it also
sends event a’s timestamp. When P2 receives the message (event e), it can recon-
struct a global view of event history across both P2 and P3. Based on these logs,
can P2 determine the ordering between events a and b? If so, what is the correct
ordering from P2’s perspective up to event e? If not, why not?

Solution: No, because it is futile to compare timestamps across different pro-
cesses. Since the machine clocks are not precisely synchronized, it is not mean-
ingful to compare the resulting timestamps either. In this example, event a is
recorded in terms of P3’s clock while b is recorded in terms of P2’s.

Alternative explanations based on Lamport time will also be accepted.

(c) (4 points) As you may have noticed, event h is missing a Lamport clock value.
What are the possible values for the Lamport clock of event h? What are their cor-
responding total-ordered Lamport clock values? Assume that the maximum number
of processes is 10, and that process P2 has ID 2.

Solution: 44 is the only possible Lamport clock value for event h. Therefore,
its totally-ordered value is M ∗ Li(e) + i = 10 ∗ 44 + 2 = 442.

360 Noscope Gradescope

5. Eunice has decided that Gradescope is too slow, and wants to implement her own auto-
grading system, Dotolab, where students submit their code via RPCs. Since she wants

6

Andrew ID:

students to be sure that they have submitted, she wants to implement RPCs using
at-least-once semantics. Note, however, that students still have a limited number of
submissions for their projects!

(a) (3 points) Eunice wrote the following code to implement the ‘Submit’ RPC (for
submitting code to Dotolab). Why does it violate at-least-once semantics, and how
can she fix it? (Please keep your answer brief, and do not write code).

1 func (c l i e n t *) Submit (data [] byte) {
2 msg , := j son . Marshal (data)
3 c l i e n t . send (msg) // Send message to Dotolab
4 ackMsg := c l i e n t . ReadFromServer () // Wait f o r Ack from Dotolab
5 ack := j son . Unmarshal (ackMsg)
6 }

Solution: Since send is called just once when the student submits, the message
may get dropped along the way, and the server may never receive the submission.
In order to fix it, Eunice should send the message in a for loop until some sort
of acknowledgement is received from the server.

(b) (3 points) Eunice has fixed the code such that student submissions now follow at-
least-once semantics. However, students are now complaining that they are running
out of submissions because of query duplication. What additional information can
Eunice include in her messages to make sure that Dotolab discards duplicate sub-
missions?

Solution: Eunice should include a submission ID (sequence number) with each
message. If Dotolab receives a message with a submission ID matching a previ-
ous value, it should simply discard the duplicate message.

(c) (3 points) Eunice decides to augment her RPC implementation by providing exactly-
once semantics. She pays extra for a better network, CMU SUPER SECURE, which
guarantees that messages are always delivered in-order and will never be dropped
in transit. Is this sufficient to guarantee exactly-once semantics? Why or why not?

Solution: No. The server could still crash between the time the client sends the
message and the time the server would have received it (i.e. while the message
is in transit), so she cannot guarantee that the message will be delivered.

In-Person Paxos

6. Alice, a CMU student, and Bob, an MIT student, are part of a group of people trying to
emulate Paxos in real life, where each member of the group acts as a node in a system.

7

Andrew ID:

During the emulation, Bob is confused about why the various steps of Paxos are needed.
Help Alice convince Bob why each step is necessary!

(a) (3 points) Bob first asks “Why is it that Paxos requires that at most less than half
of us can fail? What happens if exactly half (or more) of us fail?”

Solution: In order to make sure that there is a single group for the consensus,
less than half of the nodes are allowed to fail. If half or more of the nodes
were to fail, then it is possible that two separate groups would reach their own
separate ‘consensus’.

(b) (3 points) “Hmmmm,” says Bob, “that makes a lot of sense actually!”. Then Bob
frowns and asks, “Why do we each need these proposal numbers? What would
happen if we did not have them?”

Solution: Proposal numbers are necessary to ensure that there is always a strict
priority of proposals. Without them, it would be impossible to know which one
to accept when two different proposal are received.

(c) (3 points) “Wow, thank you for explaining all of this!” Bob says gratefully. “This
reminds me how cool distributed systems are! One thing I don’t think you can
explain is why we need both Prepare and Accept. If I am the proposer, why do I
first need to announce that I am preparing and then later announce that everyone
should accept my proposal?”

Solution: In the Prepare stage, we are seeing if our proposal numbers are out
of date and gauging whether we need to update the proposed value. In the
Accept stage, we are actually broadcasting the value that we want other people
(nodes) to accept.

(d) (3 points) Finally, Bob says “I have heard rumors that it is possible to have a
livelock, but I do not believe them. Can you convince me that a livelock is indeed
possible?”

Solution: Live lock is possible. If two ‘dueling proposers’ are competing with
each other, then they could act in a way where they are constantly proposing
and interfering with the other’s proposals.

8

Andrew ID:

That’s a Lot of Cache

7. In a distributed file system, two clients, C0 and C1, are accessing three files, X, Y, and
Z stored on a remote server. All three files are initially empty. Each client maintains a
separate cache, which implements whole-file caching with check-on-use and open-close
session semantics. Assume that the client caches have infinite capacity.

Each client can execute 4 types of file operations:

1. open(file, mode) opens the file in the client’s local cache and moves the file
pointer to the beginning of the file.

2. read(file) returns the contents of the entire file and advances the file pointer to
the end of the file.

3. write(file, payload) writes the payload at the file pointer’s current position,
and advances the pointer by the number of bytes written. The original file contents
are overwritten (either fully or partially).

4. close(file) will close the file in a client’s cache.

Each operation starts and finishes in one epoch. If the operation results in a change
on the server, the change occurs in the same epoch. The actions of the two clients are
depicted in the table below:

Epoch C0 Operations C1 Operations

0 open(X, “rw”) open(Y, “rw”)

1 open(Y, “rw”) write(Y, “Welcome”)

2 write(X, “Tartan”) close(Y)

3 close(X)

4 write(Y, “Thank”) open(Y, “rw”)

5 close(Y) open(X, “rw”)

6 open(X, “rw”) data = read(X)

7 read(X) write(Y, data)

8 close(Y)

9 write(X, “Scholars”) write(X, “Proud”)

10 close(X) open(Z, “rw”)

11 open(Y, “rw”) write(Z, “JoinUs”)

12 close(X)

13 write(Y, “Thank”) close(Z)

14 write(Y, “You”) open(Y, “r”)

15 close(Y) read(Y)

16 open(Z, “rw”) close(Y)

17 write(Z, “Please”)

18 write(Z, “Like”)

9

Andrew ID:

(a) (3 points) How many versions of files X, Y, and Z have there been on the server,
respectively? (Also include the initial, empty version of each file in your tally.)

File #Versions

X

Y

Z

Solution:

File #Versions

X 4

Y 5

Z 2

(b) (6 points) What are the contents of files X, Y, and Z on the server after epoch 18?

File Contents

X

Y

Z

Solution:

File Contents

X TartanProud

Y ThankYou

Z JoinUs

(c) (5 points) At which epochs are the server and C1 transferring file data? (Do not
include epochs where they are communicating but no file data is transferred.)

Server to C1

C1 to Server

10

Andrew ID:

Solution:

Server to C1 5

C1 to Server 2, 8, 12, 13

11

Andrew ID:

Help, My Oven is Sentient!

8. Eunice has decided to bake some cookies with her new smart oven. Since her oven is
very technologically advanced, it uses semaphores to control locking and unlocking so
that the cookies bake for the perfect amount of time. However, Eunice likes to eat the
cookies as soon as they bake (even if they aren’t all done at the same time), so she’d
like to be able to get in and out of the oven whenever possible. Consider the following
code demonstrating the actions of Eunice and the oven:

1 func oven main () {
2 P(oven lock) ;
3 P(c l o s ed oven) ;
4 cook i e s r eady++;
5 V(oven lock) ;
6 V(open oven) ;
7 }
8

9 func eunice main () {
10 P(oven lock) ;
11 P(open oven) ;
12 cook i e s r eady −−;
13 V(oven lock) ;
14 V(c lo s ed oven) ;
15 }

The oven is initially closed, and the following table depicts the initial state:

Variable Value

oven lock 1

open oven 0

closed oven 1

cookies ready 0

(a) (3 points) Describe the difference between deadlock, livelock, and starvation.

Solution: Deadlock occurs when no processes are making progress because
each is waiting on access to a resource that another holds. Livelock occurs
when each process is doing meaningless work that does not move the program
forward. Starvation occurs when some processes are perpetually denied a critical
resource necessary to make progress.

(b) (3 points) Which of the above issues (deadlock, livelock, and starvation) manifest
in the given code? Explain how the problem(s) arise.

Solution: The above program has an issue with deadlock. When the oven
is closed, the eunice main process could acquire oven lock and then wait on

12

Andrew ID:

the open oven semaphore; during this time, oven main is blocked waiting on
the oven lock semaphore. Since both processes are blocked on each other and
neither is performing any work, this situation constitutes a deadlock.

(c) (4 points) Rewrite the code snippet so as to fix the issue described in Part (b).

func oven main () {

}

func eunice main () {

}

Solution:

func oven main () {
P(c l o s ed oven) ; // These l i n e s
P(oven lock) ; // are swapped .
cook i e s r eady++;
V(oven lock) ;
V(open oven) ;

}

func eunice main () {
P(open oven) ; // These l i n e s
P(oven lock) ; // are swapped .
cook i e s r eady −−;
V(oven lock) ;
V(c l o s ed oven) ;

}

13

Andrew ID:

14

Anonymous Feedback

9. (1 point) Tear this sheet off to receive points. We’d love it if you handed it in either at
the end of the exam or, if time is lacking, to the course secretary.

(a) Please list one thing you’d like to see improved in this class in the current or a
future version.

(b) Please list one good thing you’d like to make sure continues in the current or future
versions of the class.

15

