
P3:	Tribbler
15-440/640

Timeline	&	Logistics
● Start	early,	start	early,	start	early.

● P3	is	a	group	project:	please	register	your	
teammate	before	you	make	any	submission.
○ You	should	work	with	a	partner	who	is	also	in	the	class

Project Release Tuesday, November 13, 2018, at 12pm

Checkpoint Due Wednesday, November 21, 2018 at 11:59 pm

Final Due Saturday, December 1, 2018 at 11:59 pm

Submission limits 15 Autolab submissions per checkpoint

Timeline	&	Logistics
● With	the	P3	final,	submit	a	2-page	design	
document	(worth	10%	of	the	grade).	Tar	it	with	
your	source	code	(refer	to	writeup/README.md	
for	details)

Describe	major	aspects	of	your	design
● The	data	storage	policy	on	the	Storage	Servers
● The	synchronization	strategy	you	use
● Your	principal	data	structures	and	algorithms
● Division	of	work	in	your	team
● Any	other	design	decisions	you	would	like	us	to	
be	aware	of

P3	Overview

Application	Layer
● RPC	based	Tribbler	Server	that	supports

○ subscribing/unsubscribing	to	users
○ posting/retrieving/deleting	Tribbles,	etc

● Two	Components
○ TribServer

■ Tribbler	clients	will	interact	with	the	Tribbler	servers	using	
Go	RPC.

■ All	RPC	calls	reply	with	a	integer	status,	which	is	defined	in	
the	rpc/tribrpcpackage.

○ LibStore
■ Each	Tribble	server	will	create	and	use	an	instance	of	the	

Libstore	library	to	provide	efficient	and	transparent	access	to	
the	storage	servers

TribServer
● Functions

○ CreateUser
■ tribrpc.OK, tribrpc.Exists

○ AddSubscription
■ tribrpc.NoSuchUser,

tribrpc.NoSuchTargetUser, ...

○ RemoveSubscription
○ GetFriends
○ PostTribble
○ DeleteTribble

■ tribrpc.NoSuchPost, ...

○ GetTribbles
○ GetTribblesBySubscription

LibStore
Two	major	functions:
● Request	Routing

○ Given	a	key,	the	Libstore must	route	the	request	to	
the	appropriate	storage	server

○ Libstore contacts	Master	Storage	Node	using	
GetServers RPC	and	creating	a	consistent	hashing	
ring

○ If	receive	an	OK,	Libstore will	begin	communicating	
via	RPC

○ Libstore should	cache	any	Storage	server	
connections	(reuse	the	connection)

LibStore
● Lease	based	Caching

○ Libstore must	keep	a	local	copy	(e.g.,	in	a	small	
hash	table)	respond	to	lease	expiration/revocation	
events	from	the	storage	servers

○ Libstore looks	for	entries	with	valid	lease	in	the	
cache;	if	absent,	forwards	the	request	to	the	
appropriate	storage	server

Storage	Server

Storage	Server
● Each	server	is	a	key-value	store
● Servers	have	a	list	of	virtual	ids	and	together	form	
a	Consistent	Hashing	Ring.

● Master-Slave	architecture

Initialization	&	Setup
● Master	Server

○ Listens	to	incoming	connections	from	other	Servers
○ Waits	for	Slaves	to	join	the	Consistent	Hashing	Ring
○ Replies	with	OK if	all	slaves	have	registered;	else,	

replies	NotReady
● Slave	Servers

○ Register	with	Master	Server	on	startup,	using	
RegisterServer RPC

○ Wait	for	OK status	and	a	slice	consisting	all	servers	
(including	itself)	in	the	ring

○ If	receives	NotReady,	sleep	for	1	sec	and	call	
RegisterServer again

Initialization	&	Setup
● Starting	Servers	with	srunner

● Assume:	List	of	servers	is	static	throughout

./srunner -port=9009 -N=3 -vids=1000,4000,6000 # master

./srunner -port=9010 -master="localhost:9009" -vids=2000,5000 # slave 1

./srunner -port=9011 -master="localhost:9009" -vids=3000 # slave 2

Partitioning	and	Sharding
● Use	util/keyFormatter.go to	generate	keys

○ FormatUserKey:	key	for	a	user	id
○ FormatSubListKey:	key	for	user	subscriptions
○ FormatTribListKey:	key	for	user	tribs
○ FormatPostKey:	key	for	a	specific	tribble
○ Helper	functions	separate	user	ID	with	colon,	eg.	,	

daniel:usrid	or	yuvraj:post-23ac9138d7
● Partitioning	keys	using	StoreHash(key)

○ Partitioning	must	be	based	on	only substring	before	
the		colon	(eg.	daniel	or	yuvraj)

○ eg.	yuvraj:radio	and	yuvraj:head	should	be	handled	by	
the	same	storage	server

Partitioning	&	Sharding
● Each	Storage	Server	stores	subset	of	key/value	
pairs	by	partitioning	using	Consistent	Hashing.

● How	to	perform	Consistent	Hashing:
○ Every	Node	is	assigned	a	list	32	bit	integers	(virtualIDs)	

in	range	[0	to	232-1]
○ For	a	given	key,	node	ID	=	successor	of	hash(key)
○ Eg.	If	node#1	is	has	[10555],	node#2	is	at	[19200],	and

hash(key)	=	13232,	then	key	will	be	handled	by	
node#2

Partitioning	&	Sharding
● Storage	servers	on	a	global	token	ring

./srunner -port=9009 -N=3 -vids=1000,4000,6000 # master

./srunner -port=9010 -master="localhost:9009" -vids=2000,5000 # slave 1

./srunner -port=9011 -master="localhost:9009" -vids=3000 # slave 2

Token Ring

master 1000

2000

3000

40005000

6000

slave 1

slave 2

Partitioning	&	Sharding
● successorID:	after	or	equal to	the	key's	hash	
value.

● Examples
○ Key(1100)	→	slave	1	(2000)
○ Key(2000)	→	slave	1	(2000)
○ Key(3500)	→	master	(4000)
○ Key(6001)	→		master	(1000)

Token Ring

master 1000

2000

3000

40005000

6000

slave 1

slave 2

Libstore	&	TribServer
Handling	Front-end	APIs,	Leasing,	Atomicity

Libstore	&	TribServer
● Libstore	does:

○ Request	routing	to	appropriate	backend	storage	
server

○ Handle	leases	on	keys
● TribServer	does:

○ Handle	Trib	Client	APIs
○ Translate	Client	APIs	to	a	set	of	Storage	APIs	and	Pass	

to	Libstore
● Libstore	&	TribServer	shares	the	same	HTTP	
Handler	(for	details,	refer	to	5.2	on	write	up)

18

Lease	Based	Caching
● Frequent	READs	are	faster	with	caching

○ Eg:	users	with	huge	number	of	subscriptions	(Get	and	
GetList	can	be	faster)

● Three	Lease	modes
○ Always,	Never,	Normal
○ Refer	to	Libstore/TribServer	code	for	setting	up	lease	

mode

Lease	Based	Caching
● Read	Queries

○ Look	in	cache	for	a	valid	lease	and	return	if	present
■ If	not	present,	LibStore can	get	a	lease	from	a	

StorageServer [GetArgs.WantLease is	set]
○ Under	Normal leasing

■ If	QueryCacheThreshqueries	in	QueryCacheSeconds,	
then	ask	for	lease

○ Storage	server	provides	lease	for	LeaseSeconds
period	(LeaseGuardSeconds - for	clock	drift)	and	
keeps	track	of	its	leases

Lease	Based	Caching
● Write	Queries:	Directly	forwarded	to	Storage	

Server
○ New	writes	or	writes	on	unleased	key	can	be	handled	

without	blocking	on	storage	server	to	revoke	leases
○ For	updates,	should	block	until	all	RevokeLease calls	

reply	OK	before	performing	the	update
● Delete	Request

○ Forward	to	Storage	Server
● When	Storage	Server	wants	to	revoke	lease

○ Delete	from	cache

Leasing	on	Storage	Server
● Read	Request

○ Grant	lease	if	WantLease is	true	and	if	there	no	
revoke	lease	operations	occurring	concurrently	for	
that	key

○ Grant	for	LeaseSeconds +	LeaseGuardSeconds
amount	of	time

● Write/Delete	Request
○ Call	RevokeLease to	all	libstores	and	block	the	

update	until	finish	notification
● Handle	concurrency	for	leases

Atomicity	and	Consistency
● Each	update	should	be	atomic

○ All	or	none
○ Application	layer	only	returns	if	the	update	succeeded	

or	failed
● Consistency	should	be	maintained	across	updates

○ If	any	previous	update	returned	success	then	the	
future	reads	should	reflect	that	update

○ Cross-key	consistency	need	not	be	ensured

Atomicity	&	Consistency
1. TribClient2:	PostTribble("a",	"first	post!").	Returns	successfully.
2. TribClient1:	Calls	GetTribblesBySubscription	(subscribed	to	"a",	"b").
3. TribClient2:	PostTribble("a",	"a	was	here").	Returns	successfully.
4. TribClient3:	PostTribble("b",	"b	is	sleeping").	Returns	successfully.
5. TribClient1:	Returns	from	GetTribblesBySubscription.

The	return	value	for	GetTribblesBySubscription	in	step	5	could	be	any	of:
● ["a":"first	post!"]
● ["a":"first	post!"],	["a":"a	was	here"]
● ["a":"first	post!"],	["b":"b	is	sleeping"]
● ["a":"first	post!"],	["a":"a	was	here"],	["b":"b	is	sleeping"]

Checkpoint
Due:	November	21	11:59PM

Late	submission	due:	November	23	11:59PM

Checkpoint

Checkpoint	(Contd)
Only	a	single	Storage	Server
What	does	this	simplify?
● No	Request	Routing
● No	Consistent	hashing
● No	Lease-Based	Caching
All	requests	directly	go	to	the	Storage	Server	
(master)	to	fetch/store	data

Checkpoint	Hints
● How	to	use	Go	RPC?

○ RPC	Client:	Refer	to	TribClient	code
○ RPC	Server:	Refer	to	the	comments	in	the	rpc	package	

in	starter	code	(below	from	rpc/tribrpc/rpc.go)

tribServer := new(tribServer)

// Create the server socket that will listen for incoming RPCs.

listener, err := net.Listen("tcp", fmt.Sprintf(":%d", port))

// Wrap the tribServer before registering it for RPC.
err = rpc.RegisterName("TribServer", tribrpc.Wrap(tribServer))

// Setup the HTTP handler that will server incoming RPCs and
// serve requests in a background goroutine.
rpc.HandleHTTP()
go http.Serve(listener, nil)

Checkpoint	Hints
● What	should	the	keys	(in	the	key-value	store)	look	
like?
○ Use	util/keyFormatter.go to	format

■ User	key,	Post	Key	for	tribble,	Subscribers	List	userkey,	
Tribbles	List	user	key

○ No	other	specific	key	formats	required	for	the	project.

Checkpoint	Hints
● TribServer:	How	to	implement	CreateUser	
function?
○ FormatUserKey
○ Do	a	Get	on	the	LibStore	instance	to	check	if	the	user	

exists
■ If	yes,	set	status	to	Exists	and	return

○ Do	a	Put	on	the	LibStore	instance	and	set	status	OK	if	
success

Final	(Post	Checkpoint)
Due:	December	1	at	11:59PM

Late	Submission	Due:	December	3	at	11:59PM

Post	Checkpoint	ToDo's
● Request	Routing	in	libstore
● Setting	up	the	consistent	hashing	ring
● Caching	&	Leasing	on	Libstore
● Leasing	on	Storage	server
● Performance	 improvements

● You	need	to	make	design	decisions	on	your	own	
for	P3	(not	like	Raft	or	LSP)
○ Write	your	decisions	on	Report!

Post	Checkpoint	Hints
● For	Storage	Servers,	we	will	check	for	
performance	including
○ Wall	clock	time
○ Number	of	calls	to	storage	server	when	things	can	be	

cached
○ Calls	that	Must	go	to	storage	server	should	not	be	

served	from	cache
○ And	more	on	the	same	lines..

Post	Checkpoint	Hints
● Request	routing	is	easy,	start	with	that	to	get	the	
flow

● You	can	use	Always	Leasing	mode	for	debugging
● Handle	timeout	based	revoking	properly
● Cache	&	Reuse	connections,	assume	failures
● Maintain	freshness	of	LibStore	Cache
● Maintain	freshness	of	Storage	Server	Lease	
metadata	- remove	on	lease	expiry

Post	Checkpoint	Hints
● Handle	concurrency	in	LibStore	and	Storage	
Server
○ Libstore	&	Storage	Server	data
○ Lease	conflicts
○ Fine	grained	locking	on	users	- many	approaches

Thank	You

