
P1 : Distributed Bitcoin Miner

15-440/15-640
09/19/2018

Overview
• Debugging Tips

• P0 Solution

• P1 Part A

Debugging Tips
 Logging
◦ Add log statements around points of inter-thread

communications
◦ Channel
◦ Connection
◦ …

◦ Attach server/client IDs to each log line
◦ Create multiple log files, one for each thread
◦ (Demo)

Debugging Tips
 Logging
◦ Limit log output size for easy navigation
◦ Convenient to use flags to enable/disable logging
◦ No multi-level logging support in Go’s standard library

◦ Beware of the complaints from ‘-race’ when a single
logger is used

Debugging Tips
 Why read the tests programs?
◦ Understand the expected behavior of the program.
◦ The system specification is written in natural language

and thus inherently ambiguous and prone to
misinterpretation.

◦ The test program is more precise.
◦ Prepare for Part B.
◦ The public tests are simple. The hidden tests are

brutal.
◦ You will need to write good test programs to catch

bugs.

Debugging Tips
 Tools
◦ GoLand
◦ GDB for Go
◦ Delve

P0 Reference
• Reference solution to p0 from a previous semester

will be posted
• Should be structurally identical

Timeline
• Part A Checkpoint (Due 9/25)

• Part A (Due 10/6)

• Part B (Due 10/16)

Part A: LSP Protocol
• You will implement the Live Sequence Protocol

• LSP has some features of both UDP and TCP

• LSP also has its own features

LSP Features
• LSP supports its own client-server communication model

• Server communicates with multiple clients

• Received messages must be processed in order

• LSP includes Sliding Window Protocol

• Payload size and Checksum are used to verify data

integrity.

• LSP includes Epoch Events for Retransmission and
Timeout Mechanism

Messages
• Each message is consists of:

• Message Type: Connect, Data, Ack

• Connection ID: uniquely identifies each client-server connection
• Sequence Number: sequence number increments with each

message sent
• Payload Size: used to verify data integrity

• Checksum: used to verify data integrity

• Payload

type MsgType int
const (

MsgConnect MsgType = iota // Conn request from client.
MsgData // Data message from client or server.
MsgAck // Acknowledgment from client or server.

)

type Message struct {

Type MsgType // One of the message types listed above.
ConnID int // Unique client-server connection ID.
SeqNum int // Message sequence number.
Size int // Size of the payload.
Checksum uint16 // Checksum of the message.
Payload []byte // Data message payload.

}

Messages

• Message size is limited to single UDP-packet size

• Each Message is received exactly once

• Messages are marshaled using Go’s Marshal

function in the json package and sent as a UDP

packet

Messages

Client-Server Communication:
Establishing a Connection

Server Client

(Connect, 0, 0)

Client begins by sending a connection request
(must have ID 0 and sequence number 0)

Server generates a unique connection id
for this Client-Server connection

(you can just generate ID’s sequentially)

Server Client

(Connect, 0, 0)

(Ack, id, 0)

Client-Server Communication:
Establishing a Connection

Server Client

(Data, id, i, “hello”)
Server and Client maintain
independent sequence numbers. (Ack, id, i)

(Data, id, i+1, “hi”)

(Ack, id, i+1)

(Data, id, j, “hi”)

(Ack, id, j)

Client-Server Communication:
Sending & Ack-ing Data

Server

UDP Packets aren’t guaranteed
to arrive in order.

LSPServer.Read()//blocks
LSPServer.Read()
LSPServer.Read()

Messages must be received in order.

Server

(Data, id, i, “440”)

UDP Packets aren’t guaranteed
to arrive in order.

Messages must be received in order.

LSPServer.Read()//returns “440”
LSPServer.Read()
LSPServer.Read()

Server

(Data, id, i, “440”)

(Data, id, i+2, “fun”)

i + 2 : “fun”

UDP Packets aren’t guaranteed
to arrive in order.

LSPServer.Read()//returns “440”
LSPServer.Read()//blocks
LSPServer.Read()

Messages must be received in order.

Server

(Data, id, i, “440”)

(Data, id, i+2, “fun”)

i + 2 : “fun”

(Data, id, i+1, “is”)

Messages must be received in order.

How to maintain order?

LSPServer.Read()//returns “440”
LSPServer.Read()//returns “is”
LSPServer.Read()//returns “fun”

•

•

•

Like TCP, LSP uses a sliding window protocol

Given a window size ω, we can send up to ω
messages without acknowledgement.

If the oldest unacknowledged message has
sequence number n, then only messages with
sequence numbers n + ω - 1 (inclusive) may be
sent

i.e. [n, n+ ω -1]

Sliding Window Protocol

Server Client

ω = 3

Client messages queue =
“h” ->“e” -> “l” -> “l” -> “o”

Sliding Window Protocol

Sliding Window Protocol
Server Client

(Data, id, i, “h”)ω = 3

Client messages queue =
“e” -> “l” -> “l” -> “o”

Oldest Seq # without Ack = i

Window = [i, i+2]

Server Client

(Data, id, i, “h”)

(Data, id, i+1, “e”)

ω = 3

Client messages queue =
“l” -> “l” -> “o”

Oldest Seq # without Ack = i

Window = [i, i+2]

Sliding Window Protocol

Server Client

(Data, id, i, “h”)

(Data, id, i+1, “e”)

ω = 3

Client messages queue =
“l” -> “o”

Oldest Seq # without Ack = i

Window = [i, i+2]

(Data, id, i+2, “l”)

Sliding Window Protocol

Server Client

(Data, id, i, “h”)

(Data, id, i+1, “e”)

ω = 3

Client messages queue =
“l” -> “o”

Oldest Seq # without Ack = i

Window = [i, i+2]

(Data, id, i+2, “l”)

block

Sliding Window Protocol

Server Client

(Data, id, i, “h”)

(Data, id, i+1, “e”)

ω = 3

Client messages queue =
“l” -> “o”

Oldest Seq # without Ack = i

Window = [i, i+2]

(Data, id, i+2, “l”)

(Ack, id, i+1)

Sliding Window Protocol

Server Client

(Data, id, i, “h”)

(Data, id, i+1, “e”)

ω = 3

Client messages queue =
“l” -> “o”

Oldest Seq # without Ack = i

Window = [i, i+2]

(Data, id, i+2, “l”)

(Ack, id, i+1)

block

Sliding Window Protocol

Server Client

(Data, id, i, “h”)

(Data, id, i+1, “e”)

ω = 3

Client messages queue =
“l” -> “o”

Oldest Seq # without Ack = i+2

Window = [i+2, i+4]

(Data, id, i+2, “l”)

(Ack, id, i+1)

(Ack, id, i)

Sliding Window Protocol

Server Client

(Data, id, i, “h”)

(Data, id, i+1, “e”)

ω = 3

Client messages queue =

Oldest Seq # without Ack = i+2

Window = [i+2, i+4]

(Data, id, i+2, “l”)

(Ack, id, i+1)

(Ack, id, i)

(Data, id, i+3, “l”)

(Data, id, i+4, “o”)

Sliding Window Protocol

• Both payload size and checksum are used to
verify data integrity.

• Payload Size (What if received data is shorter?
longer?)

• Checksum
• Carries more information than payload size
• Can detect flipped bits introduced in the

process of data transmission and storage
• See writeup section 2.1.5 for detailed

description of the 16-bit one’s complement
sum algorithm

Payload size and Checksum

Epoch Events
• We still need to deal with dropped packets.
• On both the clients and servers, we have a simple

time trigger to fire periodically.
• Time interval between two epochs (δ) is fixed.
• Clients and server take epoch actions in case of

dropped packets or lost connection
• Epoch actions happen when timer trigger fires
• Data Message retransmission happen only when

CurrentBackOff epochs have elapsed
• CurrentBackOff increases according to exponential

backoff rules

Client Epoch Actions:
Connect Message Retransmission

• If connection request has
not been acknowledged,
resend connection
request

Server Client

(Connect, 0, 0)

(Ack, id, 0)

(Connect, 0, 0)

(Connect, 0, 0)

}δ

• For every unacknowledged
data message sent, resend
the data message

Server Client

}
(Data, id, i, “data”)

(Data, id, i+1, “dayda”)

(Ack, id, i+1)

(Data, id, i, “data”)

(Data, id, i+1, “dayda”)

Note that message i+1 is duplicated
on the server

Client Epoch Actions:
Data Message Retransmission

CurrentBackoff

• For every unacknowledged
data message sent, resend
the data message

Client Epoch Actions:
Data Message Retransmission

Which message(s) to
resend on each epoch?

Server Client

}
(Data, id, i, “data”)

(Data, id, i+1, “dayda”)

(Ack, id, i+1)

(Data, id, i, “data”)

(Data, id, i+1, “dayda”)

Note that message i+1 is duplicated
on the server

CurrentBackoff

• For every unacknowledged
data message sent, resend
the data message

Client Epoch Actions:
Data Message Retransmission

What should the server do
if it receives a repeat?

Which message(s) to
resend on each epoch?

Server Client

}
(Data, id, i, “data”)

(Data, id, i+1, “dayda”)

(Ack, id, i+1)

(Data, id, i, “data”)

(Data, id, i+1, “dayda”)

Note that message i+1 is duplicated
on the server

CurrentBackoff

• If the client:
(1)has received Ack

message for the Connect
request;

(2)has not received any Data
message;

Then it should send an ack
with sequence number 0

Server Client

}δ

(Data, id, j, “hi”)

(Ack, id, j)

(Ack, id, 0)

Client Epoch Actions:
Is the connection dead?

Server epoch actions are very
similar to client epoch actions.

• For each client connection:

• For each data message that has been sent, but
not yet acknowledged, resend the data message

• If no data message has been received from the
client, then send an ack with sequence number 0

Epoch Events: EpochLimit
We can keep track of epochs passed since the last
message was received. If this goes over a limit,
we can assume the connection is lost.

Checkpoint (due 9/25)
• Assume no packet loss (no need to implement

epoch)
• Race conditions will not be checked
• Messages might be sent out of order:

• Need to receive messages in order
• Need to implement Sliding Window

Protocol

Server Client

(Data, id, i, “hello”)

(Ack, id, i)

(Data, id, i+1, “hi”)

(Ack, id, i+1)

(Data, id, j, “hi”)

(Ack, id, j)

Checkpoint (due 9/25)
Simple Read/ Write Server

Server

(Data, id, i, “440”)

(Data, id, i+2, “fun”)

(Data, id, i+1, “is”)

Checkpoint (due 9/25)
Simple Read/ Write Server

+

Receiving In Order

Server Client

(Data, id, i, “h”)

(Data, id, i+1, “e”)

(Data, id, i+2, “l”)

(Ack, id, i+1)

(Ack, id, i)

Checkpoint (due 9/25)
Simple Read/ Write Server

+

Receiving In Order

+

Sliding Window Protocol

lspnet
• Contains every UDP operation needed.

• net package is not allowed!

import “github.com/cmu440/lspnet”

addr, err := lspnet.ResolveUDPAddr("udp", hostport)
udpConn, err := lspnet.ListenUDP("udp", addr)
n, cliAddr, err := udpConn.ReadFromUDP(buffer[0]:)
udpConn.WriteToUDP(msg, cliAddr)

Implementation notes
• No locks and mutexes

• There’s no limit on message queue size, so don’t
use buffered channel to store pending messages
as in p0. Instead use something like linked list.

