
P1 : Distributed Bitcoin Miner

15-440/15-640
10/03/2018



Overview

• P1 Post-checkpoint Unit Tests

• P1 Part B

• Q&A



P1 Post-checkpoint Unit Tests
• TestServerFastClose*
• TestServerToClient*
• TestClientToServer*
• TestRoundTrip*
• TestVariableLengthMsgServer
• TestVariableLengthMsgClient
• TestCorruptedMsgServer
• TestCorruptedMsgClient

• TestSendReceive*
• TestRobust*
• TestWindow*
• TestExpBackOff*
• TestServerSlowStart*
• TestServerClose*
• TestServerCloseConns*
• TestClientClose*



TestSendReceive*

• TestSendReceive* test that all 

messages sent from one side are 

received by the other (without relying 

on epochs to resend any messages)

• Window size = 1

• Otherwise similar to TestBasic*



TestRobust*

• TestRobust* test robustness by inserting 

random delays in between client/server 

reads or writes, and by increasing the 

packet loss to up to 20%

• Window size up to 10

• Client count up to 5



TestWindow*
• TestWindow1~3 test the case that …

• The sliding window has reached its maximum capacity.

• Only 'w' unacknowledged messages can be sent out at 

once.

• TestWindow4~6 test the case that …

• Messages are returned by Read in the order they were 

sent (i.e. in order of their sequence numbers). 

• If messages 1-5 are dropped and messages 6-10 are 

received, then the latter 5 should not be returned by Read 

until the first 5 are received.



TestExpBackOff*

• TestExpBackOff* test that the number of 

messages sent due to exponential back-

off falls within a reasonable range

• We sniff messages sent through lspnet

• Up to 10 clients

• Up to 15 messages



TestServerSlowStart*

• TestServerSlowStart* test that a client is able 

to connect to a slow-starting server

• if the server starts a few epochs later than a 

client, the presence of epoch events should 

ensure that the connection is eventually 

established

• Up to 3 clients

• Timeout after 5 epochs



TestServerClose* 
TestServerCloseConns*
TestClientClose*

• Check that the client/server Close methods work 

correctly

• Pending messages should be returned by Read and 

pending messages should be written and 

acknowledged by the other side before Close returns

• CloseConn should return immediately without 

blocking

• Check that no extra messages are received on the 

client/server



TestServerFastClose*

•Streaming messages in large 

batches and the network is 

toggled on/off (i.e. drop percent 

is set to either 0% or 100%) 

throughout.



TestServerFastClose* (Cont.)

• Test procedure at high level

1. Wait for all servers and clients to be ready

2. Shut down network

3. Client application starts writing…

4. Turn on network and delay (server-client communication resumed)

5. Shut down network

6. Server application starts reading…

7. Server application starts writing…

8. Start closing server (pending messages need to be ready for send)

9. Turn on network and delay (server-client communication resumed)

10. Shut down network

11. Client application starts reading…

12. Start closing client



TestServerToClient*
TestClientToServer*
TestRoundTrip*

•Variants of 

TestServerFastClose*

• For more details, read 

lsp4_test.master()



TestVariableLengthMsgServer
TestVariableLengthMsgClient

• Check that server/client…

• Can read normal length message

• Truncates long messages

• Doesn't read short messages



TestCorruptedMsgServer
TestCorruptedMsgClient

• Check that server/client…

• Drop Data messages whose 

calculated and recorded 

checksums don’t match



P1 Part B

• Implement a distributed mining 

infrastructure on top of the LSP you 

develop for part A



Mining

• Given

• Message M

• Unsigned integer N

• Find n such that 

• 0 ≤ 𝑛 ≤ 𝑁

• h𝑎𝑠ℎ 𝑀, 𝑛 ≤ h𝑎𝑠ℎ 𝑀, 𝑛′ ∀ 0 ≤ 𝑛′ ≤ 𝑁

• Run brute-force search to enumerate all possible 

scenarios across multiple machines



Architecture

Miner 1 Miner 2

Server

Client 1 Client 2

JoinJoin

Request Request



Architecture

Miner 1 Miner 2

Server

Client 1 Client 2

Request

ComputeCompute

Request



Architecture

Miner 1 Miner 2

Server

Client 1 Client 2

Result
(partial)

Result
(partial)

Results Results



Handling Failures
• When a miner loses contact with the server it should shut itself down.

• When the server loses contact with a miner, it should reassign any job that 

the worker was handling to a different worker. If there are no available 

miners left, the server should wait for a new miner to join before reassigning 

the old miner’s job.

• When the server loses contact with a request client, it should cease working 

on any requests being done on behalf of the client (you need not forcibly 

terminate a job on a miner—just wait for it to complete and ignore its results).

• When a request client loses contact with the server, it should print 

Disconnected to standard output and exit.

• You should design a scheduler that balances loads across all requests, so 

that the number of workers assigned to each outstanding request is roughly 

equal. Your code should contain documentation on how your scheduler 

achieves this requirement.



Questions I know you will ask
• Are there hidden tests in part B?

• Yes

• Does passing the public test mean we can pass the hidden tests?

• No, not even close

• If we fail the hidden tests on Autolab, can we get useful hints on what is 

wrong?

• Barely. You probably don’t want to waste 15 submission attempts on 

debugging. So write good tests!!

• How can we split the work?

• It depends.

• Total LOC of bitcoin implementation in our reference solution: ~360

• Total LOC in hidden tests: >700

• Write good tests from day 1!!


