
Midterm Review on 10/16/18

Midterm on 10/18/18 10.25am - 11.55am

15-440 Distributed Systems



15-440 Midterm Topics Overview

1) Distribution Systems Intro (Y)
2) Communication - Internet in a Day (D)
3) Classical Consistency/Synchronization (Y)
4) Time Synchronization (D)
5) Remote Procedure Calls (Y)
6) Distributed Filesystems (Y)
7) Distributed Mutual Exclusion (D)
8) Distributed Concurrency Control (Y)
9) Logging and Crash Recovery (Y)

10) Distributed Replication (Y)
11) Fault Tolerance & RAID (D)
12) Distributed Databases Case Study (D)
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What Is A Distributed System?

“A collection of independent computers that appears to its 
users as a single coherent system.” 
•Features: 

• No shared memory – message-based communication
• Each runs its own local OS
• Heterogeneity
• Expandability 

•Ideal: to present a single-system image:
• The distributed system “looks like” a single computer 

rather than a collection of separate computers.



Definition of a Distributed 
System

Figure 1-1. A distributed system organized as middleware. The 
middleware layer runs on all machines, and offers a uniform 
interface to the system



Distributed Systems: Goals 

• Resource Availability: remote access to resources
• Distribution Transparency: single system image

• Access, Location, Migration, Replication, Failure,…
• Openness: services according to standards (RPC)
• Scalability: size, geographic, admin domains, …

• Example of a Distributed System? 
• Web search on google 
• DNS: decentralized, scalable, robust to failures, ... 
• ...  

* 6
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Packet Switching – 
Statistical Multiplexing

• Switches arbitrate between inputs
• Can send from any input that’s ready

• Links never idle when traffic to send
• (Efficiency!)

Packets
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Model of a communication channel

• Latency - how long does it take for the first bit to reach 
destination

• Capacity - how many bits/sec can we push through? 
(often termed “bandwidth”)

• Jitter - how much variation in latency?

• Loss / Reliability - can the channel drop packets?

• Reordering
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Packet Switching

• Source sends information as self-contained packets that 
have an address.

• Source may have to break up single message in multiple

• Each packet travels independently to the destination host.
• Switches use the address in the packet to determine how to 

forward the packets
• Store and forward

• Analogy: a letter in surface mail.
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Internet

• An inter-net: a network of 
networks.

• Networks are connected using 
routers that support 
communication in a hierarchical 
fashion

• Often need other special devices 
at the boundaries for security, 
accounting, ..

• The Internet: the interconnected 
set of networks of the Internet 
Service Providers (ISPs)

• About 17,000 different networks 
make up the Internet

Internet
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Network Service Model

• What is the service model for inter-network?
• Defines what promises that the network gives for any 

transmission
• Defines what type of failures to expect

• Ethernet/Internet:  best-effort – packets can get 
lost, etc.
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Possible Failure models

• Fail-stop:
• When something goes wrong, the process stops / crashes / 

etc.
• Fail-slow or fail-stutter:

• Performance may vary on failures as well
• Byzantine:

• Anything that can go wrong, will.
• Including malicious entities taking over your computers and 

making them do whatever they want.
• These models are useful for proving things;
• The real world typically has a bit of everything. 

• Deciding which model to use is important! 
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IP Layering

• Relatively simple

Bridge/Switch Router/GatewayHost Host

Application

Transport

Network

Link

Physical
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Protocol Demultiplexing

• Multiple choices at each layer

FTP HTTP TFTPNV

TCP UDP

IP

NET1 NET2 NETn…

TCP/UDPIP

IPX

Port 
Number

Network

Protocol 
Field

Type 
Field
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User Datagram Protocol (UDP): 
An Analogy

Postal Mail
• Single mailbox to receive 

messages
• Unreliable ☺ 
• Not necessarily in-order 

delivery
• Each letter is independent
• Must address each reply

Example UDP applications
Multimedia, voice over IP

UDP
• Single socket to receive 

messages
• No guarantee of delivery
• Not necessarily in-order 

delivery
• Datagram – independent 

packets
• Must address each packet

Postal Mail
• Single mailbox to receive 

letters
• Unreliable ☺
• Not necessarily in-order 

delivery
• Letters sent independently         
• Must address each letter
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Transmission Control Protocol (TCP): 
An Analogy 

TCP
• Reliable – guarantee 

delivery
• Byte stream – in-order 

delivery
• Connection-oriented – 

single socket per 
connection

• Setup connection 
followed by data transfer

Telephone Call
• Guaranteed delivery
• In-order delivery
• Connection-oriented 
• Setup connection 

followed by conversation

Example TCP applications
Web, Email, Telnet
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Summary: Internet Architecture

• Packet-switched datagram 
network

• IP is the “compatibility 
layer” 
• Hourglass architecture
• All hosts and routers run IP

• Stateless architecture
• no per flow state inside 

network

IP

TCP UDP

AT
M

Satellite

Ethernet
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Summary: Minimalist Approach

• Dumb network
• IP provide minimal functionalities to support connectivity

• Addressing, forwarding, routing

• Smart end system
• Transport layer or application performs more sophisticated 

functionalities
• Flow control, error control, congestion control

• Advantages
• Accommodate heterogeneous technologies (Ethernet, 

modem, satellite, wireless)
• Support diverse applications (telnet, ftp, Web, X windows)
• Decentralized network administration
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Classical Consistency/Synchronization
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Terminology

• Critical Section: piece of code accessing a 
shared resource, usually variables or data 
structures

• Race Condition: Multiple threads of execution 
enter CS at the same time, update shared 
resource, leading to undesirable outcome

• Indeterminate Program: One or more Race 
Conditions, output of program depending on 
ordering, non deterministic
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Classic synchronization primitives

• Basics of concurrency 
• Correctness (achieves Mutex, no deadlock, no livelock)
• Efficiency, no spinlocks or wasted resources 
• Fairness 

• Synchronization mechanisms 
• Semaphores (P() and V() operations) 
• Mutex (binary semaphore) 
• Condition Variables (allows a thread to sleep) 

• Must be accompanied by a mutex 
• Wait and Signal operations

• Work through examples again
22



Time Synchronization
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Clocks in a Distributed System

• Computer clocks are not generally in perfect agreement
• Skew: the difference between the times on two clocks (at any instant)

• Computer clocks are subject to clock drift (they count time at different 
rates)

• Clock drift rate: the difference per unit of time from some ideal reference 
clock 

• Ordinary quartz clocks drift by about 1 sec in 11-12 days. (10-6 secs/sec).
• High precision quartz clocks drift rate is about 10-7 or 10-8 secs/sec
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Perfect networks

• Messages always arrive, with propagation delay 
exactly d

• Sender sends time T in a message
• Receiver sets clock to T+d 

• Synchronization is exact



Cristian’s Time Sync

mr 

mt

p
Time 
server,S

• A time server S receives signals from a UTC source
• Process p requests time in mr and receives t in mt from S
• p sets its clock to t + RTT/2 
• Accuracy ± (RTT/2 - min) :

• because the earliest time S puts t in message mt  is min after p sent mr. 
• the latest time was min before mt arrived at p
• the time by S’s clock when mt arrives is in the range [t+min, t + RTT - min]

Tround is the round trip time recorded by p
min is an estimated minimum round trip time

26



Berkeley algorithm

• Cristian’s algorithm - 
• a single time server might fail, so they suggest the use of a group of 

synchronized servers
• it does not deal with faulty servers

• Berkeley algorithm (also 1989)
• An algorithm for internal synchronization of a group of computers
• A master polls to collect clock values from the others (slaves)
• The master uses round trip times to estimate the slaves’ clock values
• It takes an average (eliminating any above average round trip time or with 

faulty clocks)
• It sends the required adjustment to the slaves (better than sending the 

time which depends on the round trip time)
• Measurements

• 15 computers, clock synchronization 20-25 millisecs drift rate < 2x10-5

• If master fails, can elect a new master to take over (not in bounded time)

•
27



NTP Protocol

• All modes use UDP
• Each message bears timestamps of recent events:

• Local times of Send and Receive of previous message
• Local times of Send of current message

• Recipient notes the time of receipt T3 (we have T0, T1, 
T2, T3)

28
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Logical time and logical clocks (Lamport 
1978)

• Instead of synchronizing clocks, use event ordering

1. If two events occurred at the same process pi (i = 1, 2, … N) then 
they occurred in the order observed by pi, that is the definition of: 
“→ i”

2. when a message, m is sent between two processes, send(m) 
happens before receive(m)

3. The happened before relation is transitive

• The happened before relation is the relation of causal ordering
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Total-order Lamport clocks

• Many systems require a total-ordering of events, 
not a partial-ordering

• Use Lamport’s algorithm, but break ties using the 
process ID
• L(e) = M * Li(e) + i

• M = maximum number of processes
• i = process ID



Vector Clocks

• Note that e → e’ implies V(e)<V(e’). The converse 
is also true

• Can you see a pair of parallel events?
•  c  || e (parallel) because neither V(c) <= V(e) nor V(e) <= V(c)
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Clock Sync Important Lessons

• Clocks on different systems will always behave 
differently
• Skew and drift between clocks

• Time disagreement between machines can result 
in undesirable behavior

• Two paths to solution: synchronize clocks or 
ensure consistent clocks
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Clock Sync Important Lessons

• Clock synchronization
• Rely on a time-stamped network messages
• Estimate delay for message transmission
• Can synchronize to UTC or to local source
• Clocks never exactly synchronized
• Often inadequate for distributed systems
• might need totally-ordered events
• might need millionth-of-a-second precision

• Logical Clocks
• Encode causality relationship
• Lamport clocks provide only one-way encoding
• Vector clocks provide exact causality information



Remote Procedure Calls
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Passing Value Parameters (1)

• The steps involved in a doing a 
remote computation through RPC.
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Stubs: obtaining transparency

• Compiler generates from API stubs for a 
procedure on the client and server

• Client stub 
• Marshals arguments into machine-independent format
• Sends request to server
• Waits for response
• Unmarshals result and returns to caller

• Server stub
• Unmarshals arguments and builds stack frame
• Calls procedure
• Server stub marshals results and sends reply

36



Real solution: break transparency

• Possible semantics for RPC:
• Exactly-once

• Impossible in practice
• At least once: 

• Only for idempotent operations
• At most once

• Zero, don’t know, or once
• Zero or once

• Transactional semantics

37



Asynchronous RPC (3)

• A client and server interacting through 
two asynchronous RPCs.
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Important Lessons

• Procedure calls
• Simple way to pass control and data
• Elegant transparent way to distribute application
• Not only way…

• Hard to provide true transparency
• Failures
• Performance
• Memory access
• Etc.

39



Distributed File Systems
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Why DFSs? 

• Why Distributed File Systems: 
• Data sharing among multiple users
• User mobility
• Location transparency
• Backups and centralized management
• Examples: NFS, AFS, CODA, LBFS 

• Idea: Provide file system interfaces to remote FS’s
• Challenge: heterogeneity, scale, security, concurrency,..
• Non-Challenges: AFS meant for campus community
• Virtual File Systems: pluggable file systems 
• Use RPC’s   

41



DFS Important bits (1)

• Distributed filesystems almost always involve a 
tradeoff:  consistency, performance, scalability.

• We’ve learned a lot since NFS and AFS (and can 
implement faster, etc.), but the general lesson 
holds.  Especially in the wide-area.

• We’ll see a related tradeoff, also involving 
consistency, in a while:  the CAP tradeoff.  
Consistency, Availability, Partition-resilience.



VFS Interception
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NFS’s Failure Handling – 
Stateless Server

• Files are state, but...
• Server exports files without creating extra state

• No list of “who has this file open” (permission check on each 
operation on open file!)

• No “pending transactions” across crash
• Crash recovery is “fast”

• Reboot, let clients figure out what happened
• State stashed elsewhere

• Separate MOUNT protocol
• Separate NLM locking protocol in NFSv4

• Stateless protocol:  requests specify exact state.  
read() → read( [position]).  no seek on server.



NFS’s Failure Handling

• Operations are idempotent
• How can we ensure this?  Unique IDs on files/directories.  

It’s not delete(“foo”), it’s delete(1337f00f), where that ID 
won’t be reused.

• Not perfect → e.g., mkdir
• Write-through caching:  When file is closed, all 

modified blocks sent to server.  close() does not return 
until bytes safely stored.

• Close failures? 
• retry until things get through to the server
• return failure to client

• Most client apps can’t handle failure of close() call. 
• Usual option:  hang for a long time trying to contact server



AFS Cell/Volume Architecture

• Cells correspond to administrative groups
• /afs/andrew.cmu.edu is a cell

• Cells are broken into volumes (miniature file 
systems)

• One user's files, project source tree, ...
• Typically stored on one server
• Unit of disk quota administration, backup

• Client machine has cell-server database
• protection server handles authentication
• volume location server maps volumes to servers
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Client Caching in AFS

• Callbacks!  Clients register with server that they 
have a copy of file;
• Server tells them: “Invalidate!” if the file changes
• This trades state for improved consistency

• What if server crashes? Lose all callback state!
• Reconstruct callback information from client: go ask 

everyone “who has which files cached?”
• What if client crashes?

• Must revalidate any cached content it uses since it may 
have missed callback



AFS Write Policy

• Writeback cache
• Opposite of NFS “every write is sacred”
• Store chunk back to server

• When cache overflows
• On last user close()

• ...or don't (if client machine crashes)
• Is writeback crazy?

• Write conflicts “assumed rare”
• Who wants to see a half-written file?
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DFS: Name-Space Construction and 
Organization

• NFS: per-client linkage
• Server: export /root/fs1/
• Client: mount server:/root/fs1 /fs1

• AFS: global name space
• Name space is organized into Volumes

• Global directory /afs; 
• /afs/cs.wisc.edu/vol1/…; /afs/cs.stanford.edu/vol1/…

• Each file is identified as fid = <vol_id, vnode #, unique 
identifier>

• All AFS servers keep a copy of “volume location database”, 
which is a table of vol_id→ server_ip mappings
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Coda Summary

• Distributed File System built for mobility
• Disconnected operation key idea 

• Puts scalability and availability before
data consistency
• Unlike NFS

• Assumes that inconsistent updates are very 
infrequent

• Introduced disconnected operation mode and file 
hoarding and the idea of “reintegration” 

50



Coda States

1. Hoarding:
Normal operation mode

2. Emulating:
Disconnected operation mode

3. Reintegrating:
Propagates  changes and detects inconsistencies

Hoarding

Emulating Recovering
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Low Bandwidth File System
Key Ideas

• A network file systems for slow or wide-area 
networks

• Exploits similarities between files 
• Avoids sending data that can be found in the server’s 

file system or the client’s cache
• Uses RABIN fingerprints on file content (file chunks)   

• Can deal with byte offsets when part of file change  

• Also uses conventional compression and caching
• Requires 90% less bandwidth than traditional 

network file systems
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LBFS chunking solution

• Considers only non-overlapping chunks
• Sets chunk boundaries based on file contents 

rather than on position within a file
• Examines every overlapping 48-byte region of file 

to select the boundary regions called breakpoints 
using Rabin fingerprints
• When low-order 13 bits of region’s fingerprint equals a 

chosen value, the region constitutes a breakpoint
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Effects of edits on file chunks

• Chunks of file before/after edits
• Grey shading show edits

• Stripes show regions with magic values that create chunk boundaries
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Distributed Mutual Exclusion
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What is “Scalability”?

56

Challenges when scaling out?



Motivation: Need for Distributed Mutex

• San Fran customer adds $100, NY bank adds 1% interest
• San Fran will have $1,111 and NY will have $1,110

• Updating a replicated database and leaving it in an inconsistent 
state

57
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Comparison of 5 Mutex Algorithms

58

• Which one would you choose?
• What happens with crashes?

Algorithm # Messages per 
cycle

Delay before 
entry

Problems

Centralized 3 2 Coordinator crash

Decentralized 2 m k + m,  k≥1 2m Starvation

Lamport 3 (N-1) 2 (N-1) Crash of any 
process, inefficient

Ricart & Agrawala 2 (N-1) 2 (N-1) Crash of any 
process

Token ring 1 to infinite 0 to (N-1) Lost token, 
process crash



A Centralized Algorithm (1)

@ Client →  Acquire: 
Send (Request, i) to coordinator 
Wait for reply

@ Server:
while true:      
   m = Receive()      
   If m == (Request, i):If 
Available():    

   Send (Grant) to i
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Distributed Algorithm (Strawman)

• Assume that there are n coordinators
• Access requires a majority vote from m > n/2 

coordinators. 
• A coordinator always responds immediately to a 

request with GRANT or DENY
• Node failures are still a problem
• Large numbers of nodes requesting access can 

affect availability
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Totally-Ordered Multicast

61

• A multicast operation by which all messages are 
delivered in the same order to each receiver.

• Distributed data structure (priority queue)
• Queue messages until they’re ACKed
• Uses TO-Lamport Clocks:

• Each message is timestamped with the current logical 
time of its sender.

• Multicast messages are also sent back to the sender.
• Assume all messages sent by one sender are 

received in the order they were sent and that no 
messages are lost.

Book pp. 313



Totally-Ordered Multicast

62

• Multicast messages + local timestamp-ordered queue
• Multicasts an ACK to all other processes
• Process only if *both* at queue head and ACK’ed



Lamport Mutual Exclusion

• Every process maintains a queue of pending requests for 
entering critical section in order. The queues are ordered 
by virtual time stamps derived from Lamport timestamps

• For any events e, e' such that e --> e' (causality ordering), T(e) < 
T(e')

• For any distinct events e, e', T(e) != T(e')

• When node i wants to enter C.S., it sends time-stamped 
request to all other nodes (including itself) 

• Wait for replies from all other nodes.
• If own request is at the head of its queue and all replies have been 

received, enter C.S.
• Upon exiting C.S., remove its request from the queue and send a 

release message to every process.
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Ricart & Agrawala Algorithm 

• Also relies on Lamport totally ordered clocks. 

• When node i wants to enter C.S., it sends 
time-stamped request to all other nodes.  These 
other nodes reply (eventually).  When i receives 
n-1 replies, then can enter C.S.

• Trick: Node j having earlier request doesn't reply 
to i until after it has completed its C.S.
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A Token Ring Algorithm

• Organize the processes involved into a logical ring
• One token at any time → passed from node to 

node along ring
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A Token Ring Algorithm

• Correctness:
• Clearly safe: Only one process can hold token

• Fairness: 
• Will pass around ring at most once before  getting 

access.
• Performance:

• Each cycle requires between 1 - ∞ messages
• Latency of protocol between 0 & n-1

• Issues
• Lost token
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Summary

• Lamport algorithm demonstrates how distributed 
processes can maintain consistent replicas of a 
data structure (the priority queue).

• Ricart & Agrawala's algorithms demonstrate utility 
of logical clocks.

• Centralized & ring based algorithms much lower 
message counts

• None of these algorithms can tolerate failed 
processes or dropped messages.
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Distributed Concurrency Management

• Single Server: Transactions (RD/WR to Global State)
• ACID: Atomicity, Consistency, Isolation, Durability 

• E.g. banking app => ACID is violated if not careful
• Solutions: 2-phase locking (General, strict, strong strict)

• Deadling with deadlocks => build “waits-for” graph
• Transactions: 2 phases (prep, commit/abort)  

• Preparation: generate Lock Set “L”, Updates “U” 
• COMMIT (updated global state), ABORT (leave state as is) 
• Example using banking app 
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Transactions – split into 2 phases

• Phase 1: Preparation: 
• Determine what has to be done, how it will change state, 

without actually altering it.
• Generate Lock set “L” 
• Generate List of Updates “U” 

• Phase 2: Commit or Abort 
• Everything OK, then update global state 
• Transaction cannot be completed, leave global state as is
• In either case, RELEASE ALL LOCKS 
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Distributed Transactions – 2PC  

• Similar idea as before, but: 
• State spread across servers (maybe even WAN) 
• Want to enable single transactions to read and update 

global state while maintaining ACID properties 
• Overall Idea: 

• Client initiate transaction. Makes use of “co-ordinator”
• All other relevant servers operate as “participants” 
• Co-ordinator assigns unique transaction ID (TID)  
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Implementing 2-Phase Commit

• Implemented as a set of 
messages 
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Implementing 2-Phase Commit

• Implemented as a set of 
messages 

• Messages in first phase 
• A: Coordinator sends “CanCommit?” 

to participants
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Implementing 2-Phase Commit

• Implemented as a set of 
messages 

• Messages in first phase 
• A: Coordinator sends “CanCommit?” 

to participants
• B: Participants respond: 

“VoteCommit” or “VoteAbort”
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Implementing 2-Phase Commit

• Implemented as a set of 
messages 

• Messages in first phase 
• A: Coordinator sends “CanCommit?” 

to participants
• B: Participants respond: 

“VoteCommit” or “VoteAbort”

75

• Messages in the second phase 
• A: All “VoteCommit”: , Coord sends “DoCommit”
• If any “VoteAbort”: abort transaction. Coordinator 

sends “DoAbort” to everyone => release locks



Implementing 2-Phase Commit

• Implemented as a set of 
messages 

• Messages in first phase 
• A: Coordinator sends “CanCommit?” 

to participants
• B: Participants respond: 

“VoteCommit” or “VoteAbort”
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• Messages in the second phase 
• A: All “VotedCommit”: , Coord sends “DoCommit”
• If any “VoteAbort”: abort transaction. Coordinator 

sends “DoAbort” to everyone => release locks



Deadlocks and Livelocks 

• Distributed deadlock 
• Cyclic dependency of locks by transactions across 

servers 
• In 2PC this can happen if participants unable to 

respond to voting request (e.g. still waiting on a  lock on 
its local resource) 

• Handled with a timeout. Participants times out, then 
votes to abort. Retry transaction again. 

• Addresses the deadlock concern 
• However, danger of LIVELOCK – keep trying! 
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Summary: Distributed Concurrency 

• Distributed consistency management
• ACID Properties desirable 
• Single Server case: use locks, and in cases use 

2-phase locking (strict 2PL, strong strict 2PL), 
transactional support for locks

• Multiple server distributed case: use 2-phase 
commit for distributed transactions. Need a 
coordinator to manage messages from partipants.
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Summary – Fault Tolerance 

• Real Systems (are often unreliable) 
• Introduced basic concepts for Fault Tolerant Systems 

including redundancy, process resilience, RPC   

• Fault Tolerance – Backward recovery using 
checkpointing, both Independent and coordinated

• Fault Tolerance –Recovery using 
Write-Ahead-Logging
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Dependability Concepts 

• Availability – the system is ready to be used immediately.

• Reliability – the system runs continuously without failure. 

• Safety – if a system fails, nothing catastrophic 
will happen. (e.g. process control systems) 

• Maintainability – when a system fails, it can 
be repaired easily and quickly (sometimes, without its 
users noticing the failure)



Masking Failures by Redundancy

• Strategy: hide the occurrence of failure from 
other processes using redundancy. 

1. Information Redundancy – add extra bits to 
allow for error detection/recovery (e.g., 
Hamming codes and the like).

2. Time Redundancy – perform operation and, if 
needs be, perform it again. Think about how 
transactions work (BEGIN/END/COMMIT/ABORT).

3. Physical Redundancy – add extra (duplicate) 
hardware and/or software to the system.



Recovery Strategies

• When a failure occurs, we need to bring the 
system into an error free state (recovery). This is 
fundamental to Fault Tolerance.  

1. Backward Recovery: return the system to 
some previous correct state (using checkpoints), 
then continue executing.

-- Can be expensive, however still used 
2. Forward Recovery: bring the system into a 

correct new state, from which it can then 
continue to execute. 

-- Need to know potential errors up front! 



Independent Checkpointing

Recovery line: correct distributed snapshot
This becomes challenging if checkpoints are un-coordinated 



Coordinated Checkpointing 

• Key idea: each process takes a checkpoint after a globally 
coordinated action. (why is this good?) 

• Simple Solution: 2-phase blocking protocol
• Co-ordinator multicast checkpoint_REQUEST message 
• Participants receive message, takes a checkpoint, stops sending 

(application) messages, and sends back checkpoint_ACK
• Once all participants ACK, coordinator sends checkpoint_DONE to 

allow blocked processes to go on

• Optimization: consider only processes that depend on the 
recovery of the coordinator (those it sent a message since 
last checkpoint)  
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• Write-Ahead-Logging  

• Provide Atomicity and Durability
• Idea: create a log recording every update to database 
• Updates considered reliable when stored on disk
• Updated versions are kept in memory (page cache) 
• Logs typically store both REDO and UNDO operations
• After a crash, recover by replaying log entries to reconstruct 

correct state   
• 3 Passes: (Analysis Pass, recovery pass, Undo Pass) 
• WAL is common, fewer disk operations, transactions 

considered committed once log written.  
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Recovery using WAL – 3 passes

• Analysis Pass 
• Reconstruct TT and DPT (from start or last checkpoint)
• Get copies of all pages at the start 

• Recovery Pass (redo pass) 
• Replay log forward, make updates to all dirty pages
• Bring everything to a state at the time of the crash

• Undo Pass 
• Replay log file backward, revert any changes made by 

transactions that had not committed (use PrevLSN)
• For each write Compensation Log Record (CLR)
• Once you reach BEGIN TXN, write an END TXN entry  
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Optimizing WAL 

• As described earlier: 
• Replay operations back to the beginning of time 
• Log file would be kept forever, (entire Database)

• In practice, we can do better with CHECKPOINT
• Periodically save DPT, TT  
• Store any dirty pages to disk, indicate in LOG file 
• Prune initial portion of log file: All transactions upto 

checkpoint have been committed or aborted.  
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Distributed Replication
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Distributed Consistency Concepts

• Requires write replication, and some degree of consistency
• Strict Consistency

• Read always returns value from latest write
• Sequential Consistency

• All nodes see operations in some sequential order
• Operations of each process appear in-order in this sequence

• Causal Consistency
• All nodes see causally related writes in same order
• But concurrent writes may be seen in different order on different 

machines
• Eventual Consistency

• All nodes will learn eventually about all writes, in the absence of 
updates
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Sequential Consistency (1)

• Behavior of two processes operating on the 
same data item. The horizontal axis is time. 

• P1: Writes “W” value a to variable “x”
• P2: Reads `NIL’ from “x” first and then `a’



Sequential Consistency (2)

• A data store is sequentially consistent when:
• The result of any execution is the same as if the 

(read and write) operations by all processes on the 
data store …
• Were executed in some sequential order and …
• the operations of each individual process appear 

…
▪ in this sequence 
▪ in the order specified by its program.



Sequential Consistency (3)

(b) A data store that is not sequentially 
consistent.

(a) A sequentially consistent data store. 



Causal Consistency (1)

• For a data store to be considered causally consistent, it is necessary that 
the store obeys the following condition:

• Writes that are potentially causally related …
• must be seen by all processes
• in the same order. 

• Concurrent writes …
• may be seen in a different order 
• on  different machines.



Causal Consistency (2)

• Figure 7-8. This sequence is allowed with a 
causally-consistent store, but not with a sequentially 
consistent store.



Replicate: State versus Operations

Possibilities for what is to be propagated:
•Propagate only a notification of an update.
- Sort of an “invalidation” protocol 

•Transfer data from one copy to another.
- Read-to-Write ratio high, can propagate logs (save bandwidth) 

•Propagate the update operation to other 
copies
- Don’t transfer data modifications, only operations – “Active 
replication”



Remote-Write PB Protocol

 Updates are blocking, although non-blocking possible



Replication: Quorum based consensus

• Quorum consensus

• Designed to have fast response time even under 
failures

• Replicas are “active” - participate in protocol;  there 
is no master, per se.

• Good:  Clients don’t even see the failures.  Bad:  
More complex.



• Correctness (safety):
•All nodes agree on the same value

•The agreed value X has been proposed by some 
node

• Fault-tolerance:
• If less than N/2 nodes fail, the rest should reach 
agreement eventually w.h.p

•Liveness is not guaranteed

• Termination  (not guaranteed) 

PAXOS: Requirement



Fischer-Lynch-Paterson [FLP’85] 
impossibility result

• It is impossible for a set of processors in an 
asynchronous system to agree on a binary 
value, even if only a single processor is 
subject to an unannounced failure.

• Synchrony --> bounded amount of time node 
can take to process and respond to a request
Asynchrony --> timeout is not perfect



Single Decree Paxos: Protocol

Acceptors

3)Respond to Prepare(n):
• If n > minProposal then minProposal = n
    Prepare-OK(acceptedProposal, acceptedValue)
  else
    Prepare-REJECT()

6)Respond to Accept(n, value):
• If n ≥ minProposal

acceptedProposal = minProposal = n
acceptedValue = value

          Accept-OK()
   else
          Accept-REJECT()

Acceptors must record minProposal, acceptedProposal, and acceptedValue on stable storage (disk)

Proposers
1)Choose new proposal number n, value v
2)Broadcast Prepare(n) to all servers

4)When responses received from majority:
• If any acceptedValues returned
     v = acceptedValue of highest acceptedProposal

5)Broadcast Accept(n, value) to all servers

6)When Accept-OK from majority
    Value is chosen (Commit)
Else
    Restart: goto 1, with larger number n
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Some Remarks

• Only proposer knows chosen value (majority accepted)
• Only a single value is chosen → MultiPaxos
• No guarantee that proposer’s original value v is chosen by 

itself
• Number n is basically a Lamport clock → always unique n
• Key invariant:

• If a proposal with value `v' is chosen, all higher proposals must 
have value `v’

• Dueling proposer
• Resolved using number n in prepare

• There are challenging corner cases
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Fault Tolerance and RAID

15-440 Distributed Systems



Outline

• Errors/error recovery

• Using multiple disks
• Why have multiple disks?
• problem and approaches 

• RAID levels and performance

• Estimating availability
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Parity Checking

Single Bit Parity:
Detect single bit errors
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Error Recovery – Error Correcting 
Codes (ECC)

Two Dimensional Bit Parity:
Detect and correct single bit errors

0 0
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Error Detection – CRC

• View data bits, D, as a binary number
• Choose r+1 bit pattern (generator), G 
• Goal: choose r CRC bits, R, such that

•  <D,R> exactly divisible by G (modulo 2) 
• Receiver knows G, divides <D,R> by G.  If non-zero remainder: 

error detected!
• Can detect all burst errors less than r+1 bits

• Widely used in practice: Ethernet, disks
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Disk Striping 

• Interleave data across multiple disks 
• Large file streaming can enjoy parallel transfers 
• Small requests benefit from load balancing

• If blocks of hot files equally likely on all disks (really?) 
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Redundancy via replicas 

• Two (or more) copies
• mirroring, shadowing, duplexing, etc. 

• Write both, read either 
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A Better Approach?: Parity Disk 

• Capacity: one 
extra disk needed 
per stripe

• Disk failures are 
self-identifying 
(a.k.a. erasures) 

• Don’t have to find 
the error 
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Updating and using the parity 
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Better: Striping the Parity 

• Removes parity disk bottleneck 
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Performance
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Measuring Availability

• Mean time to failure (MTTF) - “uptime”
• Mean time to repair (MTTR)
• Mean time between failures (MTBF)
• MTBF = MTTF + MTTR

• Availability = MTTF / (MTTF + MTTR)
• Suppose OS crashes once per month,

takes 10min to reboot.  
• MTTF = 720 hours = 43,200 minutes

MTTR = 10 minutes
• Availability = 43200 / 43210 = 0.997 (~“3 nines”)
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Disk failure conditional probability 
distribution - Bathtub curve

Expected operating lifetime

1 / (reported MTTF)

Infant
mortality

Burn 
out
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Reliability without rebuild 

• 200 data drives with MTTFdrive
• MTTDLarray = MTTFdrive / 200 

• Add 200 drives and do mirroring 
• MTTFpair = (MTTFdrive / 2) + MTTFdrive = 1.5 * MTTFdrive 
• MTTDLarray = MTTFpair / 200 = MTTFdrive / 133 

• Add 50 drives, each with parity across 4 data disks 
• MTTFset = (MTTFdrive / 5) + (MTTFdrive / 4) = 0.45 * MTTFdrive 
• MTTDLarray = MTTFset / 50 = MTTFdrive / 111 

• These are approximations
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Distributed Databases Case Study

15-440 Distributed Systems



Consistency Definitions
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Sequential Consistency
• All nodes see operations in some sequential 

order
• Operations of each process appear in-order in 

this sequence
Eventual Consistency
• All nodes will learn eventually about all writes, in 

the absence of updates

External Consistency
• If T1 commits before T2, then the commit order 

must be T1 before T2



Consistent Distributed Database
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Two nodes:
…    Sequential 

Consistency?
Hash-based 
data 
partitioning 
(sharding)

Shard x

Shard y



Summary So Far: When to Use What?
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Use Case Problems

Distributed Mutex Distributed KV 
without transactions

Failures + Slow

2PC Distributed DB with 
transactions
(e.g., Spanner)

Failures

Primary-Backup Cost-efficient fault 
tolerance (e.g., FaRM, 
GFS, VMWare-FT)

Correlated failures

Paxos Staying up no matter 
the cost (e.g., Spanner, 
FaunaDB)

Delay and huge 
cost overhead

RAID, Checksums Every system Node failures



Practical Constraints: Alternative I
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2005-2012: NoSQL systems

Design choices: AP: availability over consistency
“infinitely” scalable

write S = 1 S=1

ok, done
S=1

Network 
partition

read S

S?
write X = 9

ok, done
Challenge: version reconcilation (parallel writes..)

Practical approach (Dynamo): Vector Clocks

X=9

Only eventually 
consistent!



2012-2018: resurgence of consistent distributed DBs

Three key reasons [→ Daniel Abadi, UMD]
1. application code gets too complex and buggy without 

consistency support in DB
2. better network availability, CP (from CAP) choice is less 

relevant, availability sacrifice hardly noticeable
3. CAP asymmetry: CP can guarantee consistency, AP can’t 

guarantee availability (only question of degree)

Practical Constraints: Alternative II

Most workloads are read heavy. New 
systems support lock-free consistent reads.

Even stronger consistency requirements.

These guarantee at least sequential consistency, unlike NoSQL.


