
Midterm Review on 10/16/18

Midterm on 10/18/18 10.25am - 11.55am

15-440 Distributed Systems

15-440 Midterm Topics Overview

1) Distribution Systems Intro (Y)
2) Communication - Internet in a Day (D)
3) Classical Consistency/Synchronization (Y)
4) Time Synchronization (D)
5) Remote Procedure Calls (Y)
6) Distributed Filesystems (Y)
7) Distributed Mutual Exclusion (D)
8) Distributed Concurrency Control (Y)
9) Logging and Crash Recovery (Y)

10) Distributed Replication (Y)
11) Fault Tolerance & RAID (D)
12) Distributed Databases Case Study (D)

2

Distribution Systems Intro

15-440 Distributed Systems

What Is A Distributed System?

“A collection of independent computers that appears to its
users as a single coherent system.”
•Features:

• No shared memory – message-based communication
• Each runs its own local OS
• Heterogeneity
• Expandability

•Ideal: to present a single-system image:
• The distributed system “looks like” a single computer

rather than a collection of separate computers.

Definition of a Distributed
System

Figure 1-1. A distributed system organized as middleware. The
middleware layer runs on all machines, and offers a uniform
interface to the system

Distributed Systems: Goals

• Resource Availability: remote access to resources
• Distribution Transparency: single system image

• Access, Location, Migration, Replication, Failure,…
• Openness: services according to standards (RPC)
• Scalability: size, geographic, admin domains, …

• Example of a Distributed System?
• Web search on google
• DNS: decentralized, scalable, robust to failures, ...
• ...

* 6

Communication - Internet in a Day

15-440 Distributed Systems

Packet Switching –
Statistical Multiplexing

• Switches arbitrate between inputs
• Can send from any input that’s ready

• Links never idle when traffic to send
• (Efficiency!)

Packets

8

Model of a communication channel

• Latency - how long does it take for the first bit to reach
destination

• Capacity - how many bits/sec can we push through?
(often termed “bandwidth”)

• Jitter - how much variation in latency?

• Loss / Reliability - can the channel drop packets?

• Reordering

9

Packet Switching

• Source sends information as self-contained packets that
have an address.

• Source may have to break up single message in multiple

• Each packet travels independently to the destination host.
• Switches use the address in the packet to determine how to

forward the packets
• Store and forward

• Analogy: a letter in surface mail.

10

Internet

• An inter-net: a network of
networks.

• Networks are connected using
routers that support
communication in a hierarchical
fashion

• Often need other special devices
at the boundaries for security,
accounting, ..

• The Internet: the interconnected
set of networks of the Internet
Service Providers (ISPs)

• About 17,000 different networks
make up the Internet

Internet

11

Network Service Model

• What is the service model for inter-network?
• Defines what promises that the network gives for any

transmission
• Defines what type of failures to expect

• Ethernet/Internet: best-effort – packets can get
lost, etc.

12

Possible Failure models

• Fail-stop:
• When something goes wrong, the process stops / crashes /

etc.
• Fail-slow or fail-stutter:

• Performance may vary on failures as well
• Byzantine:

• Anything that can go wrong, will.
• Including malicious entities taking over your computers and

making them do whatever they want.
• These models are useful for proving things;
• The real world typically has a bit of everything.

• Deciding which model to use is important!

13

IP Layering

• Relatively simple

Bridge/Switch Router/GatewayHost Host

Application

Transport

Network

Link

Physical

14

Protocol Demultiplexing

• Multiple choices at each layer

FTP HTTP TFTPNV

TCP UDP

IP

NET1 NET2 NETn…

TCP/UDPIP

IPX

Port
Number

Network

Protocol
Field

Type
Field

15

User Datagram Protocol (UDP):
An Analogy

Postal Mail
• Single mailbox to receive

messages
• Unreliable ☺
• Not necessarily in-order

delivery
• Each letter is independent
• Must address each reply

Example UDP applications
Multimedia, voice over IP

UDP
• Single socket to receive

messages
• No guarantee of delivery
• Not necessarily in-order

delivery
• Datagram – independent

packets
• Must address each packet

Postal Mail
• Single mailbox to receive

letters
• Unreliable ☺
• Not necessarily in-order

delivery
• Letters sent independently
• Must address each letter

16

Transmission Control Protocol (TCP):
An Analogy

TCP
• Reliable – guarantee

delivery
• Byte stream – in-order

delivery
• Connection-oriented –

single socket per
connection

• Setup connection
followed by data transfer

Telephone Call
• Guaranteed delivery
• In-order delivery
• Connection-oriented
• Setup connection

followed by conversation

Example TCP applications
Web, Email, Telnet

17

Summary: Internet Architecture

• Packet-switched datagram
network

• IP is the “compatibility
layer”
• Hourglass architecture
• All hosts and routers run IP

• Stateless architecture
• no per flow state inside

network

IP

TCP UDP

AT
M

Satellite

Ethernet

18

Summary: Minimalist Approach

• Dumb network
• IP provide minimal functionalities to support connectivity

• Addressing, forwarding, routing

• Smart end system
• Transport layer or application performs more sophisticated

functionalities
• Flow control, error control, congestion control

• Advantages
• Accommodate heterogeneous technologies (Ethernet,

modem, satellite, wireless)
• Support diverse applications (telnet, ftp, Web, X windows)
• Decentralized network administration

19

Classical Consistency/Synchronization

20

15-440 Distributed Systems

Terminology

• Critical Section: piece of code accessing a
shared resource, usually variables or data
structures

• Race Condition: Multiple threads of execution
enter CS at the same time, update shared
resource, leading to undesirable outcome

• Indeterminate Program: One or more Race
Conditions, output of program depending on
ordering, non deterministic

21

Classic synchronization primitives

• Basics of concurrency
• Correctness (achieves Mutex, no deadlock, no livelock)
• Efficiency, no spinlocks or wasted resources
• Fairness

• Synchronization mechanisms
• Semaphores (P() and V() operations)
• Mutex (binary semaphore)
• Condition Variables (allows a thread to sleep)

• Must be accompanied by a mutex
• Wait and Signal operations

• Work through examples again
22

Time Synchronization

23

15-440 Distributed Systems

Clocks in a Distributed System

• Computer clocks are not generally in perfect agreement
• Skew: the difference between the times on two clocks (at any instant)

• Computer clocks are subject to clock drift (they count time at different
rates)

• Clock drift rate: the difference per unit of time from some ideal reference
clock

• Ordinary quartz clocks drift by about 1 sec in 11-12 days. (10-6 secs/sec).
• High precision quartz clocks drift rate is about 10-7 or 10-8 secs/sec

24

Perfect networks

• Messages always arrive, with propagation delay
exactly d

• Sender sends time T in a message
• Receiver sets clock to T+d

• Synchronization is exact

Cristian’s Time Sync

mr

mt

p
Time
server,S

• A time server S receives signals from a UTC source
• Process p requests time in mr and receives t in mt from S
• p sets its clock to t + RTT/2
• Accuracy ± (RTT/2 - min) :

• because the earliest time S puts t in message mt is min after p sent mr.
• the latest time was min before mt arrived at p
• the time by S’s clock when mt arrives is in the range [t+min, t + RTT - min]

Tround is the round trip time recorded by p
min is an estimated minimum round trip time

26

Berkeley algorithm

• Cristian’s algorithm -
• a single time server might fail, so they suggest the use of a group of

synchronized servers
• it does not deal with faulty servers

• Berkeley algorithm (also 1989)
• An algorithm for internal synchronization of a group of computers
• A master polls to collect clock values from the others (slaves)
• The master uses round trip times to estimate the slaves’ clock values
• It takes an average (eliminating any above average round trip time or with

faulty clocks)
• It sends the required adjustment to the slaves (better than sending the

time which depends on the round trip time)
• Measurements

• 15 computers, clock synchronization 20-25 millisecs drift rate < 2x10-5

• If master fails, can elect a new master to take over (not in bounded time)

•
27

NTP Protocol

• All modes use UDP
• Each message bears timestamps of recent events:

• Local times of Send and Receive of previous message
• Local times of Send of current message

• Recipient notes the time of receipt T3 (we have T0, T1,
T2, T3)

28

T3

T2T1

T0

Server

Client

Tim
e

m m'

Tim
e

Logical time and logical clocks (Lamport
1978)

• Instead of synchronizing clocks, use event ordering

1. If two events occurred at the same process pi (i = 1, 2, … N) then
they occurred in the order observed by pi, that is the definition of:
“→ i”

2. when a message, m is sent between two processes, send(m)
happens before receive(m)

3. The happened before relation is transitive

• The happened before relation is the relation of causal ordering

29

Total-order Lamport clocks

• Many systems require a total-ordering of events,
not a partial-ordering

• Use Lamport’s algorithm, but break ties using the
process ID
• L(e) = M * Li(e) + i

• M = maximum number of processes
• i = process ID

Vector Clocks

• Note that e → e’ implies V(e)<V(e’). The converse
is also true

• Can you see a pair of parallel events?
• c || e (parallel) because neither V(c) <= V(e) nor V(e) <= V(c)

31

Clock Sync Important Lessons

• Clocks on different systems will always behave
differently
• Skew and drift between clocks

• Time disagreement between machines can result
in undesirable behavior

• Two paths to solution: synchronize clocks or
ensure consistent clocks

32

Clock Sync Important Lessons

• Clock synchronization
• Rely on a time-stamped network messages
• Estimate delay for message transmission
• Can synchronize to UTC or to local source
• Clocks never exactly synchronized
• Often inadequate for distributed systems
• might need totally-ordered events
• might need millionth-of-a-second precision

• Logical Clocks
• Encode causality relationship
• Lamport clocks provide only one-way encoding
• Vector clocks provide exact causality information

Remote Procedure Calls

15-440 Distributed Systems

34

Passing Value Parameters (1)

• The steps involved in a doing a
remote computation through RPC.

35

Stubs: obtaining transparency

• Compiler generates from API stubs for a
procedure on the client and server

• Client stub
• Marshals arguments into machine-independent format
• Sends request to server
• Waits for response
• Unmarshals result and returns to caller

• Server stub
• Unmarshals arguments and builds stack frame
• Calls procedure
• Server stub marshals results and sends reply

36

Real solution: break transparency

• Possible semantics for RPC:
• Exactly-once

• Impossible in practice
• At least once:

• Only for idempotent operations
• At most once

• Zero, don’t know, or once
• Zero or once

• Transactional semantics

37

Asynchronous RPC (3)

• A client and server interacting through
two asynchronous RPCs.

38

Important Lessons

• Procedure calls
• Simple way to pass control and data
• Elegant transparent way to distribute application
• Not only way…

• Hard to provide true transparency
• Failures
• Performance
• Memory access
• Etc.

39

Distributed File Systems

40

15-440 Distributed Systems

Why DFSs?

• Why Distributed File Systems:
• Data sharing among multiple users
• User mobility
• Location transparency
• Backups and centralized management
• Examples: NFS, AFS, CODA, LBFS

• Idea: Provide file system interfaces to remote FS’s
• Challenge: heterogeneity, scale, security, concurrency,..
• Non-Challenges: AFS meant for campus community
• Virtual File Systems: pluggable file systems
• Use RPC’s

41

DFS Important bits (1)

• Distributed filesystems almost always involve a
tradeoff: consistency, performance, scalability.

• We’ve learned a lot since NFS and AFS (and can
implement faster, etc.), but the general lesson
holds. Especially in the wide-area.

• We’ll see a related tradeoff, also involving
consistency, in a while: the CAP tradeoff.
Consistency, Availability, Partition-resilience.

VFS Interception

43

NFS’s Failure Handling –
Stateless Server

• Files are state, but...
• Server exports files without creating extra state

• No list of “who has this file open” (permission check on each
operation on open file!)

• No “pending transactions” across crash
• Crash recovery is “fast”

• Reboot, let clients figure out what happened
• State stashed elsewhere

• Separate MOUNT protocol
• Separate NLM locking protocol in NFSv4

• Stateless protocol: requests specify exact state.
read() → read([position]). no seek on server.

NFS’s Failure Handling

• Operations are idempotent
• How can we ensure this? Unique IDs on files/directories.

It’s not delete(“foo”), it’s delete(1337f00f), where that ID
won’t be reused.

• Not perfect → e.g., mkdir
• Write-through caching: When file is closed, all

modified blocks sent to server. close() does not return
until bytes safely stored.

• Close failures?
• retry until things get through to the server
• return failure to client

• Most client apps can’t handle failure of close() call.
• Usual option: hang for a long time trying to contact server

AFS Cell/Volume Architecture

• Cells correspond to administrative groups
• /afs/andrew.cmu.edu is a cell

• Cells are broken into volumes (miniature file
systems)

• One user's files, project source tree, ...
• Typically stored on one server
• Unit of disk quota administration, backup

• Client machine has cell-server database
• protection server handles authentication
• volume location server maps volumes to servers

46

Client Caching in AFS

• Callbacks! Clients register with server that they
have a copy of file;
• Server tells them: “Invalidate!” if the file changes
• This trades state for improved consistency

• What if server crashes? Lose all callback state!
• Reconstruct callback information from client: go ask

everyone “who has which files cached?”
• What if client crashes?

• Must revalidate any cached content it uses since it may
have missed callback

AFS Write Policy

• Writeback cache
• Opposite of NFS “every write is sacred”
• Store chunk back to server

• When cache overflows
• On last user close()

• ...or don't (if client machine crashes)
• Is writeback crazy?

• Write conflicts “assumed rare”
• Who wants to see a half-written file?

48

DFS: Name-Space Construction and
Organization

• NFS: per-client linkage
• Server: export /root/fs1/
• Client: mount server:/root/fs1 /fs1

• AFS: global name space
• Name space is organized into Volumes

• Global directory /afs;
• /afs/cs.wisc.edu/vol1/…; /afs/cs.stanford.edu/vol1/…

• Each file is identified as fid = <vol_id, vnode #, unique
identifier>

• All AFS servers keep a copy of “volume location database”,
which is a table of vol_id→ server_ip mappings

49

Coda Summary

• Distributed File System built for mobility
• Disconnected operation key idea

• Puts scalability and availability before
data consistency
• Unlike NFS

• Assumes that inconsistent updates are very
infrequent

• Introduced disconnected operation mode and file
hoarding and the idea of “reintegration”

50

Coda States

1. Hoarding:
Normal operation mode

2. Emulating:
Disconnected operation mode

3. Reintegrating:
Propagates changes and detects inconsistencies

Hoarding

Emulating Recovering

51

Low Bandwidth File System
Key Ideas

• A network file systems for slow or wide-area
networks

• Exploits similarities between files
• Avoids sending data that can be found in the server’s

file system or the client’s cache
• Uses RABIN fingerprints on file content (file chunks)

• Can deal with byte offsets when part of file change

• Also uses conventional compression and caching
• Requires 90% less bandwidth than traditional

network file systems

52

LBFS chunking solution

• Considers only non-overlapping chunks
• Sets chunk boundaries based on file contents

rather than on position within a file
• Examines every overlapping 48-byte region of file

to select the boundary regions called breakpoints
using Rabin fingerprints
• When low-order 13 bits of region’s fingerprint equals a

chosen value, the region constitutes a breakpoint

53

Effects of edits on file chunks

• Chunks of file before/after edits
• Grey shading show edits

• Stripes show regions with magic values that create chunk boundaries

54

Distributed Mutual Exclusion

15-440 Distributed Systems

What is “Scalability”?

56

Challenges when scaling out?

Motivation: Need for Distributed Mutex

• San Fran customer adds $100, NY bank adds 1% interest
• San Fran will have $1,111 and NY will have $1,110

• Updating a replicated database and leaving it in an inconsistent
state

57

(San Francisco) (New York)

(+$100) (+1%
)

Comparison of 5 Mutex Algorithms

58

• Which one would you choose?
• What happens with crashes?

Algorithm # Messages per
cycle

Delay before
entry

Problems

Centralized 3 2 Coordinator crash

Decentralized 2 m k + m, k≥1 2m Starvation

Lamport 3 (N-1) 2 (N-1) Crash of any
process, inefficient

Ricart & Agrawala 2 (N-1) 2 (N-1) Crash of any
process

Token ring 1 to infinite 0 to (N-1) Lost token,
process crash

A Centralized Algorithm (1)

@ Client → Acquire:
Send (Request, i) to coordinator
Wait for reply

@ Server:
while true:
 m = Receive()
 If m == (Request, i):If
Available():

 Send (Grant) to i

59

Distributed Algorithm (Strawman)

• Assume that there are n coordinators
• Access requires a majority vote from m > n/2

coordinators.
• A coordinator always responds immediately to a

request with GRANT or DENY
• Node failures are still a problem
• Large numbers of nodes requesting access can

affect availability

60

Totally-Ordered Multicast

61

• A multicast operation by which all messages are
delivered in the same order to each receiver.

• Distributed data structure (priority queue)
• Queue messages until they’re ACKed
• Uses TO-Lamport Clocks:

• Each message is timestamped with the current logical
time of its sender.

• Multicast messages are also sent back to the sender.
• Assume all messages sent by one sender are

received in the order they were sent and that no
messages are lost.

Book pp. 313

Totally-Ordered Multicast

62

• Multicast messages + local timestamp-ordered queue
• Multicasts an ACK to all other processes
• Process only if *both* at queue head and ACK’ed

Lamport Mutual Exclusion

• Every process maintains a queue of pending requests for
entering critical section in order. The queues are ordered
by virtual time stamps derived from Lamport timestamps

• For any events e, e' such that e --> e' (causality ordering), T(e) <
T(e')

• For any distinct events e, e', T(e) != T(e')

• When node i wants to enter C.S., it sends time-stamped
request to all other nodes (including itself)

• Wait for replies from all other nodes.
• If own request is at the head of its queue and all replies have been

received, enter C.S.
• Upon exiting C.S., remove its request from the queue and send a

release message to every process.

63

Ricart & Agrawala Algorithm

• Also relies on Lamport totally ordered clocks.

• When node i wants to enter C.S., it sends
time-stamped request to all other nodes. These
other nodes reply (eventually). When i receives
n-1 replies, then can enter C.S.

• Trick: Node j having earlier request doesn't reply
to i until after it has completed its C.S.

64

A Token Ring Algorithm

• Organize the processes involved into a logical ring
• One token at any time → passed from node to

node along ring

65

A Token Ring Algorithm

• Correctness:
• Clearly safe: Only one process can hold token

• Fairness:
• Will pass around ring at most once before getting

access.
• Performance:

• Each cycle requires between 1 - ∞ messages
• Latency of protocol between 0 & n-1

• Issues
• Lost token

66

Summary

• Lamport algorithm demonstrates how distributed
processes can maintain consistent replicas of a
data structure (the priority queue).

• Ricart & Agrawala's algorithms demonstrate utility
of logical clocks.

• Centralized & ring based algorithms much lower
message counts

• None of these algorithms can tolerate failed
processes or dropped messages.

67

Distributed Concurrency Management

15-440 Distributed Systems

Distributed Concurrency Management

• Single Server: Transactions (RD/WR to Global State)
• ACID: Atomicity, Consistency, Isolation, Durability

• E.g. banking app => ACID is violated if not careful
• Solutions: 2-phase locking (General, strict, strong strict)

• Deadling with deadlocks => build “waits-for” graph
• Transactions: 2 phases (prep, commit/abort)

• Preparation: generate Lock Set “L”, Updates “U”
• COMMIT (updated global state), ABORT (leave state as is)
• Example using banking app

* 69

Transactions – split into 2 phases

• Phase 1: Preparation:
• Determine what has to be done, how it will change state,

without actually altering it.
• Generate Lock set “L”
• Generate List of Updates “U”

• Phase 2: Commit or Abort
• Everything OK, then update global state
• Transaction cannot be completed, leave global state as is
• In either case, RELEASE ALL LOCKS

70

Distributed Transactions – 2PC

• Similar idea as before, but:
• State spread across servers (maybe even WAN)
• Want to enable single transactions to read and update

global state while maintaining ACID properties
• Overall Idea:

• Client initiate transaction. Makes use of “co-ordinator”
• All other relevant servers operate as “participants”
• Co-ordinator assigns unique transaction ID (TID)

71

Implementing 2-Phase Commit

• Implemented as a set of
messages

72

Implementing 2-Phase Commit

• Implemented as a set of
messages

• Messages in first phase
• A: Coordinator sends “CanCommit?”

to participants

73

Implementing 2-Phase Commit

• Implemented as a set of
messages

• Messages in first phase
• A: Coordinator sends “CanCommit?”

to participants
• B: Participants respond:

“VoteCommit” or “VoteAbort”

74

Implementing 2-Phase Commit

• Implemented as a set of
messages

• Messages in first phase
• A: Coordinator sends “CanCommit?”

to participants
• B: Participants respond:

“VoteCommit” or “VoteAbort”

75

• Messages in the second phase
• A: All “VoteCommit”: , Coord sends “DoCommit”
• If any “VoteAbort”: abort transaction. Coordinator

sends “DoAbort” to everyone => release locks

Implementing 2-Phase Commit

• Implemented as a set of
messages

• Messages in first phase
• A: Coordinator sends “CanCommit?”

to participants
• B: Participants respond:

“VoteCommit” or “VoteAbort”

76

• Messages in the second phase
• A: All “VotedCommit”: , Coord sends “DoCommit”
• If any “VoteAbort”: abort transaction. Coordinator

sends “DoAbort” to everyone => release locks

Deadlocks and Livelocks

• Distributed deadlock
• Cyclic dependency of locks by transactions across

servers
• In 2PC this can happen if participants unable to

respond to voting request (e.g. still waiting on a lock on
its local resource)

• Handled with a timeout. Participants times out, then
votes to abort. Retry transaction again.

• Addresses the deadlock concern
• However, danger of LIVELOCK – keep trying!

77

Summary: Distributed Concurrency

• Distributed consistency management
• ACID Properties desirable
• Single Server case: use locks, and in cases use

2-phase locking (strict 2PL, strong strict 2PL),
transactional support for locks

• Multiple server distributed case: use 2-phase
commit for distributed transactions. Need a
coordinator to manage messages from partipants.

78

Fault Tolerance, Logging and Recovery

15-440 Distributed Systems

Summary – Fault Tolerance

• Real Systems (are often unreliable)
• Introduced basic concepts for Fault Tolerant Systems

including redundancy, process resilience, RPC

• Fault Tolerance – Backward recovery using
checkpointing, both Independent and coordinated

• Fault Tolerance –Recovery using
Write-Ahead-Logging

80

Dependability Concepts

• Availability – the system is ready to be used immediately.

• Reliability – the system runs continuously without failure.

• Safety – if a system fails, nothing catastrophic
will happen. (e.g. process control systems)

• Maintainability – when a system fails, it can
be repaired easily and quickly (sometimes, without its
users noticing the failure)

Masking Failures by Redundancy

• Strategy: hide the occurrence of failure from
other processes using redundancy.

1. Information Redundancy – add extra bits to
allow for error detection/recovery (e.g.,
Hamming codes and the like).

2. Time Redundancy – perform operation and, if
needs be, perform it again. Think about how
transactions work (BEGIN/END/COMMIT/ABORT).

3. Physical Redundancy – add extra (duplicate)
hardware and/or software to the system.

Recovery Strategies

• When a failure occurs, we need to bring the
system into an error free state (recovery). This is
fundamental to Fault Tolerance.

1. Backward Recovery: return the system to
some previous correct state (using checkpoints),
then continue executing.

-- Can be expensive, however still used
2. Forward Recovery: bring the system into a

correct new state, from which it can then
continue to execute.

-- Need to know potential errors up front!

Independent Checkpointing

Recovery line: correct distributed snapshot
This becomes challenging if checkpoints are un-coordinated

Coordinated Checkpointing

• Key idea: each process takes a checkpoint after a globally
coordinated action. (why is this good?)

• Simple Solution: 2-phase blocking protocol
• Co-ordinator multicast checkpoint_REQUEST message
• Participants receive message, takes a checkpoint, stops sending

(application) messages, and sends back checkpoint_ACK
• Once all participants ACK, coordinator sends checkpoint_DONE to

allow blocked processes to go on

• Optimization: consider only processes that depend on the
recovery of the coordinator (those it sent a message since
last checkpoint)

85

• Write-Ahead-Logging

• Provide Atomicity and Durability
• Idea: create a log recording every update to database
• Updates considered reliable when stored on disk
• Updated versions are kept in memory (page cache)
• Logs typically store both REDO and UNDO operations
• After a crash, recover by replaying log entries to reconstruct

correct state
• 3 Passes: (Analysis Pass, recovery pass, Undo Pass)
• WAL is common, fewer disk operations, transactions

considered committed once log written.

86

Recovery using WAL – 3 passes

• Analysis Pass
• Reconstruct TT and DPT (from start or last checkpoint)
• Get copies of all pages at the start

• Recovery Pass (redo pass)
• Replay log forward, make updates to all dirty pages
• Bring everything to a state at the time of the crash

• Undo Pass
• Replay log file backward, revert any changes made by

transactions that had not committed (use PrevLSN)
• For each write Compensation Log Record (CLR)
• Once you reach BEGIN TXN, write an END TXN entry

87

Optimizing WAL

• As described earlier:
• Replay operations back to the beginning of time
• Log file would be kept forever, (entire Database)

• In practice, we can do better with CHECKPOINT
• Periodically save DPT, TT
• Store any dirty pages to disk, indicate in LOG file
• Prune initial portion of log file: All transactions upto

checkpoint have been committed or aborted.

88

Distributed Replication

15-440 Distributed Systems

Distributed Consistency Concepts

• Requires write replication, and some degree of consistency
• Strict Consistency

• Read always returns value from latest write
• Sequential Consistency

• All nodes see operations in some sequential order
• Operations of each process appear in-order in this sequence

• Causal Consistency
• All nodes see causally related writes in same order
• But concurrent writes may be seen in different order on different

machines
• Eventual Consistency

• All nodes will learn eventually about all writes, in the absence of
updates

90

Sequential Consistency (1)

• Behavior of two processes operating on the
same data item. The horizontal axis is time.

• P1: Writes “W” value a to variable “x”
• P2: Reads `NIL’ from “x” first and then `a’

Sequential Consistency (2)

• A data store is sequentially consistent when:
• The result of any execution is the same as if the

(read and write) operations by all processes on the
data store …
• Were executed in some sequential order and …
• the operations of each individual process appear

…
▪ in this sequence
▪ in the order specified by its program.

Sequential Consistency (3)

(b) A data store that is not sequentially
consistent.

(a) A sequentially consistent data store.

Causal Consistency (1)

• For a data store to be considered causally consistent, it is necessary that
the store obeys the following condition:

• Writes that are potentially causally related …
• must be seen by all processes
• in the same order.

• Concurrent writes …
• may be seen in a different order
• on different machines.

Causal Consistency (2)

• Figure 7-8. This sequence is allowed with a
causally-consistent store, but not with a sequentially
consistent store.

Replicate: State versus Operations

Possibilities for what is to be propagated:
•Propagate only a notification of an update.
- Sort of an “invalidation” protocol

•Transfer data from one copy to another.
- Read-to-Write ratio high, can propagate logs (save bandwidth)

•Propagate the update operation to other
copies
- Don’t transfer data modifications, only operations – “Active
replication”

Remote-Write PB Protocol

 Updates are blocking, although non-blocking possible

Replication: Quorum based consensus

• Quorum consensus

• Designed to have fast response time even under
failures

• Replicas are “active” - participate in protocol; there
is no master, per se.

• Good: Clients don’t even see the failures. Bad:
More complex.

• Correctness (safety):
•All nodes agree on the same value

•The agreed value X has been proposed by some
node

• Fault-tolerance:
• If less than N/2 nodes fail, the rest should reach
agreement eventually w.h.p

•Liveness is not guaranteed

• Termination (not guaranteed)

PAXOS: Requirement

Fischer-Lynch-Paterson [FLP’85]
impossibility result

• It is impossible for a set of processors in an
asynchronous system to agree on a binary
value, even if only a single processor is
subject to an unannounced failure.

• Synchrony --> bounded amount of time node
can take to process and respond to a request
Asynchrony --> timeout is not perfect

Single Decree Paxos: Protocol

Acceptors

3)Respond to Prepare(n):
• If n > minProposal then minProposal = n
 Prepare-OK(acceptedProposal, acceptedValue)
 else
 Prepare-REJECT()

6)Respond to Accept(n, value):
• If n ≥ minProposal

acceptedProposal = minProposal = n
acceptedValue = value

 Accept-OK()
 else
 Accept-REJECT()

Acceptors must record minProposal, acceptedProposal, and acceptedValue on stable storage (disk)

Proposers
1)Choose new proposal number n, value v
2)Broadcast Prepare(n) to all servers

4)When responses received from majority:
• If any acceptedValues returned
 v = acceptedValue of highest acceptedProposal

5)Broadcast Accept(n, value) to all servers

6)When Accept-OK from majority
 Value is chosen (Commit)
Else
 Restart: goto 1, with larger number n

101

Some Remarks

• Only proposer knows chosen value (majority accepted)
• Only a single value is chosen → MultiPaxos
• No guarantee that proposer’s original value v is chosen by

itself
• Number n is basically a Lamport clock → always unique n
• Key invariant:

• If a proposal with value `v' is chosen, all higher proposals must
have value `v’

• Dueling proposer
• Resolved using number n in prepare

• There are challenging corner cases

102

Fault Tolerance and RAID

15-440 Distributed Systems

Outline

• Errors/error recovery

• Using multiple disks
• Why have multiple disks?
• problem and approaches

• RAID levels and performance

• Estimating availability

104

Parity Checking

Single Bit Parity:
Detect single bit errors

105

Error Recovery – Error Correcting
Codes (ECC)

Two Dimensional Bit Parity:
Detect and correct single bit errors

0 0

106

Error Detection – CRC

• View data bits, D, as a binary number
• Choose r+1 bit pattern (generator), G
• Goal: choose r CRC bits, R, such that

• <D,R> exactly divisible by G (modulo 2)
• Receiver knows G, divides <D,R> by G. If non-zero remainder:

error detected!
• Can detect all burst errors less than r+1 bits

• Widely used in practice: Ethernet, disks

107

Disk Striping

• Interleave data across multiple disks
• Large file streaming can enjoy parallel transfers
• Small requests benefit from load balancing

• If blocks of hot files equally likely on all disks (really?)

108

Redundancy via replicas

• Two (or more) copies
• mirroring, shadowing, duplexing, etc.

• Write both, read either

109

A Better Approach?: Parity Disk

• Capacity: one
extra disk needed
per stripe

• Disk failures are
self-identifying
(a.k.a. erasures)

• Don’t have to find
the error

110

Updating and using the parity

111

Better: Striping the Parity

• Removes parity disk bottleneck

112

Performance

113

Measuring Availability

• Mean time to failure (MTTF) - “uptime”
• Mean time to repair (MTTR)
• Mean time between failures (MTBF)
• MTBF = MTTF + MTTR

• Availability = MTTF / (MTTF + MTTR)
• Suppose OS crashes once per month,

takes 10min to reboot.
• MTTF = 720 hours = 43,200 minutes

MTTR = 10 minutes
• Availability = 43200 / 43210 = 0.997 (~“3 nines”)

114

Disk failure conditional probability
distribution - Bathtub curve

Expected operating lifetime

1 / (reported MTTF)

Infant
mortality

Burn
out

115

Reliability without rebuild

• 200 data drives with MTTFdrive
• MTTDLarray = MTTFdrive / 200

• Add 200 drives and do mirroring
• MTTFpair = (MTTFdrive / 2) + MTTFdrive = 1.5 * MTTFdrive
• MTTDLarray = MTTFpair / 200 = MTTFdrive / 133

• Add 50 drives, each with parity across 4 data disks
• MTTFset = (MTTFdrive / 5) + (MTTFdrive / 4) = 0.45 * MTTFdrive
• MTTDLarray = MTTFset / 50 = MTTFdrive / 111

• These are approximations

116

Distributed Databases Case Study

15-440 Distributed Systems

Consistency Definitions

118

Sequential Consistency
• All nodes see operations in some sequential

order
• Operations of each process appear in-order in

this sequence
Eventual Consistency
• All nodes will learn eventually about all writes, in

the absence of updates

External Consistency
• If T1 commits before T2, then the commit order

must be T1 before T2

Consistent Distributed Database

119

Two nodes:
… Sequential

Consistency?
Hash-based
data
partitioning
(sharding)

Shard x

Shard y

Summary So Far: When to Use What?

120

Use Case Problems

Distributed Mutex Distributed KV
without transactions

Failures + Slow

2PC Distributed DB with
transactions
(e.g., Spanner)

Failures

Primary-Backup Cost-efficient fault
tolerance (e.g., FaRM,
GFS, VMWare-FT)

Correlated failures

Paxos Staying up no matter
the cost (e.g., Spanner,
FaunaDB)

Delay and huge
cost overhead

RAID, Checksums Every system Node failures

Practical Constraints: Alternative I

121

2005-2012: NoSQL systems

Design choices: AP: availability over consistency
“infinitely” scalable

write S = 1 S=1

ok, done
S=1

Network
partition

read S

S?
write X = 9

ok, done
Challenge: version reconcilation (parallel writes..)

Practical approach (Dynamo): Vector Clocks

X=9

Only eventually
consistent!

2012-2018: resurgence of consistent distributed DBs

Three key reasons [→ Daniel Abadi, UMD]
1. application code gets too complex and buggy without

consistency support in DB
2. better network availability, CP (from CAP) choice is less

relevant, availability sacrifice hardly noticeable
3. CAP asymmetry: CP can guarantee consistency, AP can’t

guarantee availability (only question of degree)

Practical Constraints: Alternative II

Most workloads are read heavy. New
systems support lock-free consistent reads.

Even stronger consistency requirements.

These guarantee at least sequential consistency, unlike NoSQL.

