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Midterm II on 11/29
15) Data Center Storage: GFS / HDFS

19) 
Guest Lecture
16 & 17) Cluster Computing: MapReduce/Hadoop

Spark & Distributed ML
18) Internet Content Delivery: DNS and CDNs
20) Virtualization Technology: VMs & Containers
21) Byzantine Fault Tolerance 
22) Distributed ledgers and Blockchains
23 & 24) Security: Protocols

Layering and Security
TOR 
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15 – Cluster File Systems: 
The Google File System

Readings: “The Google File System” Sections 2.3-2.6, 3.1, 3.3, 5.1, 5.2
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GFS: Workload Assumptions

• Large files, >= 100 MB in size
• Large, streaming reads (>= 1 MB in size)

• Read once
• Large, sequential writes that append

• Write once
• Concurrent appends by multiple clients (e.g., 

producer-consumer queues)
• Want atomicity for appends without synchronization 

overhead among clients

4
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Master/Chunkservers
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GFS Architecture
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GFS Client Write Operation III

7

Send to closest 
replica first
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GFS Record Append Operation

• Google uses large files as queues between 
multiple producers and consumers

• Variant of GFS write step

8

GFS
• Client pushes data to last chunk’s replicas
• Client sends request to primary
• Common case: request fits in last chunk:

• Primary appends data to own chunk replica
• Primary tells secondaries to do same at same byte 

offset in their chunk replicas
• Primary replies with success to client

Why not use a regular GFS write (client offset)?
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GFS Append if Chunk is Full
• When data won’t fit in last chunk:

• Primary fills current chunk with padding

• Primary instructs other replicas to do same

• Primary replies to client, “retry on next chunk”

• If record append fails at any replica, client 
retries operation

9

• Replicas of same chunk may contain different data—
even duplicates of all or part of record data

• Data written at least once in atomic unit

⇒ due to GFS client retries until success

What guarantee does GFS provide after 
reporting success of append to application?
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GFS Consistency Model (Data)

• Changes to data are ordered as chosen by a 
primary
• But multiple writes from the same client may be 

interleaved or overwritten by concurrent operations from 
other clients

• Record append completes at least once, at offset 
of GFS’s choosing
• Applications must cope with possible duplicates

• Failures can cause inconsistency
• E.g., different data across chunk servers (failed append)
• Behavior is worse for writes than appends

10
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GFS Limitations

11

• Does not mask all forms of data corruption
• Requires application-level checksum

• Master biggest impediment to scaling
• Performance and availability bottleneck
• Takes long time to rebuild metadata
• Solution: 

• Multiple master nodes, all sharing set of chunk 
servers. Not a uniform name space.

• Large chunk size
• Can’t afford to make smaller

• Security?
• Trusted environment, but users can interfere
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16 – Cluster Computing: 
MPI & MapReduce

Readings: “MapReduce: Simplified Data Processing on Large Clusters” Sections 3,4
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Typical HPC Operation
• Characteristics

• Long-lived processes
• Partitioning: exploit spatial locality
• Hold all program data in memory (no disk 

access)
• High bandwidth communication

• Strengths
• High utilization of resources
• Effective for many scientific applications

• Weaknesses
• Requires careful tuning of application to 

resources
• Intolerant of any variability

P1 P2 P3 P4 P5

Message Passing

13



Map/Reduce Operation

14

Ma
p
Reduce

Ma
p
Reduce

Ma
p
Reduce

Ma
p
Reduce

Map/Reduce • Characteristics
• Computation broken into many, 

short-lived tasks
• Use disk storage to hold 

intermediate results
• Failure → Reschedule task

• Strengths
• Great flexibility in placement, 

scheduling, and load balancing
• Can access large data sets

• Weaknesses
• Higher overhead
• Lower raw performance
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Hadoop MapReduce API
• Requirements

• Programmer must supply Mapper & Reducer classes

• Mapper
• Steps through file one line at a time
• Code generates sequence of <key, value> pairs

• Default types for keys & values are strings
• Can use anything “writable”, lots of conversion methods

• Shuffling/Sorting
• MapReduce’s built in aggregation by key

• Reducer
• Given key + iterator that generates sequence of values

• Generate one or more <key, value> pairs

15
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Example I MapReduce

• Map: generate 〈word, count〉 pairs for all words in document
• Reduce: sum word counts across documents

Come 
and 
see.

Come 
and 
see.

Come, 
come.

M Extract

Word-Count
Pairs

M M M M

〈dick, 
1〉

〈see, 
1〉

〈com
e, 1〉

〈and, 
1〉

〈com
e, 1〉

〈com
e, 1〉

〈com
e, 1〉

〈com
e, 2〉

〈see, 
1〉

〈and, 
1〉

〈and, 
1〉

〈spot, 
1〉

Sum
dick and

co
me see

spo
t

∑=1 ∑=3 ∑=6 ∑=3 ∑=1

Come,
Dick

Come 
and see 

Spot.
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Come 
and 
see.

Come 
and 
see.

Come, 
come.

M Extract

Word-Count
Pairs

M M M M

〈dick, 
1〉

〈see, 
1〉

〈com
e, 1〉

〈and, 
1〉

〈com
e, 1〉

〈com
e, 1〉

〈com
e, 1〉

〈com
e, 2〉

〈see, 
1〉

〈and, 
1〉

〈and, 
1〉

〈spot, 
1〉

Sum
dick and

co
me see

spo
t

∑=1 ∑=3 ∑=6 ∑=3 ∑=1

Come,
Dick

Come 
and see 

Spot.

Example I MapReduce

• Map: generate 〈word, count〉 pairs for all words in document
• Reduce: sum word counts across documents

17

1) Mapping Phase

2) Shuffling / Sorting Phase

3) Reduce Phase
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MapReduce Execution

Dean & Ghemawat: “MapReduce: Simplified Data Processing on Large Clusters”, OSDI 2004

HDFS
HDFS

#tasks >> 
#processors

dynamic task 
assignment
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17 – Fault-tolerant in-
memory computation

Readings: “Resilient Distributed Datasets” Paper, Optional: “Immutability Changes Everything”
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Limitations of MapReduce

Real-world applications require iterating MapReduce steps

20

Each iteration steps is small.

But: we need many iterations

⇒ 90% spent on I/O to disks and over network

⇒ 10% spent computing actual results

Does not work for iterative applications
( ⇒ distributed machine learning)
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In-Memory Computation
Berkeley Extensions to Hadoop ( ⇒Apache Spark)

Key idea: keep and share data sets in main memory

21

How to build fault-tolerant and efficient system?

Traditional fault-tolerance approaches

● Logging to persistent storage

● Replicating data across nodes (ideally: also to persistent storage)

● Checkpointing (checkpoints need to be stored persistently)

Fault tolerance techniques from lectures so far?
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Spark Approach: RDDs and Lineage

Resilient Distributed Datasets

● Limit update interface to coarse-grained operations

● Efficient fault recovery using lineage

○ RDDs are immutable and partitioned across many nodes

○ Apply course-grained operations to every partition in parallel

22

Zaharia et al. Resilient distributed datasets: 
A fault-tolerant abstraction for in-memory 
cluster computing. NSDI 2012.

Why immutability?

● Enables lineage
○ Recreate any RDD any time

○ More strictly: RDDs need to be deterministic functions of input

● Simplifies consistency
○ Caching and sharing RDDs across Spark nodes

● Compatibility with storage interface (HDFS)
○ HDFS chunks are append only 
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RDD Lineage
● What if lineage grows really large?

○ manual checkpointing on HDFS

RDDs Immutability
● Deterministic functions of input

○ how to incorporate randomness?

Spark Real World Challenges

23

Other design implications?

● Needs lots of memory (might not be able to run your workload)

● High overhead: copying data (no mutate-in-place)



Daniel S. Berger
15-440 Fall 2018 Carnegie Mellon University

BSP computation abstraction

● Surprising power of iterations

○ (e.g., iterative Map/Reduce)

● Explained by theory of bulk 

synchronous parallel (BSP) model

24

Theorem (Leslie Valiant,1990):

“Any distributed system can 

be emulated as local work + 

message passing” (=BSP).

Communication

Communication

Communication

Spark implements BSP approximately
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Challenge of Synchronization Overhead

BSP model:
● No computation during barrier

● No communication during 
computation

Fundamental limitation in BSP model

Constantly waiting for stragglers

25

Synchronization Barrier

Synchronization Barrier

Synchronization Barrier

Do we need a new 
programming model?
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Bounded-delay BSP for Distributed ML

Bound stale state by N steps:

⇒N-bounded delay BSP

26

1-bounded 
delay

2-bounded 
delay

From: Li et al, Scaling 

Distributed Machine 

Learning with the 

Parameter Server

OSDI 2014

what 
happens 
here?
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18 – Internet Content Delivery Case 
Study: DNS & CDNs

Readings: Tanenbaum 5.1-5.5, 7.6.    Optional readings:  readings linked from website
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28

Users
j

Internet 
“core”

Internet 
“edge”

1) How to map human-readable names 
(URLs) to server locations (IPs)?

2) How to deliver content
quickly & reliably?
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Internet Name Discovery
Challenges/Goals:
• Scalability
• Decentralized maintenance
• Robustness
• Global scope 

29

RR format: (class, name, value, type, ttl)

Types for IN class:
• Type=A

• name is hostname
• value is IP address

• Type=NS
• name is domain (e.g. foo.com)
• value is name of authoritative name 

server for this domain

Basically, only one class: Internet (IN)

• Type=CNAME
• name is an alias name for some 

“canonical” (the real) name
• value is canonical name

• Type=MX
• value is hostname of mailserver 

associated with name
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Choosing the Time-To-Live
Common practices

Top-level NS records: very high TTL
• alleviate load on root 

Intermediary NS records: high TTL

A records: small TTL (<7200s)
• consistency concerns

Some A records: tiny TTL (<30s)
• fault tolerance, load balancing

30

root

edu

cmu

cs ece

www

NS

NS

A

128.2.217.13Remember security implications 
when choosing TTLs!
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Retrieving Web Content
• Many (typically small) objects per page 
• File sizes are heavy-tailed
• Embedded references

Why does this matter for performance?

• Content Delivery Network (CDNs)
• The world’s largest distributed caching systems
• Key for Internet performance
• Explosive growth

Lots of objects & TCP
• 3-way handshake
• Lots of slow starts
• Even worse: TLS

31
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32

Users j

Internet 
“core”

Internet 
“edge”

Content
Provider

A Typical CDN
1

2

3
4

cache / 
edge
server
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Directing Users to CDNs
• Which PoP?

• Best “performance” for this specific user

• Based on Geography? RTT?

• Throughput? Load?

• How to direct user requests to the PoP?

• As part of routing → anycast (= as part of IP 

routing)

• As part of application → HTTP redirect

• As part of naming → DNS
(e.g., CNAME that is resolved via CDN’s name server)

j

33
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34

Actual CDN Load Balancer
Idea 4: Consistent Hashing

34

Desired properties
Load: over all views, # of objects / server is small (and ∼uniform)

Spread: over all views, # of servers / obj is small (and ∼uniform)

Smoothness: little impact when servers are added/removed

LB 1

Properties of the ideal 
CDN hash function?

LB 2

“View” = subset of all 
servers that are 
visible to LB
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Rule: A key is stored at its successor: node with next higher or equal  ID

N32

N90

N123 K20

K5

Circular 7-bit
ID space

0IP=“198.10.10.1”

K101

K60
Key=“LetItBe”

Consistent Hashing Example

35

How to
control data 
duplication?
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Cache Update Propagation Techniques

1. Enforce Read-Only (Immutable Objects)

2. Broadcast Invalidations

3. Check on Use

4. Callbacks

5. TTLs (“Faith-based Caching”)

6. Leases (generalize check on use and callbacks)

36

Spark

CDNs

AFS2

DNS

P3

( a.k.a Cache Coherence Protocols )

AFS1, HTTP1
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Summary on CDNs
• Across wide-area Internet: caching is the only way to 

improve latency
• Caching aggressively used both by DNS and CDNs
• DNS resolvers → how does RR retrieval work?
• CDNs → how does content retrieval work?
• Consistent hashes and update propagation 

techniques
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20– Virtualization Techniques

Readings: book chapter on Virtual Machines from the Wisconsin OS book



Daniel S. Berger
15-440 Fall 2018 Carnegie Mellon University

Reasons for Virtualization

39

Sandboxing: fully 
control any resource 
access and possible 
actions of tenant

Support multiple 
operating systems 
on a single hardware 
platform

Monitor and limit 
resource (e.g., CPU) 
usage, contain

failures locally

CAPEX→ OPEX;
Adapt to changing 
resource requirements

Improve 
Resource 
Utilization

Resource 
& Failure 
Isolation

Security
Isolation

Mixed-
OSEnviron

ment
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Virtualization Techniques
Separate
• physical characteristics of resources
• from the way in which other systems, 

applications, or end users interact

Adapted from: Ken Birman

physical 
resources

narrow
interface

distributed system,  
applications

Why Is Hardware Special?
Narrow & stable waistline critical
• narrow: freer innovation
• narrow: vendor neutrality
• stable: longevity / ubiquity

Wide interfaces → brittle abstractions
• hard to: deploy, sustain, scale
• e.g., software interface: processes
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Types of Virtualization
● System virtualization 

○ Virtualizing the entire 
hardware interface

● Container virtualization 
○ Virtualizing OS resources 

between processes 
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Requirements on VMs
● Isolation

○ Fault isolation
○ Performance isolation (+ software isolation, …) 

● Encapsulation
○ Cleanly capture all VM state
○ Enables VM snapshots, clones

● Portability
○ Independent of physical hardware
○ Enables migration of live, running VMs (freeze, suspend,…)
○ Clone VMs easily, make copies

● Interposition
○ Transformations on instructions, memory, I/O
○ Enables transparent resource overcommitment, compression, replication …

Adapted from: Eyal DeLara

Improved 
Resource 
Utilization

Resource & Failure 
Isolation

Security
Isolation

Mixed-OS 
Environment

How to implement interposition for CPU, memory, I/O?
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Efficient CPU Virtualization

● Non-privileged instructions (e.g., Load from mem): 
Run as native machine

● Privileged instructions (e.g., Update CPU state, 
Manipulate page table): Trap to VMM

Non-Privileged 
instructions

Privileged 
instructions

More complex in reality (some privileged instructions 
don’t trap) → Processor support VT-x, AMD-V

This is called Trap and Emulate
→ Full Control for VMM

Run on 
CPU

Emulate 
(Trap)
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Why Container Virtualization?
Overhead associated with deploying on VMs

• I/O overhead
• OS-startup overhead per VM
• Memory/Disk overhead (duplicate data)

Overhead becomes dominant at scale: thousands of VMs / server

New idea:
• Multiple isolated instances of programs
• Running in user-space (shared kernel)
• Instances see  only resources (files, devices) assigned to their container

Other names: OS-level virtualization, partitions, jails (FreeBSD jail, chroot jail)

Perception: VM have too much overhead!
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Requirements on Containers
• Isolation and encapsulation
• Fault and performance isolation
• Encapsulation of environment, libraries, etc.

• Low overhead
• Fast instantiation / startup
• Small per-operation overhead (I/O, ..)

• Reduced Portability

• Interposition (no hypervisor)

Improved 
Resource 
Utilization

Resource & Failure 
Isolation

Security
Isolation

Mixed-OS 
Environment
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Implementation
Key problems:
• Isolating which resources containers see

→ Linux namespace
• Isolating resource usage

→ Linux control groups
• Efficient per-container filesystems

→ Linux OverlayFS
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Summary
VMs

Strengths: strong isolation guarantees, can run different OSs
VM migration practical

Weaknesses: OS startup, disk,memory, and hypervisor overhead

Containers
Strength: fast startup times, negligible I/O overheads, very high 
density
Weaknesses: weak security isolation

In practice: techniques complement each other
Use VMs to isolate between different users, and containers to 
isolate different applications/services of a single user
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21 – Byzantine Fault Tolerance

Readings: Tanenbaum pages 449 - 460.    PBFT paper.
48



Agreement in Faulty Systems

Possible characteristics of the underlying system:
1. Synchronous versus asynchronous systems.

• A system is synchronized if the process operation in 
lock-step mode.  Otherwise, it is asynchronous.

2. Communication delay is bounded or not.
3. Message delivery is ordered or not.
4. Message transmission is done through unicasting 

or multicasting.

49



Agreement in Faulty Systems

Circumstances under which distributed agreement can be 
reached.  Note that most distributed systems assume that 

1. processes behave asynchronously
2. messages are unicast
3. communication delays are unbounded (see red blocks)

50



What do Byzantine Failures Look Like?

Many things can go wrong…

Communication
• Messages lost or delayed for arbitrary time
• Adversary can intercept messages
Processes
• Can fail or team up to produce wrong results

Agreement very hard, when possible to achieve?

51
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Paxos under Byzantine faults

accept vid=1, myn=N1:1, val=abc
OK

N0 N1

N2

nh=N1:1nh=N0:1

X
N1 decides on

Vid1=abc

N0 decides on
Vid1=xyz

Agreement 
conflict! 
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1. State: …A
2. State: …A

3. State: …A
4. State: …

BFT: What Quorum Size Do We 
Need?

Servers

Clients

write
 A

write A
X

w
rit

e 
Awrite A

For liveness, the quorum size must be at most N - f
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1. State: …A
2. State: …A

3. State: …A
4. State: …

BFT: What Quorum Size Do We 
Need?

Servers

Clients

write
 A

write A
X

w
rit

e 
Awrite A

For correctness, any two quorums must intersect at least
one honest node: (N-f) + (N-f) - N >= f+1        N >= 3f+1
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Practical Byzantine Fault Tolerance

Client

Primary

Replica 2

Replica 3

Replica 4

Request Pre-Prepare Prepare Commit Reply

Quorum-based Byzantine consensus protocol



Normal Case

• Client waits for f+1 matching replies

• Ensures that at least one honest node has committed and 
executed

Why f+1? What does this ensure?

What does commit of at least one honest 
node ensure?

• Ensure 2f+1 matching commits
⇒ At least f+1 honest nodes have committed

56
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Motivation: Decentralized Transactions

• Traditional transactions
• Via trusted entities like banks/mints/lawyers
• Transactions sometimes need to be reversed

• Disputes, stolen credit cards
• Requires mediation and additional trust (merchant → customer)

• Significant transaction costs
• Prevent emerging use cases, e.g., micro payments

• Decentralized transactions
• Are they possible? Can you think of some challenges?

11
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Challenges of Decentralized Transactions

• Key problem: double spending
• Daniel has $5 - buys a $5-drink and 

a $5-sandwich at the same time

22

• Someone needs to keep track
of ALL transactions
• Traditional currency: mints
• Internet: P2P distributed data-structure
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Solution: Secure, Distributed Ledgers

• Ledger:
every transaction ever made
• All participants need a copy

Steps to Maintain Distributed Ledger:
• 1) broadcast new transactions
• 2) each member collects transactions into a block
• 3) once block is full, broadcast, and move on

33
What if there’s a block collision?
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Adding Consensus to Distributed Ledgers

Steps to Maintain Distributed Ledger:
• 1) broadcast new transactions
• 2) each member collects transactions into a block
• 3) reach consensus on next block
• 4) continue with 1)

4

Sybil Attack: What if someone has many IP 
addresses?
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Solution: Blockchain Consensus

• 1) broadcast new transactions
• 2) each member collects transactions into a block
• 3) each member seeks proof-of-work for its block

• proof-of-work (PoW): solve a computationally hard problem
• 4) member who finds PoW broadcasts  block+PoW
• 5) other member check block, seek next PoW
• 6) consensus over time

5
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Blockchain in More Detail

• Blocks contain transactions
• Chain of blocks secured using cryptographic hashes
• Each block contains cryptographic hash of previous block
• Tampered block can easily be checked for

66

T1
T2
T3

Hash

T1
T2
T3

Hash

T1
T2
T3

Hash

Hash
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Blockchain Proof-of-Work

• Idea: one vote per CPU
• Hashcash cryptographic puzzle used in Bitcoin
• Find nonce such that SHA-256 hash of (block + nonce) 

has K leading zeros

77

prev_hash: (...)

Txn 1
Txn 2
Txn 3
Txn 4
.
.
Txn N

Random value (nonce)

SHA-256 
hash

hash < target ?
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Security Guarantee of a Blockchain

• To modify old transactions, proof of work has to 
be redone for all successive committed blocks

• 51 attack
• If an organization has more than 51% of the total 

compute, it can choose which transactions get 
committed

• Very hard to change older blocks even with a majority 
of computational power

99
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Incentivizing proof of work (mining)

• Mining is the process of generating proof of work 
• Miner adds reward to self at the beginning of the 

block
• If the miner’s block gets added to the blockchain, 

miner receives a reward

1010
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Example: bitcoin 

Ledger: transactions of bitcoin currency payments
Reward: bitcoins

Introduced in 2009 by “Satoshi Nakamoto”
(not kown publicly)

In use today
(10 million transactions / month)

11



- 15-440 Distributed Systems - Fall 2017 - Carnegie Mellon University - Daniel S. Berger and Devdeep Ray -

Example: Namecoin

Ledger: Names and IP addresses of various 
servers, along with namecoin transactions

Reward: Namecoins, which are just like bitcoins

Introduced in 2011
Censor-free fully p2p naming system
“decentralized DNS”

12



25 – Final Review (Part 2) 
Security Protocols 

15-440 Distributed Systems

Tuesday, Dec 4th, 2018



Logistical Updates

• HW4 - Due 12/4 (Tuesday)  NO LATE DAYS

• Midterm II – Thursday 12/6, 10:30am – 11:50am
• In CUC McConomy. Please come 10mins early. 
• We will be able to set up and will start on time! 

2



What do we need for a secure 
communication channel?  

• Authentication (Who am I talking to?)

• Confidentiality (Is my data hidden?)

• Integrity (Has my data been modified?)

• Availability (Can I reach the destination?)  

3



Example:  Web access

• Alice wants to connect to her bank to transfer 
some money...

• Alice wants to know ...
• that she’s really connected to her bank.
• That nobody can observe her financial data
• That nobody can modify her request
• That nobody can steal her money!

• The bank wants to know ...
• That Alice is really Alice (or is authorized by Alice)
• The same privacy things that Alice wants so they don’t 

get sued or fined by the government.

Authentication

Confidentiality

(A mix)

Integrity

4



How do we create secure
channels?

• What tools do we have at hand?

• Hashing 
• e.g., SHA-1

• Secret-key cryptography, aka symmetric key.
• e.g., AES

• Public-key cryptography
• e.g., RSA
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Secret Key Cryptography

• Given a key k and a message m
–Two functions:  Encryption (E), decryption (D)
–ciphertext c = E(k, m)
–plaintext m = D(k, c)
–Both use the same key k.

Bob.comAlice

Hello,Bob“secure” channel

knows K knows K

But... how does that help with authentication?  

They both have to know a pre-shared key K before they start!
6



Symmetric Key: Confidentiality

• One-time Pad (OTP) is secure but usually impractical
• Key is as long at the message
• Keys cannot be reused (why?)

Stream Ciphers:

Ex: RC4, A5

Block Ciphers:

Ex: DES, AES, 
Blowfish

In practice, two types of ciphers 
are used that require only 
constant key length: 

7



Symmetric Key: Integrity

• Hash Message Authentication Code (HMAC) 

Hash Fn
Message

MAC Message

Alice Transmits Message & MAC

Why is this secure from a message integrity perspective?  
How do properties of a hash function help us?  

MAC
Step #1:
Alice creates 
MAC

Step #2 Step #3
Bob computes MAC with 
message and KA-B to verify.

K A-B
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Symmetric Key: Authentication

• A “Nonce”
• A random bitstring used only once. Alice sends nonce to Bob as 

a “challenge”.  Bob Replies with “fresh” MAC result. 

Hash 
Nonce

B4FE64

Bob

K A-B

Nonce

B4FE64

Alice

Performs same 
hash with KA-B
and compares 
results

12



Symmetric Key Crypto Review

• Confidentiality:  Stream & Block Ciphers
• Integrity:  HMAC
• Authentication: HMAC and Nonce

Questions??

Are we done?  Not Really:

1) Number of keys scales as O(n2) 
2) How to securely share keys in the first place? 

14



Asymmetric Key Crypto:

• Instead of shared keys, each person has a “key 
pair”

Bob’s public key 

Bob’s private 
key 

KB

KB
-1 

KB
-1 (KB (m)) = m� The keys are inverses, so:

15



Asymmetric/Public Key Crypto:

• Given a key k and a message m
– Two functions:  Encryption (E), decryption (D)
– ciphertext c = E(KB, m)
– plaintext m = D(KB

-1 , c)
– Encryption and decryption use different keys!

Bob.comAlice

Hello,Bob“secure” channel

Knows KB Knows KB, KB
-1 

But how does Alice know that KB means “Bob”?

16



Asymmetric Key: Confidentiality

ciphertextencryption
algorithm

decryption 
algorithm

Bob’s public key 

plaintext message

KB (m)

Bob’s private key 

m = KB
-1 (KB (m))

KB

KB
-1 

17



Asymmetric Key: Sign & Verify

• The message must be from Bob, because it must be 
the case that S = KB

-1(M), and only Bob has KB
-1 ! 

n If we are given a message M, and a value S 
such that KB(S) = M, what can we conclude? 

n This gives us two primitives:
n Sign (M) = KB

-1(M) = Signature S
n Verify  (S, M) = test( KB(S) == M ) 

18



Asymmetric Key: Integrity & 
Authentication

• We can use Sign() and Verify() in a similar 
manner as our HMAC in symmetric schemes.

Integrity: S = Sign(M) Message M

Receiver must only check Verify(M, S) 

Authentication:
Nonce

S = Sign(Nonce)
Verify(Nonce, S)

19



Asymmetric Key Review:

• Confidentiality: Encrypt with Public Key of Receiver

• Integrity: Sign message with private key of the sender

• Authentication: Entity being authenticated signs a nonce 
with private key, signature is then verified with the public key

But, these operations are computationally expensive*

20



The Great Divide

Symmetric Crypto: 
(Private key)

Example: AES

Asymmetric Crypto: 
(Public key)
Example: RSA

Requires a pre-
shared secret 
between 
communicating 
parties?

Yes

Overall speed of 
cryptographic 
operations

Slow

No

Fast 

21



One last “little detail”…

How do I get these keys in the first place??

Remember:
• Symmetric key primitives assumed Alice and Bob 

had already shared a key.
• Asymmetric key primitives assumed Alice knew 

Bob’s public key.  

This may work with friends, but when was the last 
time you saw Amazon.com walking down the street? 



Key Distribution Center (KDC)

Alice
knows 

R1

Bob knows to 
use  R1 to 

communicate 
with Alice

Alice and Bob communicate: using R1 as 
session key for shared symmetric encryption 

Q: How does KDC allow Bob, Alice to determine shared 
symmetric secret key to communicate with each other? 

KDC 
generates  

R1

KB-KDC(A,R1) 

KA-KDC(A,B)

KA-KDC(R1, KB-KDC(A,R1) )



The Dreaded PKI

• Definition: Public Key Infrastructure (PKI)

1) A system in which “roots of trust” authoritatively 

bind public keys to real-world identities

2) A significant stumbling block in deploying  many 

“next generation” secure Internet protocol or 

applications.    



Certification Authorities

• Certification authority (CA): binds public key to 
particular entity, E.

• An entity E registers its public key with CA.
• E provides “proof of identity” to CA. 
• CA creates certificate binding E to its public key.

• Certificate contains E’s public key AND the CA’s 
signature of E’s public key.  

25

Bob’s 
public

key 

Bob’s 
identifying 

information 

CA 
private

key 

certificate = Bob’s 
public key and  

signature by CA

KB 

K-1
CA

KB

CA generates
S = Sign(KB)



Certification Authorities

• When Alice wants Bob’s public key:
• Gets Bob’s certificate (Bob or elsewhere).
• Use CA’s public key to verify the signature within 

Bob’s certificate, then accepts public key

26

Verify(S, KB)

CA 
public

key KCA

KB If 
signature 
is valid, 
use KB



How TLS/SSL Handles Data

27

1) Data arrives as a stream from the application via the TLS Socket

2) The data is segmented by TLS into chunks

3) A session key is used to encrypt and MAC each chunk to form a 

TLS “record”, which includes a short header and data that is 

encrypted, as well as a MAC.  

4) Records form a byte stream that is fed to a TCP socket for 

transmission.  



Analysis

• PKI lets us take the trusted third party offline:
– If it’s down, we can still talk!
– But we trade-off ability for fast revocation

• If server’s key is compromised, we can’t revoke it 
immediately...

• Usual trick:
– Certificate expires in, e.g., a year.
– Have an on-line revocation authority that distributes a revocation list.  Kinda

clunky but mostly works, iff revocation is rare.  Clients fetch list periodically.

• Better scaling:  CA must only sign once... no matter how 
many connections the server handles.

• If CA is compromised, attacker can trick clients into 
thinking they’re the real server.  

28



Forward secrecy

• In KDC design, if key Kserver-KDC is compromised a 
year later,
–from the traffic log, attacker can extract session key 

(encrypted with auth server keys).
–attacker can decode all traffic retroactively.

• In SSL, if CA key is compromised a year later,
–Only new traffic can be compromised.  Cool…

• But in SSL, if server’s key is compromised...
–Old logged traffic can still be compromised...

29



Diffie-Hellman Key Exchange

• Different model of the world:  How to generate keys 
between two people, securely, no trusted party, even if 
someone is listening in.

• This is cool.  But:  Vulnerable to man-in-the-middle attack.  
Attacker pair-wise negotiates keys with each of A and B 
and decrypts traffic in the middle.  No authentication...

30

image from wikipedia



Overall Route Establishment

38

R4

R1

R2 R3 BobAlice

{R2,k1}pk(R1),{                                                                                               }k1
{R3,k2}pk(R2),{                                                                    }k2

{R4,k3}pk(R3),{                                         }k3
{B,k4}pk(R4),{               }k4

{M}pk(B)

Routing info for each link encrypted with router�s public key
Each router learns only the identity of the next router

Note: k1, k2, k3 etc are session keys, so when each router (R1, R2, .. Rn)  use their private keys to 
decrypt the packets, they can only then get  the next hop (e.g. R2) and the session key (k1) to 
decrypt the rest of the packet and send it along. 



Authentication?

• But we already have protocols that give us authentication!  
– They just happen to be vulnerable to disclosure if long-lasting keys 

are compromised later...

• Hybrid solution:
– Use diffie-hellman key exchange with the protocols we’ve discussed 

so far.
– Auth protocols prevent M-it-M attack if keys aren’t yet compromised.
– D-H means that an attacker can’t recover the real session key from a 

traffic log, even if they can decrypt that log.
– Client and server discard the D-H parameters and session key after 

use, so can’t be recovered later.

• This is called “perfect forward secrecy”.  Nice property.
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Access Control

• Once secure communication between a client and 
server has been established, we now have to 
worry about access control – when the client 
issues a request, how do we know that the client 
has authorization?
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The Access Control Matrix (ACM)

A model of protection systems
• Describes who (subject) can do what (rights) to 

what/whom (object/subject)
• Example 

• An instructor can assign and grade homework and
exams

• A TA can grade homework
• A Student can evaluate the instructor and TA

33



Two ways to cut a table (ACM)

• Order by columns (ACL) or rows (Capability 
Lists)?

34

ACLs

Capability

File1 File2 File3
Ann rx r rwx
Bob rwx r --
Charlie rx rw w



ACLs vs. Capabilities

• They are equivalent: 
1. Given a subject, what objects can it access, and how?
2. Given an object, what subjects can access it, and how?
• ACLs answer second easily; C-Lists, answer the first 

easily.

• The second question in the past was most used; 
thus ACL-based systems are more common

• But today some operations need to answer the first 
question
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Randomized Routing

• Hide message source by routing it randomly
• Popular technique: Crowds, Freenet, Onion routing

• Routers don’t know for sure if the apparent source 
of a message is the true sender or another router

36



Onion Routing

• Sender chooses a random sequence of routers 
• Some routers are honest, some controlled by attacker
• Sender controls the length of the path

37
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IP Layering & Encryption Protocols 
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Bridge/Switch
or a WiFi AP

Router/GatewayHost Host

Application

Transport

Network

Link

Physical

SSL/TLS

IPSec

802.1x, …  
WPA/WEP
For WiFi

So, what does using encrypted WiFi protect against?  
…. How about SSL to google.com on Starbucks open WiFi?



Key Bits: Today's Lecture

• Effective secure channels
• Key Distribution Centers and Certificate Authorities  
• Diffie-Hellman for key establishment in the “open”

• Access control
• Way to store what “subjects” can do to “objects”
• Access Control Matrix: ACLs and Capability lists 

• Privacy and Tor
• Used for anonymity on the internet (Onion Routes) 
• Uses ideas from encryption, networking, P2P  
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One Final Logistical Update!

• Please fill out course evaluations (FCE)  
• Helps us improve the course, we appreciate feedback

• We will use the last 5 mins of class today for this 
• Daniel and I will step out to not influence you J
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Thank You! 
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