
Distributed Systems

15-440/640

Fall 2018

21 – Byzantine Fault Tolerance

 Readings: Tanenbaum pages 449 - 460. PBFT paper.
1

Fault Tolerance

• Terminology & Background

• Byzantine Fault Tolerance (Lamport)

• Async. BFT (Liskov)

2

Failure Models

• A system is k fault tolerant if it can survive faults
in k components and still meet its specifications.

3

Previous lectures: specific types of fail-stop behavior

From now on: specific types of
Byzantine/adversarial behavior

What do Arbitrary Failures Look
Like?

Many things can go wrong…

Communication
• Messages lost or delayed for arbitrary time
• Adversary can intercept messages

Processes
• Can fail or team up to produce wrong results

Agreement very hard, sometime impossible, to
achieve!

4

Fault Tolerance

• Terminology & Background

• Byzantine Fault Tolerance (Lamport)

• Async. BFT (Liskov)

5

Byzantine Agreement Problem
The Byzantine agreement problem for
three nonfaulty and one faulty process.

System of N processes,
where each process i will
provide a value vi to each
other. Some number of these
processes may be incorrect
(or malicious)

Goal: Each process learn
the true values sent by each
of the correct processes

6

Byzantine General’s Problem

The Problem: “Several divisions of the Byzantine army are
camped outside an enemy city, each division commanded by its
own general. After observing the enemy, they must decide upon a
common plan of action. Some of the generals may be traitors,
trying to prevent the loyal generals from reaching agreement.”

Goal:
• All loyal generals decide upon the same plan of action.
• A small number of traitors cannot cause the loyal generals to adopt a

bad plan.

Lamport, Shostak, Pease. The Byzantine General’s Problem. ACM TOPLAS, 4,3, July 1982, 382-401. 7

440 so far: tolerating fail-stop failures
• Traditional replicated state machine (RSM)

tolerates benign failures
• Node crashes
• Network partitions

How many Byzantine/arbitrary failures can
RSM (like Raft/Paxos) tolerate?

Given 2f+1 replicas, how many simultaneous
fail-stop failures can RSM tolerate?

• A RSM w/ 2f+1 replicas can tolerate f
simultaneous fail-stop failures

8

Why doesn’t traditional RSM work
with Byzantine nodes?

• Paxos uses a majority accept-quorum to tolerate f
benign faults out of 2f+1 nodes

• Does the intersection of two quorums always
contain one honest node?

• Bad node tells different things to different
quorums!
• E.g. tell N1 accept=val1 and tell N2 accept=val2

9

10

Paxos under Byzantine faults

Prepare vid=1, myn=N0:1
OK val=null

N0 N1

N2

nh=N0:1nh=N0:1

Prepare vid=1, myn=N0:1
OK val=null

11

Paxos under Byzantine faults

accept vid=1, myn=N0:1, val=xyz
OK

N0 N1

N2

nh=N0:1nh=N0:1

X
N0 decides on

Vid1=xyz

12

Paxos under Byzantine faults

prepare vid=1, myn=N1:1, val=abc
OK val=null

N0 N1

N2

nh=N0:1nh=N0:1

X
N0 decides on

Vid1=xyz

13

Paxos under Byzantine faults

accept vid=1, myn=N1:1, val=abc
OK

N0 N1

N2

nh=N1:1nh=N0:1

X

N1 decides on
Vid1=abc

N0 decides on
Vid1=xyz

Agreement
conflict!

14

1. State: …A
2. State: …A

3. State: …A
4. State: …

BFT: What Quorum Size Do We
Need?

Servers

Clients

writ
e A

write A
X

w
ri

te
 Aw

rite A
For liveness, the quorum size must be at most N - f

15

1. State: …A
2. State: …A

3. State: …A
4. State: …

BFT: What Quorum Size Do We
Need?

Servers

Clients

writ
e A

write A
X

w
ri

te
 Aw

rite A
For correctness, any two quorums must intersect at least
one honest node: (N-f) + (N-f) - N >= f+1 N >= 3f+1

Impossibility Results

• No solution for three processes can handle a single traitor.

16Lamport, Shostak, Pease. The Byzantine General’s Problem. ACM TOPLAS, 4,3, July 1982, 382-401.

General 1

General 2 General 3

General 1

General 2 General 3

attack attack attack retreat

retreat
retreat

Agreement in Faulty Systems

Possible characteristics of the underlying system:
1. Synchronous versus asynchronous systems.

• A system is synchronized if the process operation in
lock-step mode. Otherwise, it is asynchronous.

2. Communication delay is bounded or not.
3. Message delivery is ordered or not.
4. Message transmission is done through unicasting

or multicasting.

17

Agreement in Faulty Systems

Circumstances under which distributed agreement can be
reached. Note that most distributed systems assume that

1. processes behave asynchronously

2. messages are unicast

3. communication delays are unbounded (see red blocks)
18

19

Synchronous Asynchronous

Fail-stop Byzantine

Synchronous, Byzantine world

Agreement in Faulty Systems - 4
• Byzantine Agreement [Lamport, Shostak, Pease,

1982]
• Assumptions:

• Every message that is sent is delivered correctly
• The receiver knows who sent the message
• Message delivery time is bounded

20

Byzantine Agreement Algorithm
(oral messages) - 1

• Phase 1: Each process sends its value to the
other processes. Correct processes send the
same (correct) value to all. Faulty processes may
send different values to each if desired (or no
message).

• Assumptions:

• 1) Every message that is sent is delivered correctly;

• 2) The receiver of a message knows who sent it;

• 3) The absence of a message can be detected.

Lamport, Shostak, Pease. The Byzantine General’s Problem. ACM TOPLAS, 4,3, July 1982, 382-401. 21

Byzantine General Problem
Example - 1

• Phase 1: Generals announce their troop
strengths to each other

22

P1 P2

P3 P4

1

1
1

Byzantine General Problem
Example - 2

• Phase 1: Generals announce their troop
strengths to each other

23

P1 P2

P3 P4

2

2 2

Byzantine General Problem
Example - 3

• Phase 1: Generals announce their troop
strengths to each other

24

P1 P2

P3 P4

4 4

4

Byzantine Agreement Algorithm
(oral messages) - 2

• Phase 2: Each process uses the messages to
create a vector of responses – must be a default
value for missing messages.

• Assumptions:

• 1) Every message that is sent is delivered correctly;

• 2) The receiver of a message knows who sent it;

• 3) The absence of a message can be detected.

Lamport, Shostak, Pease. The Byzantine General’s Problem. ACM TOPLAS, 4,3, July 1982, 382-401. 25

Byzantine General Problem
Example - 4

• Phase 2: Each general construct a vector with all
troops

26

P1 P2 P3 P4
1 2 x 4

P1 P2

P3 P4

yx

z

P1 P2 P3 P4
1 2 y 4

P1 P2 P3 P4
1 2 z 4

Byzantine Agreement Algorithm
(oral messages) - 3

• Phase 3: Each process sends its vector to all other
processes.

• Phase 4: Each process the information received from
every other process to do its computation.

• Assumptions:

• 1) Every message that is sent is delivered correctly;

• 2) The receiver of a message knows who sent it;

• 3) The absence of a message can be detected.

Lamport, Shostak, Pease. The Byzantine General’s Problem. ACM TOPLAS, 4,3, July 1982, 382-401. 27

Byzantine General Problem
Example - 5

• Phase 3,4: Generals send their vectors to each
other and compute majority voting

28

P1 P2 P3 P4
1 2 y 4
a b c d
1 2 z 4

P1 P2

P3 P4

(e, f, g, h)

(a, b, c, d)

(h, i, j, k)

P1 P2 P3 P4

1 2 x 4
e f g h
1 2 z 4

P1 P2 P3 P4
1 2 x 4
1 2 y 4
h i j k

P2

P3

P4

P1

P3

P4

P1

P2

P3

(1, 2, ?, 4)
(1, 2, ?, 4)

(1, 2, ?, 4)

Power of Cryptographic Signing

• Fundamental challenge of Byzantine Agreement
Problem: traitors can lie (e.g., about receives msgs)

• Message signatures can help to solve this problem

Lamport, Shostak, Pease. The Byzantine General’s Problem. ACM TOPLAS, 4,3, July 1982, 382-401. 29

General 1

General 2 General 3

General 1

General 2 General 3

attack:0 attack:0 attack:0 retreat:0

attack:0:1

retreat:0:2

attack:0:1

???

Fault Tolerance

• Terminology & Background

• Byzantine Fault Tolerance (Lamport)

• Async. BFT (Liskov)

30

31

Practical Byzantine Fault
Tolerance:Asynchronous, Byzantine

Synchronous Asynchronous

Fail-stop Byzantine

Practical Byzantine Fault Tolerance

Why async BFT?

BFT:
• Malicious attacks, software errors
• Faulty client can write garbage data, but can’t make

system inconsistent (violate operational semantics)

Why async?
• Faulty network can violate timing assumptions
• But can also prevent liveness

32

Recall: FLP Impossibility Result

Async consensus may not terminate
• Sketch of proof: System starts in “bivalent” state (may decide 0 or

1). At some point, the system is one message away from deciding
on 0 or 1. If that message is delayed, another message may move
the system away from deciding.

• Holds even when servers can only crash (not Byzantine)!

• Hence, protocol cannot always be live (but there exist randomized
BFT variants that are probably live)

[See Fischer, M. J., Lynch, N. A., and Paterson, M. S. 1985. Impossibility of distributed
consensus with one faulty process. J. ACM 32, 2 (Apr. 1985), 374-382.]

In the system Fischer, Lynch, and Paterson studied, messages were unordered,
communication was unbounded, and processors were asynchronous.

33

PBFT ideas

• PBFT, “Practical Byzantine Fault Tolerance”, M.
Castro and B. Liskov, SOSP 1999

• Replicate service across many nodes
• Assumption: only a small fraction of nodes are Byzantine
• Rely on a super-majority of votes to decide on correct

computation.
• Makes some weak synchrony (message delay)

assumptions to ensure liveness
• Would violate FLP impossibility otherwise

• PBFT property: tolerates <=f failures
using a RSM with 3f+1 replicas

34

PBFT main ideas

• Static configuration (same 3f+1 nodes)
• Primary-Backup Replication + Quorums
• To deal with malicious primary

• Use a 3-phase protocol to agree on sequence number
• To deal with loss of agreement

• Use a bigger quorum (2f+1 out of 3f+1 nodes)
• New primary (new “view”)

• Need to authenticate communications (MACs,
discussed on 11/27 and 11/29)

35

Replica state

• A replica id i (between 0 and N-1)
• Replica 0, replica 1, …

• A view number v#, initially 0
• Primary is the replica with id

i = v# mod N
• A log of <op, seq#, status> entries

• Status = pre-prepared or prepared or committed

36

Normal Case

• Client sends request to Primary

• Primary sends pre-prepare message to all
Pre-prepare contains <v#,seq#,op>
• Records operation in log as pre-prepared

• Keep in mind that primary might be malicious
• Send different seq# for the same op to different replicas

• Use a duplicate seq# for op

37

38

PBFT

Client

Primary

Replica 2

Replica 3

Replica 4

Request Pre-Prepare Prepare Commit Reply

Normal Case

• Replicas check the pre-prepare
• If pre-prepare is ok:

• Record operation in log as pre-prepared
• Send prepare messages to all
• Prepare contains <i,v#,seq#,op>

• All to all communication

39

40

PBFT

Client

Primary

Replica 2

Replica 3

Replica 4

Request Pre-Prepare Prepare Commit Reply

Normal Case:

• Replicas wait for 2f+1 matching prepares
• Record operation in log as prepared
• Send commit message to all
• Commit contains <i,v#,seq#,op>

• What does this stage achieve:
• All honest nodes that are prepared prepare the same

value
• At least f+1 honest nodes have sent

prepare/pre-prepare

41

42

PBFT

Client

Primary

Replica 2

Replica 3

Replica 4

Request Pre-Prepare Prepare Commit Reply

Normal Case:

• Replicas wait for 2f+1 matching commits
• Ensures that at least f+1 trustworthy nodes have

committed
• Record operation in log as committed

• Execute the operation
• Send result to the client

43

44

PBFT

Client

Primary

Replica 2

Replica 3

Replica 4

Request Pre-Prepare Prepare Commit Reply

Normal Case

• Client waits for f+1 matching replies

• Ensures that at least one honest node has committed and
executed

Why f+1? What does this ensure?

What does commit of at least one honest
node ensure?

• Ensure 2f+1 matching commits
⇒ At least f+1 honest nodes have committed

45

View Change

• Replicas watch the primary
• Request a view change

• Commit point: when 2f+1 replicas have prepared

46

View Change

• Replicas watch the primary
• Request a view change

• send a do-viewchange request to all
• new primary requires 2f+1 requests to accept new role
• sends new-view with proof that it got the previous

messages

47

Possible Optimizations

See PBFT paper for details
• Lower latency for writes (4 messages)

• Replicas respond at prepare
• Client waits for 2f+1 matching responses

• Fast reads (one round trip)
• Client sends to all; they respond immediately
• Client waits for 2f+1 matching responses

48

Practical limitations of BFTs
• Expensive

49

• Protection is achieved only when <= f nodes fail
• How to know in advance: how many nodes will fail?

• Does not prevent many types of attacks:
• Steal SSNs, or turn into botnet

Practical Application of BFTs
• While very expensive, still need to deal with

arbitrary failures
• “Small” safety-critical systems

SpaceX Dragon
requirement for ISS
docking procedure.

[Robert Rose, SpaceX,
Embedded Linux
Conference, 2013]

Boeing 777/ 787 flight control systems

[Zurawski, Richard. Industrial
Communication Technology, 2nd ed,
2015]

• “Large” (but low-throughput) distributed ledgers
(based on hashing/signing: next lecture)

50

