Distributed Systems

15-440/640

Fall 2018

20— Virtualization Techniques

Readings: book chapter on Virtual Machines from the Wisconsin OS book

Load Scalability

Characteristic of good design for distributed systems

* small marginal load due to each additional client
 maximum # of clients with fixed # servers
e aggressive caching helps if workload is right

Need: ability to dynamically grow resources

* hard to do with real resources
— purchase of new servers, storage, networks, etc.

— growing/shrinking over small timeframes/quanta not feasible

* made possible by virtualization
— primarily VMs, but extends to other resources as well

— e.g “software-defined networking” virtualizes network components
— e.g. “software-defined storage”virtualizes storage components

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 2

Success of Virtualization

Virtualization can transform CAPEX into OPEX

CAPEX — “capital expenses”
OPEX — “operational expenses”
— smaller incremental investments, different accounting rules

— great boon for startups and small mature companies

cloud owner (e.g. Amazon) incurs CAPEX
cloud users (e.g. startup) incurs only OPEX
— cloud owner makes a profit from OPEX pricing

— like the difference between renting and buying a home

Flexible allocation of resources in cloud — “elasticity”

« “EC2” in “Amazon EC2” stands for “elastic cloud computing”

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

More Reasons for Virtualization

CAPEX— OPEX;
Adapt to changing
resource requirements

Monitor and limit

resource (e.g., CPU)
usage, contain

failures locally
Improve (= ell[de=

)
Resource [N
Utilization BFSelEdle])

\IVORON

r .
Support multiple Environment
operating systems

on a single hardware
platform

\.

Security
Isolation

Sandboxing: fully
control any resource
access and possible
actions of tenant

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Roots of VM Technology

Roots of today’s VMs reach back to 1960s

M44/44X (IBM), CTSS (MIT), {CP-40, CP-67, CP/CMS} (IBM) VM/370 (IBM product, 1972)

What was the driving force?

 Hardware very expensive (mainframes) — few machines
* Explosion of effort in low-level system software

e Pain point: need real hardware for testing
— “nearly identical” not good enough

Hardware virtualization wins big

* enhances productivity of system software development
* new software runs concurrently with older versions
* “innovation” multiple concurrent users on same machine

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

The Strange History of VMs

mid-1960s to early 1970s
early 1970s to late 1970s
late 1970s to early 1980s
late 1980s to late 1990s
late 1990s

early 2000s

late 2000s to present

Daniel S. Berger

birth and emergence

extensive commercial use (VIM/CMS)
emergence of personal computers (IBM PC)
“demise” of VMs

rebirth of VMs (VMware)

resurgence of research interest in VMs
explosion of commercial interest

(cloud computing)

15-440 Fall 2018 Carnegie Mellon University

Virtualization Techniques

Separate

* physical characteristics of resources
distributed system, from the way in which other systemes,
applications, or end users interact

applications
\ / Why Is Hardware Special?

narrow Narrow & stable waistline critical
interface * narrow: freer innovation

* narrow: vendor neutrality
/ \ « stable: longevity / ubiquity
physical

resources Wide interfaces — brittle abstractions
* hard to: deploy, sustain, scale
* e.g., software interface: processes

Daniel 5/Berger 15-440 Fall 2018 Carnegie Mellon University

Starting Point: Physical Machine

e Physical Hardware
o Processors, memory, chipset, I/0

devices, etc.
Application o Resources often grossly
underutilized
e Software
o Tightly coupled to physical
hardware
o Single active OS instance
o OS controls hardware

Operating System

Daniel 5/Berger 15-440 Fall 2018 Carnegie Mellon University

Virtualizing This Machine

« Software Abstraction
- Behaves like hardware
- Encapsulates all OS and
Seststibgmitam || || Operaing o application state

bl ||t « Virtualization Layer

Virtualization Layer - Extra level of indirection

- Decouples hardware, OS

- Enforces isolation

- Multiplexes physical hardware
across tenants

N
[O Two main types of virtualization layers J

Daniel 5/Berger 15-440 Fall 2018 Carnegie Mellon University

Types of Virtualization

e System virtualization e Container virtualization
o Virtualizing the entire o Virtualizing OS resources
hardware interface between processes

VM -

Container —

Host OS

Server

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Server

Topics Today

Motivation
System Virtualization
Container Virtualization

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Virtual Machines

® Implemented via Virtual Machine
Monitor (VMM, aka hypervisor)
CBl || T %Y e Classic Definition (Popek and Goldberg '74)

Virtualization Layer A virtual machine is ... an efficient, isolated duplicate of the real

‘ machine. ... the VMM provides an environment for programs which
is essentially identical with the original machine; second, programs
run in this environment show at worst only minor decreases in
speed; and last, the VMM is in complete control of system
resources.

® VMM Properties

o Fidelity: Programs running in the virtualized environment run identically to
running natively.

o Performance: A statistically dominant subset of the instructions must be
executed directly on the CPU.

o Safety and isolation: The VMM must completely control access to system
resources.

[\(lf Again: two types (within system virtualization) }

Daniel 5/Berger 15-440 Fall 2018 Carnegie Mellon University

Types of System Virtualizatiqn

o Type 1: Native/Bare metal :MH - H —
o Higher performance | Ioparvicr
> Xen, Hyper-V |

e Type 2: Hosted

o Easier to install
o Leverage host’s device drivers
o VMware Workstation, Parallels

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Requirements on VMs

Daniel 5/Berger

Isolation

(@)

(@)

Resource &
Fault isolation Failure Isolation

Performance isolation (+ software isolation, ...)

Encapsulation

@)

@)

Cleanly capture all VM state

Mixed-OS
Enables VM snapshots, clones RIaVIgeai s

Portability

@)

@)

@)

Independent of physical hardware

Enables migration of live, running VMs (freeze, suspend,...)

Clone VMs easily, make copies

Interposition

(@)

(@)

Transformations on instructions, memory, 1/0

Enables transparent resource overcommitment, compression, replication ...

15-440 Fall 2018 Carnegie Mellon University

Security
Isolation

Improved
Resource
Utilization

Efficient CPU Virtualization

User Processes
Privileged Instruction
Guest Operating I User Mode
Non-Privileged Privileged H B
instructions instructions S
VMM 4 ‘ Kernel Mode
Ru non E mu Iate Emulate Action — Update VCPU
CPU (Trap)
VMM

e Non-privileged instructions (e.g., Load from mem):

Run as native machine
e Privileged instructions (e.g., Update CPU state,

Manipulate page table): Trap to VMM

{\u, This is called Trap and Emulate J

9 — Full Control for VMM

don’t trap) — Processor support VT-x, AMD-V

15-440 Fall 2018 Carnegie Mellon University

[\u, More complex in reality (some privileged instructions]

Daniel S. Berger

OS Memory Abstraction

e OS assumes that it has full control over memory
o Management: Assumes it owns it all
o Mapping: Assumes it can map any Virtual— Physical

(Process 1 Process 2

Logical
Pages
SN ,
) Physical
Native Pages
machine - 5

e However, VMM partitions memory among VMs

o VMM needs to assign hardware pages to VMs
o VMM needs to control mapping for isolation
m Cannot allow OS to map any Virtual = hardware page

Daniel 5/Berger 15-440 Fall 2018 Carnegie Mellon University

Virtualized Memory:
Three Levels of Abstraction

Virtual Machine #1 Virtual Machine #2
% N
Process 1 Process 2 Process 1 Process 2
Logical
Pages
T C . X
~— S S S N \ 2 P
¥ V¥ ¥ v ¥ ¥ ¥ ¥ v
Physical
: . ' : Pages
N SR AR e J
B g T, — 4
Y3 *7:/ N ¢ 'R
Machine
Pages

o Logical: process address space in a VM
o Physical: abstraction of hardware memory. Managed by guest OS
o Machine: actual hardware memory (e.g. 2GB of DRAM)

\(')’ Subtle challenges in real implementations
(e.g., page table updates don’t trap)

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

1/0 Virtualization

e Direct access: VMs can directly access devices
o Requires H/W support (e.g., DMA passthrough, SR-10V)
e Shared access: VMM provides an emulated device and routes /0

data to and from the device and VMs

Guest OS (VM) Guest OS (VM)
Physical driver Guest driver
e VMM provides “virtual disks” 6 e
9 | : mulated device
O Type 1 VMM — store guest root disks and £ efiohea il I
. . L Q! Physical driver
config information within file system Q!

provided by VMM as a disk image

O Type 2 VMM - store the same info as Physical device | Hardware platform Physical device

files in the host OS’ file system

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Live migration

® Running guest OS can be moved between systems, without interrupting user access
to the guest or its apps
Supported by type 1 hypervisors
Very useful for resource management, no downtime, etc

e How does it work?

Source VMM connects to the target VMM

Target VMM creates a new guest (e.g. create a new VCPU, etc)

Source sends all read-only guest memory pages to the target

Source sends all RD/WR pages to the target, marking them clean

Source repeats step 4, as some pages may be modified = dirty

2 o

When cycle of steps 4 and 5 becomes very short, source VMM freezes guest,
sends VCPU'’s final state, sends final dirty pages, and tells target to start
running the guest

/. Target acknowledges that guest running = source terminates guest

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Live migration

0 — Running
Guest Source

1 — Establish >

VMM Source

7 — Terminate
Guest Source

3 — Send R/O Pages —
4 — Send R/W Pages —>

— 5 — Send Dirty Pages (repeatedly) —

<«—— Guest Target running

VMM Target

2 — Create
Guest Target

6 — Running
Guest Target

Daniel S. Berger

15-440 Fall 2018 Carnegie Mellon University

Virtual Machine Summary

o VMMs multiplex virtual machines on hardware
* Virtualize CPU, Memory, and I/O devices
* Run OSes in VMs, apps in OSes unmodified

* Run different versions, kinds of OSes simultaneously

o Support for virtualization built into CPUs
* Goal is to fully virtualize architecture

* Required for transparent trap-and-emulate

[‘('}’ Virtual machines add significant overhead.

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Topics Today

Motivation
System Virtualization (VMs)
Container Virtualization

Motivation for Containers
Implementation in Linux

Practical Implications

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Motivation for Containers

Architecture of web applications is changing
Classical architecture

Monolithic application
100 engineers
Release / month
Horizontal scale out

Components
@ Login
&) Personification

< Renderer [Potential limitations of this architecture?]
O Ads

ik Suggestions
A Encoders

[WAR too big for IDE?] [Async release of updates?]

[Change tech of a component?] [Failure Isolation?]

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 23

Motivation for Containers

Changing architecture of web applications
New architecture: components — “micro services”

Define API between components <> & Q Q RPC | @ [J
10-20 engineers / component o)| RPC @ A|A
Components release and scale > o O RPC\ & AllAlA
independently e <><\>|:|] @ A
Components
@ Login
Personification f e 1 1c tr av . .
2 Renderer Potential limitations of this new architecture?]
[0 Ads
ik Suggestions)
A Encoders Per-component overhead?] : A
\ [How to define services:]
APl/Communication latency?]

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 24

Prominent Example: Netflix

Migration to micro services: 2008-2016
Hundreds of services, complex dependencies

I echo

m sierra I
‘ |
vvvvvvvvv 1]
l foxtrot
hma I
= juliett ‘
U golfcanary o e Rt TR - I
hhhhh
wwwwww
charfie astie = hotel
San o chatie re——
3500w, 1p3- 1.
‘ 100.00%, 31x:0.00%, 4xx: 0.00%, .00% y —
ﬂﬂﬂﬂﬂﬂ

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Why Container Virtualization?

Overhead associated with deploying on VMs

 |/O overhead
e (OS-startup overhead per VM
 Memory/Disk overhead (duplicate data)

Overhead becomes dominant at scale: thousands of VMs / server

[\(')’ Perception: VM have too much overhead!]

New idea:

 Multiple isolated instances of programs
* Running in user-space (shared kernel)
* Instances see only resources (files, devices) assigned to their container

Other names: 0S-level virtualization, partitions, jails (FreeBSD jail, chroot jail)

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Requirements on Containers

- Isolation and encapsulation
* Fault and performance isolation
* Encapsulation of environment, libraries, etc.
- Low overhead
Improved

 Fast instantiation / startup Rotource
* Small per-operation overhead (I/0, ..) "Ytilization

Resource & Failure
Isolation

- Reduced Portability

—interpostten (no hypervisor)

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Implementation

Key problems:

. Isolating which resources containers see
- Isolating resource usage
- Efficient per-container filesystems

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Resource View Isolation

Problem: containers should only see “their” resources, and are
the only users of their resource

(e.g., process IDs (PIDs), hostnames, users IDs (UIDs), interprocess
communication (IPC))

Solution: each process is assigned a “namespace”

m Syscalls only show resources within own namespace
m Subprocesses inherit namespace

Current implementation: namespace implementation per
resource type (PIDs, UIDs, networks, IPC), in Linux since 2006
Practical implication:

m Containers feel like VMs, can get root
m Security relies on kernel, containers make direct syscalls

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Resource Usage Isolation

Problem: meter resource usage and enforce hard limits per
container
(e.g., limit memory usage, priorities for CPU and I/O usage)

Solution: usage counters for groups of processes (cgroups)

m Compressible resources (CPU, I/O bandwidth): rate limiting
m Non-compressible resources (Memory/disk space): require
terminating containers (e,g., OOM killer per cgroup)

Current implementation: cgroups/kernfs, in Linux since
2013/2014
Practical implication:

m Efficiency: 1000s of containers on a single host
m Small overhead per memory allocation, and in CPU scheduler

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Filesystem Isolation

Problem: per-container filesystems without overhead of a
“virtual disk” for each container

Solution: layering of filesystems (copy on write):

m Read-write (“upper”) layer that keeps per-container file changes
m Read-only (“lower”) layer for original files

Current implementation: OverlayFS, in Linux since 2014
Practical implication:

= Instant container startup Upper: /index.html /photo/cat.jpg

m “Upper” layer is ephemeral

Lower: /index.html

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

The Container Ecosystem

Docker [Ci] OPEN &t (also: LXC, Google Imctfy) 1]

Libcontainer (written in GO)
- Automates using kernel features
(namespaces, cgroups, OverlayFS)

- Container-image configuration language

FROM golang

WORKDIR /go/src
COPY ./src.
RUN go-wrapper install monitor

CMD ./start.sh

Docker
libcontainer

Linux kernel
cgroups namespaces Netlink

SELinux Netfilter
capabilities AppArmor

wwwwwwwwwww

Supported tags and respective Dockerfile links

Quick reference

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Advantages of Containers

Fast boot times:

100s of milliseconds
(10s-100s of seconds for VMs)

High density:

1000s of containers per
machine

Very small I/O overhead
Require no CPU support

XEN Debian Boot
10°

104 //
iy 3
(2] L ,
B 10
Q Lot bl it A b bbbl mwwﬂd%www‘w&
E 102
=

10°

1

CDF (%)

o LW P T e

Docker Boot

Process Create

200 400 600 800 1000
Number of running guests

3 888

o 5888358883

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

uleuo) JnoA ueyy (Jajes
23Y317 stINA AN, "€ 32 “adlji4 ‘oou

'L10C dSOS .42

e)J

uleyuod

“$T0Z 1Hoday INg] ‘sIo

1ejn

pu

siiedwod)

UIyoe|A [eN3JIA 4O Uo
dUBWI0YIRd pajepdn uy ‘| 39 ‘4a}24

Limitations of Containers

Implementation Complexity
Much more complex (“wider”) interface for processes

Need to configure namespace, cgroup, overlayfs (and more)
Less general than VMs
Can only run the same Operation System (shared OS)

Harder to migrate than VMs

State of containers is not fully encapsulated, state leaks into host
OS

In practice: no container migration. Instead: containers are
ephemeral - just terminate old one and start new one

Large attack surface under adversarial behavior

Containers typically have access to all syscalls
Linux offers 400 syscalls (10 new syscalls / year)

One approach: syscall filtering (very complicated)

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Summary

VMs
Strengths: strong isolation guarantees, can run different OSs
VM migration practical

Weaknesses: OS startup, disk,memory, and hypervisor overhead

Containers

Strength: fast startup times, negligible 1/0 overheads, very high
density

Weaknesses: weak security isolation

In practice: techniques complement each other

Use VMs to isolate between different users, and containers to
isolate different applications/services of a single user

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

