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Users
j

Internet 
“core”

Internet 
“edge”

1) How to map human-readable names 
(URLs) to server locations (IPs)?

  2) How to deliver content
         quickly & reliably?
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Topics Today

1) Naming at Internet Scale

DNS - one of the world’s largest databases

DNS Architecture

Robustness and Security Implications

2) Content Distribution at Internet Scale

CDNs - some of the world’s largest distributed systems

Design Decisions

Consistent Hashing for Scaling and Load Balancing

3
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Naming enables
Passing of references to objects
Deferring decision on meaning/binding

Examples
• User names → dsberger
• Email → dsberger@cmu.edu
• File name → /usr/dsberger/foo.txt
• URLs → http://www.funnycatsite.com

4

Why Naming is Important
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Name Discovery
Well-known name

• www.google.com, port 80…
Broadcast

• Advertise name → e.g. 802.11 Beacons
Query 

• Use google
Broadcast query

• Ethernet ARP
Use another naming system

• DNS returns IP addresses
Physical rendezvous

• Exchange info in the real world

5

  What would you 
demand from an 
Internet naming 

system?
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Internet Name Discovery
Challenges/Goals:
• Scalability
• Decentralized maintenance
• Robustness
• Global scope 

• Names mean the same thing everywhere

6

Domain Name System, 1984

DNS trades off consistency
for all these goals
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DNS-RPC Format 

RR format: (class, name, value, type, ttl)

Types for IN class:
• Type=A

• name is hostname
• value is IP address

• Type=NS
• name is domain (e.g. foo.com)
• value is name of authoritative name 

server for this domain

Basically, only one class: Internet (IN)

• Type=CNAME
• name is an alias name for some 

“canonical” (the real) name
• value is canonical name

• Type=MX
• value is hostname of mailserver 

associated with name

7

Conceptually, we use RPCs to query a database with billions 
of resource records (RR).
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Properties of DNS Host Entries
Many kinds of mappings are possible:
• Simple case: 1-1 mapping - domain name to IP

• kittyhawk.cmcl.cs.cmu.edu maps to 128.2.194.242

• Multiple domain names - same IP:
• eecs.mit.edu, cs.mit.edu both map to 18.62.1.6

• Single domain name - multiple IPs:
• nytimes.com maps to 4 different IP addresses

8

When could this be useful?

• Some valid domain names don’t map to any IP
• for example: cmcl.cs.cmu.edu
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The DNS Hierarchy

root

edunet
org

ukcom

gwu ucb cmu bu mit

cs ece

cmcl

Each node in hierarchy stores 
a list of names that end with 
same suffix

• Suffix = path up tree

9

Each edge is implemented via 
a DNS record of type NS.

Zone = contiguous section of 
name space

• E.g., Complete tree, single 
node or subtree

A zone has an associated set 
of name servers

• Must store list of names and 
tree linksSingle node Subtree



Daniel S. Berger 15-440 Fall  2018 Carnegie Mellon University

DNS Design: Zone Delegation

Zones are created by convincing owner node to 
create/delegate a subzone

• Records within zone stored in multiple redundant 
name servers (master/slave)

• Slaves updated by zone transfer of name space
• Zone transfer is a bulk transfer of the “configuration” of a DNS 

server – uses TCP to ensure reliability

Example:
• CS.CMU.EDU created by CMU.EDU administrators
• Who created CMU.EDU or .EDU?

10
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DNS: Root Name Servers
Responsible for “root” zone

~13 root name servers 
• Currently {a-m}.root-servers.net

11

Local name servers contact root 
servers when they cannot 
resolve a name

• Configured with well-known root 
servers

• Newer picture → 
www.root-servers.org 

http://www.root-servers.org/
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Architecture and Robustness

DNS servers are replicated
• Available if ≥1 replica up
• Load balance replicas

UDP used for queries
• RPC semantic of DNS?

Each host has a resolver
• Typically a library that applications can link to
• Local name servers hand-configured (e.g. /etc/resolv.conf)

12
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Typical Resolution

Client Local 
DNS server

root & edu 
DNS server

ns1.cmu.edu 
DNS server

www.cs.cmu.edu

NS 

ns1.cmu.edu
www.cs.cmu.e

du

NS 
ns1.cs.cmu.edu

A www=IPaddr

ns1.cs.cmu.edu
DNS

server

13



Daniel S. Berger 15-440 Fall  2018 Carnegie Mellon University

Workload and Caching
Are all servers/names likely to be equally popular?

14

ranked websites

h
it

s 
/ 

m
o

n
th

• Why might this be a problem?
• How can we solve this problem?

DNS responses are cached 
• Quick response for repeated translations
• Other queries may reuse some parts of lookup

• NS records for domains 

DNS negative queries are cached
• Don’t have to repeat past mistakes
• E.g. misspellings, search strings in resolv.conf

Cached data periodically times out
• Lifetime (TTL) of data controlled by owner of data
• TTL passed with every record
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Subsequent Lookup Example

Client Local 
DNS server

root & edu 
DNS server

cmu.edu 
DNS server

cs.cmu.edu
DNS

server

ftp.cs.cmu.edu

ftp=IPaddr

ftp.cs.cmu.edu

15
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Choosing the Time-To-Live
Common practices

Top-level NS records: very high TTL
• alleviate load on root 

Intermediary NS records: high TTL

A records: small TTL (<7200s)
• consistency concerns

Some A records: tiny TTL (<30s)
• fault tolerance, load balancing

16

root

edu

cmu

cs ece

www

NS

NS

A

128.2.217.13     Do small TTLs give better
   availability and consistency?



Daniel S. Berger 15-440 Fall  2018 Carnegie Mellon University

What Happened on 10/21/2016?

• DDoS attack on Dyn
• Dyn provides naming 

service for Twitter, CNN, 
AirBnB, Spotify, Reddit, ...

17

• Why didn’t DNS defense mechanisms work in 
this case?

• Let’s take a look at the DNS records…
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DNS at time ot Dyn Attack

18

root

.com
NS

TTL = 

2days

Dyn

Dyn

...

twitter

reddit

...

A

TTL < 30s

620Gbps

Source: Mirai botnet (bad IoT devices)

• White-labeled DVR and IP camera electronics

• username: root and password: xc3511
• password hardcoded into the device firmware

healthy 
but 
unreacha
ble!
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Solutions?
Main culprit: no ideal TTL!
Could lower TTLs on NS records

• Redirect traffic faster to another DNS service
• Cost: increased load

19

Is trust in DNS consistency
mechanism (TTL) overrated?

Dyn customers 
• Going to backup DNS providers
• Signing up with alternatives after the attacks 

(PayPal, Amazon, etc)
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DNS (Summary)

• Motivations → large distributed database
• Scalability
• Independent update
• Robustness

• Hierarchical database structure
• Zones
• How is a lookup done

• Caching and consistency in practice
• What are the steps to creating and securing 

your own domain?

20
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Topics Today

1) Naming at Internet Scale

DNS - one of the world’s largest databases

DNS Architecture

Robustness and Security Implications

2) Content Distribution at Internet Scale

CDNs - some of the world’s largest distributed systems

Design Decisions

Consistent Hashing for Scaling and Load Balancing

21
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Users
j

Internet 
“core”

Internet 
“edge”

1) How to map human-readable names 
(URLs) to server locations (IPs)?

  2) How to deliver content
         quickly & reliably?



Daniel S. Berger 15-440 Fall  2018 Carnegie Mellon University

Typical Web Workload
• Many (typically small) objects per page 

• File sizes are heavy-tailed

• Embedded references

CDNs will carry 71% of Internet 
traffic in 2021, up from 52% in 
2016. Source: CISCO Visual Networking 
Index 2016-2021. Sept 15, 2017.

Why does this matter for performance?

• Content Delivery Network (CDNs)
• The world’s largest distributed caching systems
• Key for Internet performance
• Explosive growth

Lots of objects & TCP
• 3-way handshake
• Lots of slow starts
• Even worse: TLS

Technique to reduce 
latency in a DS?

23
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Users
j

Internet 
“core”

Internet 
“edge”

Content
Provider

A Typical CDN
1

2

3

4

cache / 
edge
server
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CDN Design Decisions

•Where to replicate content

•How to replicate content

•How to find content and how to direct 
clients towards a CDN PoP

•How to choose a CDN server within a PoP, 
and how to deal with failures

•How to propagate updates (CDN cache 
consistency)

25

j
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Where to Replicate Content

26

User 1

CDN POP 1
(Point-of-Presence)

ISP of User 1
(Internet Service Provider)

User 2

ISP of User 2

CDN POP 2
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Where and How to Replicate
Rack(s) of edge servers “Pull-based” edge servers

ISP

Internet
backbone

Hundreds 
of Gbps

40 Gbps, 10k-100k reqs / sec

First check
local cache

If cache miss,
fetch from
content
provider

27
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Directing Users to CDNs
• Which PoP?

• Best “performance” for this specific user
• Based on Geography? RTT?
• Throughput? Load?

• How to direct user requests to the PoP?
• As part of routing → anycast (= as part of IP 

routing)
• As part of application → HTTP redirect
• As part of naming → DNS

(e.g., CNAME that is resolved via CDN’s name server)

j

28
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DNS-Based Client Routing
• Client does name lookup for service

• CDN high-level name server chooses appropriate 
regional PoP

• Chooses “best” PoP for client
• Return NS-record of low-level CDN name server
• Large TTL (why?)

• CDN low-level name server chooses specific caching 
server within its PoP

• Choose edge server that is likely to cache file, and is alive
• Small TTL (why?)

How do we choose an edge server 
(that has file in cache and is alive)?

29
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CDN Scaling and Load Balancing
Idea 1: round robin load balancer

30

LB

Is round robin a good 
idea for caches?

Consider an overall working set of size 16TB.

What is the working set at every cache with round robin?
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Better CDN Load Balancer
Idea 2: Static partition

31

What could go wrong with 
static partitions?

• If you used the server name: what if “cowpatties.com” had 
1000000 pages, but “zebras.com” had only 10?

• Could fill up the bins as they arrive

→ Requires tracking the location of every object at LB

LB

ite
ms a

-e

items f-l

items m-s
items t-z
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Hash-Partitioned Load Balancer
Idea 3: Hash-based partition
(e.g., hash the URLs

use modulo operator, %)

32

What if a server crashes, 
or we 

need to add more?
• Problem 1: no data duplication → all servers need to be up!
• Problem 2: what if there are several LBs and they have 

different views of which servers are up/down?
• Problem 3: adding/removing servers is hard! Why?

LB

hash % 4 = 0

hash % 4 = 1

hash % 4 = 2
hash % 4 = 3
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Hash-Partitioning Problems
Idea 3: Hash-based partition (cntd)

33

Consider 90 documents

Before: hash-partitioned to nodes 1..9

Now: node 10 which was dead is alive again
How many documents are on the wrong server?

Before: server = id%9 (for 9 servers)

Now: server = id%10 (for 10 servers) All objects with id > 9 
need to move (slightly 
better with integer div)

Disruption

coefficient > ½ 
☹

How do we fix hash-based 
partitioning?
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Actual CDN Load Balancer
Idea 4: Consistent Hashing

34

Desired properties
 Load: over all views, # of objects / server is small (and ∼uniform)

 Spread: over all views, # of servers / obj is small (and ∼uniform)

 Smoothness: little impact when servers are added/removed

LB 1

Properties of the ideal 
CDN hash function?

LB 2

“View” = subset of all 
servers that are 
visible to LB
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Implementing Consistent Hashing

35

• Main idea: 
• map both keys and nodes to the same (metric) identifier 

space

Ring is one option.
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Consistent Hashing Identifiers

36

The consistent hash function assigns each node and 
key an m-bit identifier using SHA-1 as a base hash 
function.

IP=“198.10.10.1” ID=123SHA-1
Node identifier: SHA-1(IP address)

key=“LetItBe” ID=60SHA-1
Key identifier: SHA-1(key)

How to map key ids to node ids?
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Rule: A key is stored at its successor: node with next higher or equal  ID

N32

N90

N123 K20

K5

Circular 7-bit
ID space

0IP=“198.10.10.1”

K101

K60
Key=“LetItBe”

Consistent Hashing Example

37

How to
control data 
duplication?
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Add virtual nodes and keys to improve smoothness, load and spread.

N32

N90

N123 K20

K5

Circular 7-bit
ID space

0

K101

K60

Consistent Hashing Example II

38

K5’

K20’

K101’

N32’
K60’

N123’

N90
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Consistent Hash – Properties

• Spread → No key is stored in more 
than O(log c) caches.

Ring-based construction using hash of 
key and node with c different views.

• Load → no machine gets more than 
O(log c) times the average number of 
keys

0

8

412
Bucket

14

• Smoothness → addition of bucket does not cause 
much movement between existing buckets

(Consistent) hashing has 
many applications in DS

Back to CDNs...
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Actual CDN Load Balancer
Idea 4: Consistent Hashing

40

LB 1

LB 2

How to direct users to 
specific server?

(i.e., how to build the LB)
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DNS-Based Client Routing
• Client does name lookup for service

• CDN high-level name server chooses appropriate 
regional PoP

• Chooses “best” PoP for client
• Return NS-record of low-level CDN name server
• Large TTL (why?)

• CDN low-level name server chooses specific caching 
server within its PoP

• Use consistent hashing to choose the edge server that has 
is responsible for this URL, and is alive

• Small TTL (why?)

41
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CDN Design Decisions

•Where to replicate content

•How to replicate content

•How to find content and how to direct 
clients towards a CDN PoP

•How to choose a CDN server within a 
PoP, and how to deal with failures

•How to propagate updates (CDN cache 
consistency)

42

j
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S1

S2

S3

A

A

A

“cached”
copies

A Master
Copy

Cache Update Propagation Techniques

43

S1

S2

S3

X

write X

A

X
write X

Ideal World: One-Copy Semantics Caching Reality

update
propagation?
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Cache Update Propagation Techniques

1. Enforce Read-Only (Immutable Objects)

2. Broadcast Invalidations

3. Check on Use

4. Callbacks

5. TTLs (“Faith-based Caching”)

44

S1

S2

S3

A

A

A

“cached”
copies

A

X
write X

All of these approximate one-copy-semantics

● how little can you give up, and still remain scalable?

● how complex is the implementation?
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2. Broadcast Invalidations

Every potential caching site notified on every update

● No check to verify caching site actually contains object

● Notification includes specific object being invalidated

● Effectively broadcast of address being modified

● At each cache site, next reference to object will cause a miss

45

● Simple to implement

● No race conditions (with 

blocking writes)

+
● Wasted traffic if no readers

● Limited scalability (in 

blocking implementation)

+

Usage: e.g., in CDNs
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3. Check On Use

Reader checks master copy before each use

● conditional fetch, if cache copy stale

● has to be done at coarse granularity (e.g. entire file)

● otherwise every read is slowed down excessively

46

● Simple to implement

● No server state (no need to 

know caching node)

+
● Wasted traffic if no updates

● Very slow if high latency

● High load

+

Usage: e.g., AFS-1, HTTP (Cache-control: must-revalidate)
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5. TTLs (“Faith-based Caching”) 

Assume cached data is valid for a while

● Check after timer expires: Time-to-Live (TTL) field

● No communication during trust (TTL) period

47

● Simple to implement

● No server state (no need to 

know caching node)

+
● Use visible inconsistency

● Less efficient than 

callback-based schemes

+

Usage: e.g., CDNs, DNS, HTTP (Cache-control: max-age=30)
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Cache Update Propagation Techniques

1. Enforce Read-Only (Immutable Objects)

2. Broadcast Invalidations

3. Check on Use

4. Callbacks

5. TTLs (“Faith-based Caching”)

48

S1

S2

S3

A

A

A

“cached”
copies

A

X
write X

All of these approximate one-copy-semantics

● how little can you give up, and still remain scalable?

● how complex is the implementation?
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Edge Applications (only partial adoption)

• Applications run on edge servers
• Paxos-based data replication (at Akamai)

Static Web Objects (“1st-gen CDNs” from 1998)

• Images & Photos, static websites, CSS, JS, ...
• Consistency via TTL (set by content owner)

CDN Update Propagation

49

Dynamic Content (“2nd-gen CDNs” from 2010)

• Support for dynamic web content at edge
• Broadcast invalidation “purge” objects 10ms

Bypass caches

• Forward data to data center, TCP/TLS at edge
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CDN Design Decisions

•Where to replicate content

•How to replicate content

•How to find content and how to direct 
clients towards a CDN PoP

•How to choose a CDN server within a 
PoP, and how to deal with failures

•How to propagate updates (CDN cache 
consistency)

j

Does every CDN 
look like ours?
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So far, we’ve discussed Akamai
• Akamai is one of the world’s largest CDNs

• Evolved out of MIT research on consistent hashing
• Serves 15-30% of all Internet traffic
• 170K++ servers deployed worldwide

• But there are many more: CloudFront, CloudFlare, 
Fastly, ChinaNet, Edgecast, Limelight, Lvl3, GCD, ..

• Current developments:
• Automation in performance tuning
• Large content providers deploy their own CDNs
• Many open problems (performance and security)

51
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Summary on CDNs

• Across wide-area Internet: caching is the only way to 
improve latency

• CDNs move data closer to user

• CDNs balance load and fault tolerance

• Many design decisions, including cache consistency

• Use consistent hashes and many other DS techniques

What if load is larger than CDN can handle?
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More Detailed PoP View

100%

40%

DC

HOC

1%

Rack(s) of cache servers
Details of a cache server

ISP

Internet
backbone

Hundreds 
of Gbps

40 Gbps, 10k-100k reqs / sec

Typical server:

❏ Disk Cache

     8 x 1TB SSD

❏ Hot Object 

Cache

     64GB RAM 
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Caching Challenges I
• DC can’t serve traffic at 40 Gbps and up

• Write-intensive workload
• Mostly random I/Os

• HOC needs to serve majority of requests
• But HOC is small
• Cache management needs to deal with 

variability

• No time for decisions 
10 micro seconds / req

54

100%

40%

DC

HOC

1%
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Caching Challenges II

• Each POP has many CDN servers

• Currently use consistent hashing

• But different traffic types don’t mix
• Live streaming events: high temporal 

variability

• Software downloads (think iOS release): 
dominate everything for short amount 
of time, very large files

• Gaming/interactive web apps: very 
small files, latency sensitive

55

DC

HOC

DC

HOC

DC

HOC

• We need automated classification and request routing
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Caching Challenges III
• CDN servers do more than just caching

• HTTPs termination, Image rescaling,…
• 2017/2: CloudFlare information leak

• SW bug exposed cookies, auth codes

• How do we build safe and robust 

CDN server software?
• Very critical user data

(passwords, visitor stats, etc.)
• High-performance low latency
• Very specialized code bases, in-house 

code development

56


