Distributed Systems

15-440/640

Fall 2018

18 — Internet Content Delivery Case
Study: DNS & CDNs

Readings: Tanenbaum 5.1-5.5, 7.6. Optional readings: readings linked from website




Co:v 1) How to map human-readable names
(URLSs) to server locations (IPs)?

Internet
“edge”

Users

5

&

+ 2) How to deliver content
quickly & reliably?
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Topics Today

1) Naming at Internet Scale

DNS - one of the world’s largest databases
DNS Architecture

Robustness and Security Implications
2) Content Distribution at Internet Scale

CDNs - some of the world’s largest distributed systems
Design Decisions

Consistent Hashing for Scaling and Load Balancing
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Why Naming is Important

Naming enables
Passing of references to objects
Deferring decision on meaning/binding

Examples
User names — dsberger
Email — dsberger@cmu.edu
File name — /usr/dsberger/foo.txt
URLs — http://www.funnycatsite.com
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Name Discovery

Well-known name
www.google.com, port 80...

Broadcast
Advertise name — e.g. 802.11 Beacons

Query

Use google

Broadcast query ~
Ethernet ARP o, What would you

Use another naming system O demand from an
DNS returns IP addresses Internet naming

Physical rendezvous _ system? )
Exchange info in the real world

\
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DNS-RPC Format

Conceptually, we use RPCs to query a database with billions
of resource records (RR).

RR format: (class, name, value, type, ttl)

Basically, only one class: Internet (IN)

Types for IN class:
Type=A Type=CNAME
name is hosthame name is an alias name for some
value is IP address “canonical” (the real) name
Type=NS value is canonical name
name is domain (e.g. foo.com) Type=MX
value is name of authoritative name value is hostname of mailserver
server for this domain associated with name
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Properties of DNS Host Entries

Many kinds of mappings are possible:

Simple case: 1-1 mapping - domain name to IP
kittyhawk.cmcl.cs.cmu.edu mapsto 128.2.194.242

Multiple domain names - same |P:

eecs.mit.edu, cs.mit.edu bothmapto 18.62.1.6

Single domain name - multiple IPs:

nytimes.com maps to 4 different IP addresses

[\(|)/ When could this be useful? ]

Some valid domain names don’t map to any IP

for example: cmcl.cs.cmu.edu
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The DNS Hierarchy

gwu ucb

root

s )

edu

com

u mit

Single node

Daniel S. Berger

Subtree

Each node in hierarchy stores
a list of names that end with
same suffix

 Suffix = path up tree

Each edge is implemented via
a DNS record of type NS.

Zone = contiguous section of
Name Space
* E.g., Complete tree, single
node or subtree

A zone has an associated set

of name servers
* Must store list of names and
tree links
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DNS Design: Zone Delegation

Zones are created by convincing owner node to
create/delegate a subzone

Records within zone stored in multiple redundant
name servers (master/slave)

Slaves updated by zone transfer of name space

Zone transfer is a bulk transfer of the “configuration” of a DNS
server — uses TCP to ensure reliability

Example:
CS.CMU.EDU created by CMU.EDU administrators
Who created CMU.EDU or .EDU?

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 10



DNS: Root Name Servers

Responsible for “root” zone

~13 root name servers
+ Currently {a-m}.root-servers.net

Local name servers contact root
servers when they cannot

resolve a name
+ Configured with well-known root
servers

* Newer picture —
www.root-servers.org

DNS Root Servers IR

Designation, Responsibility, and Locations

/

v
™S
"r'&

B-DISA-USC Marina delRey CA
L-DISA-USC Marina delRey CA

I-NORDU Stockholm

E-NASA Moffet Field CA
F-ISC Woodside CA s ;10» _
IS A 8 e
) P, _
& 2 f Foy

M-WIDE Keio

K-LINXIRIPE London

A-NSF-NSI| Herndon VA
C-PSI Herndon VA

D-UMD College Pk MD
G-DISA-Boeing Vienna VA

H-USArmy Aberdeen MD
J-NSF-NSI Herndon VA
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http://www.root-servers.org/

Architecture and Robustness

DNS servers are replicated
Available if 21 replica up

Load balance replicas

UDP used for queries
RPC semantic of DNS?

Each host has a resolver
Typically a library that applications can link to

Local name servers hand-configured (e.g. /etc/resolv.conf)
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Typical Resolution

WWW.CS.cmu.edu

@

Client

\t\\ NS

Local
DNS server

root & edu
DNS server

ns1.cmu.edu
DNS server

ns1.cs.cmu.edu
DNS
server

Daniel S. Berger
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Workload and Caching

Are all servers/names likely to be equally popular?
Why might this be a problem?

How can we solve this problem?

DNS responses are cached
Quick response for repeated translations

hits / month

. ranked websites
Other queries may reuse some parts of lookup

NS records for domains

DNS negative queries are cached
Don’t have to repeat past mistakes

E.g. misspellings, search strings in resolv.conf

Cached data periodically times out
Lifetime (TTL) of data controlled by owner of data

TTL passed with every record
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Subsequent Lookup Example

ftp.cs.cmu.edu

@

Client

Local
DNS server

root & edu
DNS server

cmu.edu
DNS server

cs.cmu.edu
DNS
server

Daniel S. Berger
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Choosing the Time-To-Live _

Common practices

ot

Top-level NS records: very high TTL AS
- alleviate load on root edu
Intermediary NS records: high TTL NS
A records: small TTL (<7200s) cmu
» consistency concerns /\
cs
Some A records: tiny TTL (<30s) ece
 fault tolerance, load balancing
WWW
A

\1/ Do small TTLs give better 128.2.217.13
O availability and consistency?
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What Happened on 10/21/2016?

DDoS attack on Dyn

Dyn provides naming o s = -
. . . intern
service for TW|tte r, CN N, Hacking k that (hsn.lpted s erts say
AirBnB. Spotifv. Reddit DDoSatt?FtS ind in story, €XP
IrBnB, Spotify, Reddlit, ... fargest of i o e

Why didn’t DNS defense mechanisms work in

this case?
Let’'s take a look at the DNS records...
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DNS at time ot Dyn Attack

root A twitter
/ healthy
Dy <3 reddit | but

e
unreacha
rzda\Js

Source: Mirai botnet (bad loT devices)
- White-labeled DVR and IP camera electronics

« username: root and password: xc3511
« password hardcoded into the device firmware
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Solutions?

Main culprit: no ideal TTL!

Could lower TTLs on NS records
Redirect traffic faster to another DNS service
Cost: increased load

N/ s trust in DNS consistency
O mechanism (TTL) overrated?

Dyn customers
Going to backup DNS providers

Signing up with alternatives after the attacks
(PayPal, Amazon, etc)
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DNS (Summary)

Motivations — large distributed database
Scalability
Independent update
Robustness
Hierarchical database structure
Zones
How Is a lookup done
Caching and consistency in practice

What are the steps to creating and securing
your own domain?

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University
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Topics Today

1) Naming at Internet Scale

DNS - one of the world’s largest databases
DNS Architecture

Robustness and Security Implications
2) Content Distribution at Internet Scale

CDNs - some of the world’s largest distributed systems
Design Decisions

Consistent Hashing for Scaling and Load Balancing
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~ (URLS) to server locations (IPs)?

C:'r 1) How to map human-readable n?.s

Internet
“edge”

Users

5

&

+ 2) How to deliver content
quickly & reliably?
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Typical Web Workload

* Many (typically small) objects per page

e Embedded references * 3-way handshake
e [ots of slow starts

_  Even worse: TLS
{Why does this matter for performance? ]

* Content Delivery Network (CDNs)

* The world’s largest distributed caching systems
* Key for Internet performance
* Explosive growth

CDNs will carry 71% of Internet
: traffic in 2021, up from 52% in
p Technlque_ to reduce >016.
(Q latencyina DS?
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A Typical CDN

Content
cache / Provider

edge Internet
server “edge”

Internet
“Core”
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CDN Design Deusmns

*Where to replicate content / V

3

o
C

ok

ow to replicate content

ow to find content and how to dlrect
ients towards a CDN PoP

ow to choose a CDN server within a PoP,

and how to deal with failures

*How to propagate updates (CDN cache
consistency)

Daniel S. Berger
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Where to Replicate Content

_———~

- ~
User 1 - ISPofUserl N

(Internet Service Provider) \\

l
\
N\
~
N~ N —

_—~

- ~
Q ISP of User2 S
\
\

(Point-of-Presence)

“CDN POP 2




Where and How to Replicate

Rack(s) of edge servers “Pull-based” edge servers

Internet T
backbone p

| First check
local cache

Hundreds .
If cache miss,

) fetch from
content
provider

40 Gbps, 10k-100k regs / sec
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Directing Users to CDNs

* Which PoP?
* Best “performance” for this specific user
* Based on Geography? RTT? g 8 —
* Throughput? Load? ®
a B
* How to direct user requests to the PoP? . O
* As part of routing — anycast (= as part of IP
routing)

* As part of application — HTTP redirect

* As part of naming — DNS
(e.g., CNAME that is resolved via CDN’s name server)
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DNS-Based Client Routing

* Client does name lookup for service

* CDN high-level name server chooses appropriate
regional PoP
* Chooses “best” PoP for client
* Return NS-record of low-level CDN name server

e Large TTL (why?)

* CDN low-level name server chooses specific caching
server within its PoP
* Choose edge server that is likely to cache file, and is alive
* Small TTL (why?)

[\(')/ How do we choose an edge server ]

(that has file in cache and is aIive)?
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CDN Scaling and Load Balancing

ldea 1: round robin load balancer

-

<l Is round robin a good
O idea for caches?

_

v

Consider an overall working set of size 16TB.
What is the working set at every cache with round robin?
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Better CDN Load Balancer

Idea 2: Static partition

-
| AVhat could go wrong with

O static partitions? e

U J

* |f you used the server name: what if “cowpatties.com” had
1000000 pages, but “zebras.com” had only 10?

* Could fill up the bins as they arrive

— Requires tracking the location of every object at LB

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University
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Hash-Partitioned Load Balancer

Idea 3: Hash-based partition
(e.g., hash the URLs

use modulo operator, %)

4 : )
< | ,Whatif a server crashes,

O or we
g need to add more? ) U

* Problem 1: no data duplication — all servers need to be up!

* Problem 2: what if there are several LBs and they have
different views of which servers are up/down?

* Problem 3: adding/removing servers is hard! Why?

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University
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Hash-Partitioning Problems
ldea 3: Hash-based partition (cntd)
Consider 90 documents

Before: hash-partitioned to nodes 1..9

Now: node 10 which was dead is alive again
How many documents are on the wrong server?

Before: server = id%9 (for 9 servers)
All objects with id >9

need to move (slightly
- ~ better with integer div)

Now: server =id%10 (for 10 servers)

Disruption

g coefficient > %

\ !/ How do we fix hash-based
O partitioning”?
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Actual CDN Load Balancer

ldea 4: Consistent Hashing

\ 1/ Properties of the ideal
O CDN hash function?

)
)
— U
“View” = subset of all HE —
—
servers that are —
visible to LB ) L
LB 2 —
—
Desired properties —

Load: over all views, # of objects / server is small (and ~uniform)
Spread: over all views, # of servers / obj is small (and ~uniform)

Smoothness: little impact when servers are added/removed
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Implementing Consistent Hashing

- Main idea:
* map both keys and nodes to the same (metric) identifier
space

Daniel . Berger 15 -440 Fall 2 018 Carnegie Mellon University
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Consistent Hashing Identifiers

The consistent hash function assigns each node and
key an m-bit identifier using SHA-1 as a base hash
function.

Node identifier: SHA-1(IP address)
[P=198.10.10.17 _SHA-l  p=123

Key identifier: SHA-1(key)
key="LetltBe” SHA-1 | ID=60

N

(  How to map key ids to node ids?

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University
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Consistent Hashing Example

Rule:s A Key is stored at its successor: node with next higher or equal ID

IP=198.10.10.1” 0 K5
\

N123 K20
/ Circular 7-bit \
KlOl ID Space N32
4 Ny )
Howto QO

control data
duplication? | ©0

\_ ST~ T K60~
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Consistent Hashing Example Il

Add virtual nodes and keys to improve smoothness, load and spread.

N327 1 0 K5
K60’ | N90
N123 K20
K20’
Circular 7-bit

KlOl ID Space N32

K101’
N0 K60

K%’

N123°
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Consistent Hash — Properties

Ring-based construction using hash of
key and node with c different views.

Load — no machine gets more than 12 4
O(log c) times the average number of
keys

Spread — No key is stored in more
than O(log c) caches.

Smoothness — addition of bucket does not cause
much movement between existing buckets

{\(')’ Back to CDNs. . J <!, (Consistent) hashing has
many applications in DS

Daniel S. Berger 15-440 Fal o e e oo o T e
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Actual CDN Load Balancer

ldea 4: Consistent Hashing

)

— LB 1

—

U
—| LB 2 p—
———

How to direct users to h

P
\(')’ specific server?
. (i.e., how to build the LB)
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DNS-Based Client Routing

* Client does name lookup for service

* CDN high-level name server chooses appropriate
regional PoP
* Chooses “best” PoP for client
* Return NS-record of low-level CDN name server
* Large TTL (why?)

* CDN low-level name server chooses specific caching
server within its PoP

* Use consistent hashing to choose the edge server that has
is responsible for this URL, and is alive

* Small TTL (why?)
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CDN Design Deasmns
“Where-to-replicate-content / \/

How-torephecate-content
~Hﬁw—t-e—f-md-eeﬁ-t-eﬁﬁﬁd—hew—t-e-d+ree’e
ehermtstowardsacbMNPoR

! | ST e
PO g eataithfal

*How to propagate updates (CDN cache
consistency)
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Cache Update Propagation Techniques

|deal World: One-Copy Semantics

write X

Master
Copy

“cached”

Caching Reality

write X

copies update

propagation?

43
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Cache Update Propagation Techniques

Enforce Read-Only (Immutable Objects) , /

Broadcast Invalidations
write X

Check on Use /@
“cached”

Callbacks / copies
TTLs (“Faith-based Caching”)

o r O

All of these approximate one-copy-semantics
: : : : A
e how little can you give up, and still remain scalable?
e how complexis the implementation?

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University
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2. Broadcast Invalidations

Every potential caching site notified on every update

e No checkto verify caching site actually contains object
e Notification includes specific object being invalidated
e Effectively broadcast of address being modified

e At each cache site, next reference to object will cause a miss

Usage: e.g.,in CDNs

-+ , @ x

e Simple toimplement e Wasted traffic if no readers
e No race conditions (with e Limited scalability (in
blocking writes) blocking implementation)

(& ) (¥ )

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University




3.Check On Use

Reader checks master copy before each use

e conditional fetch, if cache copy stale
e hastobe done at coarse granularity (e.g. entire file)

e otherwise every read is slowed down excessively

Usage: e.g., AFS-1, HTTP (Cache-control: must-revalidate)

-+ , @ x

e Simple toimplement e Wasted traffic if no updates
e Noserver state (no need to e Veryslow if high latency
know caching node) e Highload

(& ) (¥ )

46
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5.TTLs ("Faith-based Caching”)

Assume cached data is valid for a while

e Check after timer expires: Time-to-Live (TTL) field

e Nocommunication during trust (TTL) period

Usage: e.g., CDNs, DNS, HTTP (Cache-control: max-age=30)

e Simple toimplement

e No server state (ho need to

know caching node)

. @

e Usevisible inconsistency
o Less efficient than

callback-based schemes

Daniel S. Berger
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Cache Update Propagation Techniques

Enforce Read-Only (Immutable Objects) , /

Broadcast Invalidations
write X

Check on Use /@
“cached”

Callbacks / copies
TTLs (“Faith-based Caching”)

o r O

All of these approximate one-copy-semantics
: : : : A
e how little can you give up, and still remain scalable?
e how complexis the implementation?

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University
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CDN Update Propagation
Static Web Objects (“1st-gen CDNs” from 1998)

* |Images & Photos, static websites, CSS, JS, ...
* Consistency via TTL (set by content owner)

Dynamic Content (“2nd-gen CDNs” from 2010)

e Support for dynamic web content at edge
e Broadcast invalidation “purge” objects 10ms

Edge Applications (only partial adoption)

* Applications run on edge servers
* Paxos-based data replication (at Akamai)
Bypass caches

* Forward data to data center, TCP/TLS at edge

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University
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CDN Design Decisions
“Where-to-replicate-content / \/

How-torephecate-content

\('7’ Does every CDN
look like ours?
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So far, we’ve discussed Akamai

* Akamai is one of the world’s largest CDNs
* Evolved out of MIT research on consistent hashing
 Serves 15-30% of all Internet traffic
» 170K++ servers deployed worldwide

* But there are many more: CloudFront, CloudFlare,
Fastly, ChinaNet, Edgecast, Limelight, LvI3, GCD, ..

* Current developments:
e Automation in performance tuning
 Large content providers deploy their own CDNs
* Many open problems (performance and security)
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Summary on CDNs

* Across wide-area Internet: caching is the only way to
improve latency

* CDNs move data closer to user

* CDNs balance load and fault tolerance

* Many design decisions, including cache consistency

* Use consistent hashes and many other DS techniques

L
[O What if load is larger than CDN can handle? ]
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More Detailed PoP View

Rack(s) of cache servers .
Details of a cache server

Internet 1%

beE e Typical server:

(1 Disk Cache
8 x 1TB SSD

Hundreds
of Gbps

(d Hot Object

Cache

64GB RAM

ISP V4 100%
40 Gbps, 10k-100k reqs / sec
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Caching Challenges |

* DC can’t serve traffic at 40 Gbps and up
* Write-intensive workload
* Mostly random I/Os

1%

* HOC needs to serve majority of requests
* But HOC is small

* Cache management needs to deal with
variability

* No time for decisions
10 micro seconds / req

1.0

100%
0.5 -

CDF

0.0

I I I
1B 1KB 1MB 1GB
Object Size

54
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Caching Challenges Ii

* Each POP has many CDN servers

* Currently use consistent hashing

@
(ao:
@

* But different traffic types don’t mix

O |mp
@)
I
O )
@)
I

O [—)

@

* Live streaming events: high temporal

I

variability

» Software downloads (think iOS release):
dominate everything for short amount
of time, very large files

* Gaming/interactive web apps: very
small files, latency sensitive

* We need automated classification and request routing

55
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Caching Challenges Il

= FORTUNE

o CDN servers do more than Just Cach|ng CloudFlareLeakedSéﬁ#ftivebataAcrossthe

Internet For Months

0000

e HTTPs termination, Image rescaling,...
¢ 2017/2: CloudFlare information leak
e SW bug exposed cookies, auth codes

e How do we build safe and robust

CDN server software?
e Very critical user data

(passwords, visitor stats, etc.) eident eport om memory eak
* High-performance low latency caused by Cloudflare parser bug

. [ (]
. V e r S e ‘ I a I Z e ‘ O e a S e S I I I - O ' | S e Last Friday, Tavis Ormandy from Google’s Project Zero contacted Cloudflare to report a
’ securit em with our edge servers. He was seeing corrupted web pages being returned
th fl

y problem BE SCRVE! g P pag 8
by some HTTP requests run through Cloudflare.
C O d e d e V e I 0 m e n t It turned out that in some unusual circumstances, , which | 'll detail below, our ed ge servers
were running past the end of a buffer and returning memory that contained private
ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa y search engines.
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