Daniel S.

Distributed Systems

15-440/640

Fall 2018

16 — Cluster Computing:
MP| & MapReduce

Readings: “MapReduce: Simplified Data Processing on Large Clusters” Sections 3,4

Instructor OH & Regrade Requests

Thursday (Yuvraj + Daniel)
ldea: focus on

- after class to 1pm
small group /

- in GHC 4124 e
individual
Thursday (Yuvraj) meetings. Put your
- from 1pm to 2pm name into list on
our door.

- in Wean 5313

We’'ll put lists on our doors (after class) and meet
with you one by one to discuss grades, goals,

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 2

Today’s Topics

* GFS and HDFS
 Summary of last lecture

*High-performance computing (HPC)

* Supercomputers

* Message Passing Interface (MPI)

* Cluster computing
 MapReduce

* Implementation

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

GFS Architecture: Client/Master/Chunkservers

Application

GFS master = /foo/bar

(file name, chunk index)
5| chunk 2ef0

GFS client File namespace

(chunk handle,
chunk locations)

Instructions to chunkserver

Chunkserver state I

(chunk handle, byte range)

= GFS chunkserver GFS chunkserver
chunk data
Linux file system Linux file system
Legend:
mmmd) Data messages
— Control messages

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

GFS Consistency Model (Metadata)

Changes to namespace (i.e., metadata) are
atomic
Done by single master server!

Master uses WAL to define global total order of
namespace-changing operations

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

GFS Consistency Model (Data)

Changes to data are ordered as chosen by a
primary
But multiple writes from the same client may be

interleaved or overwritten by concurrent operations from
other clients

Record append completes at least once, at offset of
GFS’s choosing

Applications must cope with possible duplicates

Failures can cause inconsistency
E.g., different data across chunk servers (failed append)

Behavior is worse for writes than appends

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

GFS Summary

BigTable Spanner

Success: used actively by Google (Meps | |(oMail |
Availability and recoverability on cheap hardware @
High throughput by decoupling control and data
Supports massive data sets and concurrent appends

Semantics not transparent to apps

Must verify file contents to avoid inconsistent regions, repeated
appends (at-least-once semantics)

Performance not good for all apps
Assumes read-once, write-once workload (no client caching!)

Successor: Colossus
Eliminates master node as single point of failure
Storage efficiency: Reed-Solomon (1.5x) instead of Replicas (3x)
Reduces block size to be between 1~8 MB
Few details public ®

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 7

file A file
)\
Vs is made of 128 MB blocks
y VI I 1! b VLI 1 $ | ! ,
that are replicated
. for fault tolerance
A $§ V 1 I { |
N) Hmm... looks
familiar
S -
Blocks live on
DataNodes
DataNode DataNode DataNode DataNode

™~

NameNode Fsimage Editlog

The master manages the

file system namespace

In-memory FS metadata

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

GFS vs. HDFS

GFS HDFS

Master NameNode

chunkserver DataNode

operation log journal, edit log

chunk block

random file writes possible only append is possible

multiple writer, multiple reader single writer, multiple reader model

model

chunk: 32bit checksum over 64KB per HDFS block, two files created

data pieces (1024 per chunk) on a DataNode: data file &
metadata file (checksums,
timestamp)

default block size: 64MB default block size: 128MB

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Today’s Topics

* GFS and HDFS
 Summary of last lecture

*High-performance computing (HPC)

* Supercomputers

* Message Passing Interface (MPI)

* Cluster computing
 MapReduce

* Implementation

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

10

Typical HPC Machine

Compute Nodes

CPU CPU v CPU
Mem Mem Mem
Network

g0 0 ..

Storage Server

Daniel S. Berger

* Compute Nodes
* High end
processor(s)
 Lots of RAM

* Network
* Specialized
* Very high
performance

* Storage Server
* RAID-based disk

array

15-440 Fall 2018 Carnegie Mellon University

11

HPC Machine Example
Sunway Taihulight

= *Cores: 10,649,600
* Memory: 1,310,720 GB

 Architecture: Sunway SW26010 (custom built)
* No caches, 65 cores / on-chip group @ 1.45 GHz

* Interconnect: “Sunway Network” (custom built)

*93,014.6 TFlop/s (Top 500 #2)

Daniel S. Berger 440 Fall 2018 Car e MellonU

HPC Programming Model

Application
Programs

{

Software
Packages

q

Machine-Dependent

Programming Model
Hardware

* Programs described at very low level
» Specify detailed control of processing & communications
* Rely on small number of software packages

e Written by specialists
* Limits classes of problems & solution methods

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 13

Message Passing Interface (MPI)

e Standardized set of group communication methods
* Sending: Barrler Broadcast, Scatter

P8 O sioe goug

O 5 I I B 30O =

* Receiving: gather, reduce, all-to-all, and many more
B 3 O B

R

14 14 14

* MPI implementations highly optimized for low
latency, high scalability over HPC grids / LANs

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

HPC Example: Iterative Simulation |

 Conway’s Game of Life
— Cellular automata on a square grid
— Each cell “live” or “dead” (empty)

— State in next “generation” depends on number of
current neighbors:
* 2 ->stays same
* 3->becomes live
e Other -> becomes empty

HPC Example: Iterative Simulation Il

* Shard grid across nodes

* Simulate locally in each subgrid

* Exchange boundary information

* Repeat simulation, exchange steps

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Typical HPC Operation

* Characteristics
* Long-lived processes

Message Passing * Partitioning: exploit spatial locality
P P P P, P * Hold all program data in memory (no disk
access)

* High bandwidth communication

* Strengths
* High utilization of resources

* Effective for many scientific applications

* Weaknesses
* Requires careful tuning of application to
resources

* Intolerant of any variability

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 17

PC Fault Tolerance

* Checkpoint

* Periodically store state of all
processes

e Significant I/0 traffic
* Restore
* When failure occurs
e Reset state to that of last

Wasted
>

Computation

sz
Checkpomt
Restore
Checkpomt

Daniel S. Berger

checkpoint

 All intervening computation
wasted

* Performance Scaling
* Very sensitive to number of
failing components

15-440 Fall 2018 Carnegie Mellon University

18

Today’s Topics

* GFS and HDFS
 Summary of last lecture

*High-performance computing (HPC)

* Supercomputers

* Message Passing Interface (MPI)

* Cluster computing

 MapReduce

* Implementation

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

19

Typical Cluster Machine

Compute + Storage Nodes

CPU

CPU

CPU

Mem

Mem

Mem

8, |8

Network

Daniel S. Berger

e Collocate

Compute + Storage
* Medium-performance
processors

* Modest memory
* A few disks

 Network
e Conventional Ethernet
switches

* 10s-100 Gb/s

15-440 Fall 2018 Carnegie Mellon University 20

Oceans of Data, Skinny Pipes

*1 Terabyte
* Easy to store

 Hard to move

Disks MB /s Time
Seagate Barracuda 115 2.3 hours
Seagate Cheetah 125 2.2 hours
Networks MB/s Time
Home Internet <16 > 1 day
Gigabit Ethernet <125 > 2.2 hours
PSC Teragrid < 3,750 > 4.4 minutes
Connection

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Data-Intensive System Challenge

* For Computation That Accesses 1 TB in 5 minutes
 Data distributed over 100+ disks

* Assuming uniform data partitioning
* Compute using 100+ processors

e Connected by 10-Gbit-Ethernet

Local Network
: § $ $
* System Requirements E Ej £l
* Lots of disks @ E% T %
* Lots of processors — — —

* Located in close proximity

* Within reach of fast, local-area network

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

How To Program A Cluster?

Example I:
Many text files (e.g. logfiles, crawled webpages,..)
Stored on thousands of machines

Assume you can log into all those machines

~ !~ How do you find the frequency of words,
9, such as , “4407, “error”, “rmi”, “p4” ?

What do you do if tasks runs for > 1 week?

e.g., machines fail, get rebooted

What do you do if a variant of this task comes up?

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

23

How To Program A Cluster?

Example Il:

Social network graph, stored as Person -> Friend1 Friend2

Stored on thousands of machines in any order

Assume you can log into all those machines
(. |
N7

9 How do you count the number of mutual
friendships for all pairs of people, e.g., "you
and Joe have 147 friends in common"

U J
Input: Ouput:
A->BCD D->AC AB->0
B->A AC->1

C->AD BC->0...

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 24

Cluster Programming Model

Application
Programs

Machine-Independent
Programming Model

Runtime
System

Hardware

* Application programs written in terms of high-level data operations
* Runtime system controls scheduling, load balancing, ...
* This is idealized. In practice, no perfect cluster programming model.

- Very common model: MapReduce

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 25

MapReduce Cluster Model

Reduce

Key-Value
Pairs

* Map computation across many objects
* Flexible aggregation of results

* System solves resource allocation & reliability

Dean & Ghemawat: “MapReduce: Simplified Data Processing on Large Clusters”, OSDI 2004

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

26

Example | MapReduce

* Calculate word frequency of set of documents
* Example: children book in basic English

Come, Dick.

Come and see.

Come, come.

Come and see,

Come and see Spot.

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 27

Come,

Dick

* Calculate word frequency of set of documents

Daniel S. Berger

Come

and see.

Come,
come.

Come

and see.

Come
and see
Spot.

15-440 Fall 2018 Carnegie Mellon University

Come, Dick.

Come and see.
Come, come.
Come and see,

Come and see Spot.

Extract

28

Example I MapReduce

= =3
Sum
(dick, (come
1) Y . Word-Count
com , .
D 1) Np S Pairs
and,
(come 1) \sle>e, (come (and, (and,
@ Extract
Come, Come ehm, Come Come
_— and see. come. and see. and see
Spot.

* Map: generate {word, count) pairs for all words in document
* Reduce: sum word counts across documents

Daniel S. Berger

15-440 Fall 2018 Carnegie Mellon University

29

Example | MapReduce

3) Reduce Phase

2) Shuffling / Sorting Phase

1) Mapping Phase

* Map: generate {word, count) pairs for all words in document
* Reduce: sum word counts across documents

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Hadoop Project

 Colocate compute and storage (HDFS + MapReduce)

Local Network

| @ || @B

==

Node 1 Node 2 Node n

* HDFS Fault Tolerance (3 copies of file)

* “Locality-preserving” compute job placement prio order
1) On same node as HDFS chunk
2) On same rack as HDFS chunk
3) Anywhere else (access over HDFS network)

* MapReduce programming environment

e Software manages execution of tasks on nodes

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 31

Hadoop MapReduce API

* Requirements
* Programmer must supply Mapper & Reducer classes

* Mapper
 Steps through file one line at a time
* Code generates sequence of <key, value> pairs
» Default types for keys & values are strings

e Can use anything “writable”, lots of conversion methods

* Shuffling/Sorting
* MapReduce’s built in aggregation by key

e Reducer

e Given key + iterator that generates sequence of values
* Generate one or more <key, value> pairs

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 32

Example Il MapReduce

Example ll:

Social network graph
Stored as Person -> Friend 1, Friend 2, ...

Input:

A->BCD
B->ACDE
C>ABDE
D->ABCE
E->BCD

Daniel S. Berger

(\('7/ Count the number of

mutual friendships, e.qg.,
"you and Joe have 147

9 friends in common" p

SNV’

(O How to do this in the

MapReduce framework?

~

)

33

Example Il MapReduce

High-level idea: first create all the pairs (map), then
calculate intersection of friend lists (reduce).

map(A -> B C D): shuffling phase:
Input: (AC)->BCD (A B) -> (ACDE) (B CD)
A->BCD (AD)->BCD
B->ACDE (AC)->(ABDE)(BCD)

->-

D->ABCE o0 Cpe (AD)->(ABCE) (BCD)
E->BCD (BD)->ACDE

(BE)->ACDE (BC)->(ABDE)(ACD E)

map(C -> A BD E):
(AC)->ABDE..

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 34

(BD)->(ABCE)(ACDE)

Example Il MapReduce

High-level idea: first create all the pairs (map), then
calculate intersection of friend lists (reduce).

map(A ->B C D): shuffling phase: reduce phase:
(AB)->BCD _ _

AC) > B CD (AB)->(ACDE)(BCD) (A B) -> (C D)
(AD)->BCD

(AC)->(ABDE)(BCD) (AC)-> (B D)
map(B -> A CD E):

(AB)->ACDE] _
(BC)>ACDE (AD)->(ABCE)(BCD) (AD)->(BC)
(BD)->ACDE

(BE)->ACDE (BC)->(ABDE)(ACDE) (BC)->(ADE)

map(C->ABDE); (gp).>(ABCE)(ACDE) (BD)->(ACE)..

eeeeeeeeeeee see 15-440 Fall 2018 Carnegie Mellon University 35

MapReduce Execution

#tasks >>

#processors Pr‘;;f;m
(1) fork .* ;! ~.(1.).f0rk
dynamic task i
assignment - "
@ assign
. assign reduce .

map

worker

split 0

(6) write

output
(5) remote read file O

split2 ((3) read b (4) local write
oplit 3 Wk . @ output
file 1

split 1

split 4

worker

Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

Dean & Ghemawat: “MapReduce: Simplified Data Processing on Large Clusters”, OSDI 2004

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Ma

pping

* Dynamically map input file blocks onto mappers

e Each generates key/value pairs from its blocks

* Each writes R files on local file system

R local files oo coo
per mapper yy I:I [
A A A4 A
Mapper Mapper oo
Task

Manage

Daniel S. Berger

Input Files (Partitioned into Blocks)

15-440 Fall 2018 Carnegie Mellon University

coe I:I

¢

Mapper M Mappers

/IS

37

Hashing

* Hash Function h
* Maps each key K to integer i
suchthat0<i<R

* Mapper Operation
* Reads input file blocks

* Generates pairs (K, V)
* Writes to local file h(K)

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

01 R-1

Mapper

Block

nK)e{0,..,R-1}

Local
Files

38

Shuffling

e Each Reducer:
* Handles 1/R of the possible key values

* Fetches its file from each of M mappers

* Sorts all of its entries to group values by keys

Reducer

Reducer oo

M X R coo
local files I:I

Daniel S. Berger

coo I:I

15-440 Fall 2018 Carnegie Mellon University

Sealesr R Reducers

coe I:I

39

Reducing

e Each Reducer:
* Executes reducer function for each key

* Writes output values to cluster filesystem

R Output Files

A / f

Reducer Reducer ©ceoo Reducer R Reducers

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

40

Cluster Scalability Advantages

* Framework following distributed system design principle
* Dynamically scheduled tasks with state in replicated files

* Provisioning Advantages
* Can use consumer-grade components
* maximizes cost-peformance
* Can have heterogenous nodes

* More efficient technology refresh

* Operational Advantages
* Minimal staffing

* No downtime

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

S

41

Real-World Challenges

* Fault Tolerance
* Assume reliable file system

e Detect failed worker
e Heartbeat mechanism
e Reschedule failed task

 Stragglers
» Tasks that take long time to execute

* Might be bug, flaky hardware, or poor partitioning

* When done with most tasks, reschedule any remaining
executing tasks

» Keep track of redundant executions
* Significantly reduces overall run time

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

42

Map/Reduce Operation

Map/Reduce * Characteristics
 Computation broken into many,

short-lived tasks
Map

Reduce * Use disk storage to hold
intermediate results

Map
Reduce e Failure — Reschedule task

vao ® Strengths
Reduce * Great flexibility in placement,

Map scheduling, and load balancing

Reduce e Can access large data sets

* Weaknesses
* Higher overhead

* Lower raw performance

43

Exploring Parallel Computation Models

Map/Reduce
MPI
SETI@home Thre.ads PR‘M
., .
Low Communication High Communication
Coarse-Grained Fine-Grained

* MapReduce Provides Coarse-Grained Parallelism
* Computation done by independent processes

* File-based communication

* Observations
* Relatively “natural” programming model

» Research issue to explore full potential and limits

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

44

Map Reduce vs. MPI

* Both are examples of scale-out systems
« MPI:

+ handles communicating components
+ allows tightly-coupled parallel tasks
+ good for iterative computations
— more complex model (explicit messaging)
— Failure handling left to application
* Map Reduce:
+ simple programming, failure model
+ good for loosely-coupled, coarse-grain parallel tasks
+ oriented towards disk-based data (that won’t fit into RAM)
— not good for interaction, highly-iterative computation

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

MPI/MapReduce Conclusions

* Distributed Systems Concepts Lead to Scalable Machines
* Loosely coupled execution model

* Lowers cost of procurement & operation

* MapReduce Used Everywhere
* Hadoop makes it widely available

* Great for some applications, good enough for many others,
inefficient for specialized applications (e.g., simulations)

* Lots of Work to be Done
* Richer set of programming models and implementations

* Expanding range of applicability

* Problems that are data and compute intensive
* The future of supercomputing?

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

46

Cluster Computing on Graphs

Lots of valuable data in graphs

about people: social networks, facebook.com
about products: advertising, amazon.com

about interests: online streaming, netflix.com
about ideas: collaborative encyclopedias, wikipedia.org

... and the relationships between them

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 47

Cluster Computing on Graphs

Popular graph algorithm:

depends on popularity
of her followers

[\('7’ What's the
algorithm??

J

popular?

Page Rank: R[i] = 0.15 + weighted sum of R]j]
for all neighbors |

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

48

Cluster Computing on Graphs

Implementation idea:
update ranks in parallel
iterate until converged

Framework 1: MapReduce
many iterations, always save to disk
slow, hard to work with graph abstraction

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

49

Cluster Computing on Graphs

Implementation idea:
update ranks in parallel
iterate until converged

Framework 2: Google Pregel (MPIl on graphs)
abstraction: messaging between vertices in graph
receive message: neighbors’ ranks

send message: our own rank (to all neighbors)

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 50

Cluster Computing on Graphs

Implementation idea:
update ranks in parallel
iterate until converged

Framework 3: CMU Graphlab (shared state model)
abstraction: “emulate all nodes on same machine”
iterate (foreach) over neighbors [j]:

access Rank|j]

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 51

Cluster Computing on Graphs

Implementation idea:
update ranks in parallel
iterate until converged

Practical challenge:

vertex-degree distributions typically follow power-laws
in practice — a few vertices have very high degrees

iterating over neighbors is always going to be slow

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 52

