
Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Distributed Systems

15-440/640

Fall 2018

15 – Cluster File Systems:
The Google File System

Readings: “The Google File System” Sections 2.3-2.6, 3.1, 3.3, 5.1, 5.2

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Midterm Results

2

Avg Pts Topic
Q1 11/15 True/False (DSF, WAL, LSP)

Q2 14/20 Short Answers (Communication, Time Sync,
Replication)

Q3 8/9 Communication and RPC

Q4 9/12 DFS (CAP, High availability, caching)

Q5 5/10 Logging and Failure Recovery (Checkpointing)

Q6 13/16 BergerNet (RPCs, 2PC, 3PC, Reliability/Availability)

Q7 9/16 Hepp Dean's Hierarchical Mutual Exclusion
(Mutexes, Performance)

Q8 2/2 Feedback

Max (97), Mean (70), Median (71), Std-dev (12)

Solutions
on website

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Midsemester Letter Grades

3

No curving (regular 90, 80, 70, 60 cutoffs).
Need to pass all parts independently.

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Instructor OH & Regrade Requests
Today (Daniel):

- after class to 2.30pm
- in GHC 4124

Thursday (Yuvraj + Daniel)

- after class to 1pm
- in GHC 4124

Thursday (Yuvraj)

- from 1pm to 2pm
- in Wean 5313

4

Idea: focus on
small group /
individual
meetings. Put your
name into list on
our door.

Midterm exam pickup (Laura and Jenni, see Piazza)
⇒ Regrade requests in writing by Nov 2

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Project 2 and Schedule is Out!

Topic: RAFT distributed consensus

Released yesterday

Recitation tomorrow, Wean 7500

Checkpoint on 11/5

Final deadline on 11/12

HW3 on 10/28

Expect P3 right after P2

Updated schedule of classes, projects, homeworks

5

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Lecture Today: Cluster FS Case Study

6

What would you do? How would you start?

Task for today: “design a new distributed
filesystem for large clusters”

What if you were Google: “your most important
workload is a search engine/ Spanner backend”

What would change in your design?

GFS: Google’s distributed fault-tolerant file system
● WAL + Checksums + Primary-Backup + new tricks
● Focus on maintainability & data center environment
● Very different from DFS, DDB seen so far

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

7

GFS Operation Environment

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

8

GFS Operation Environment

• Hundreds of thousands of commodity servers
• Millions of commodity disks
• Failures are normal (expected):

• App bugs, OS bugs
• Human error
• Disk failures
• Memory failures
• Network failures
• Power supply failures

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

GFS: Workload Assumptions

• Large files, >= 100 MB in size
• Large, streaming reads (>= 1 MB in size)

• Read once

• Large, sequential writes that append
• Write once

• Concurrent appends by multiple clients (e.g.,
producer-consumer queues)
• Want atomicity for appends without synchronization

overhead among clients

9

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

GFS Design Goals

• Maintain high data and system availability
• Handle failures gracefully and transparently
• Low synchronization overhead between entities of

GFS
• Exploit parallelism of numerous disks/servers
• Choose high sustained throughput over low

latency for individual reads / writes
• Co-design filesystem and applications (GFS client

library)

10

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

GFS Architecture

• One master server
• State replicated on backups

• Many chunk servers (100s – 1000s)
• Chunk: 64 MB portion of file, identified by 64-bit,

globally unique ID
• Spread across racks; intra-rack b/w greater than

inter-rack

• Many clients accessing different files stored on
same cluster

11

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

High-Level Picture of GFS Architecture

12

Search Gmail

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

GFS Architecture Master Server

• Metadata:
• Namespace (directory hierarchy)
• Access control information (per-file)
• Mapping from files to chunks
• Current locations of chunks (chunkservers)

• Delegates consistency management
• Garbage collects orphaned chunks
• Migrates chunks between chunkservers

• Why is migration needed?

13

Holds all metadata in RAM; very fast
operations on file system metadata

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

GFS Architecture Chunkserver
• Stores 64 MB file chunks on local disk using standard Linux

filesystem (like Ext4), each with version number and
checksum

14

Why 64MB, and not traditional block size?

⇒ GFS overhead per chunk
• No understanding of overall distributed file system (just

deals with chunks)
• Read/write requests specify chunk handle and byte range
• Chunks replicated on configurable number of chunkservers

(default: 3)
• No caching of file data (beyond standard Linux buffer cache)
• Send periodic heartbeats to Master

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Master/Chunkservers

15

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

GFS Architecture Client

• Issues control (metadata) requests to master
server

• Issues data requests directly to chunkservers
• This exploits parallelism and reduces master

bottleneck

• Caches metadata
• No caching of data

• No consistency difficulties among clients
• Streaming reads (read once) and append writes

(write once) don’t benefit much from caching at
client

16

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

GFS Architecture Client

• No file system interface at the operating-system
level (e.g., VFS layer)

• User-level API is provided
• Does not support all the features of POSIX file system

access – but looks familiar (i.e. open, close, read…)

• Two special operations are supported.
• Snapshot: efficient way to copy an instance of a file or

directory tree
• Append: append data to file as an atomic operation

without having to lock a file
⇒ Multiple processes can append to the same file
concurrently without fear of overwriting one another’s
data

17

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

GFS Architecture

18

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

GFS Client Read Operation
• Client sends master:

• read(file name, chunk index)
• Master’s reply:

• chunk ID, chunk version number, locations of
replicas

• Client sends to “closest” chunkserver with
replica:
• read(chunk ID, byte range)
• “Closest” determined by IP address on simple

rack-based network topology

• Chunkserver replies with data

19

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

GFS Client Write Operation I
• 3 replicas for each block → must write to all
• When block created, Master decides placements

• Two within single rack
• Third on a different rack
• Access time / safety tradeoff

20

How to ensure consistent writes to all replicas?

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

GFS Client Write Operation II

• Some chunkserver is primary for each chunk
• Master grants lease to primary (typically for 60 sec.)
• Leases renewed using periodic heartbeat messages

between master and chunkservers

• Client asks master for primary and secondary
replicas for each chunk

21

How to efficiently send write data to all three replicas?

• Client sends data to replicas in daisy chain
• Pipelined: each replica forwards as it receives
• Takes advantage of full-duplex Ethernet links

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

GFS Client Write Operation III

22

Send to closest
replica first

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

GFS Client Write Operation IV

• All replicas acknowledge data write to client
• Don’t write to file → just get the data

• Client sends write request to primary (commit
phase)

• Primary assigns serial number to write request,
providing ordering

• Primary forwards write request with same serial
number to secondary replicas

• Secondary replicas all reply to primary after
completing writes in the same order

• Primary replies to client

23

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

GFS Record Append Operation
• Google uses large files as queues between

multiple producers and consumers
• Variant of GFS write step

24

GFS
• Client pushes data to last chunk’s replicas
• Client sends request to primary
• Common case: request fits in last chunk:

• Primary appends data to own chunk replica
• Primary tells secondaries to do same at same byte

offset in their chunk replicas
• Primary replies with success to client

Why not use a regular GFS write (client offset)?

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

GFS Append if Chunk is Full
• When data won’t fit in last chunk:

• Primary fills current chunk with padding
• Primary instructs other replicas to do same
• Primary replies to client, “retry on next chunk”

• If record append fails at any replica, client
retries operation

25

• Replicas of same chunk may contain different
data—even duplicates of all or part of record data

• Data written at least once in atomic unit
⇒ due to GFS client retries until success

What guarantee does GFS provide after
reporting success of append to application?

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

GFS File Deletion
• When client deletes file:

• Master records deletion in its log
• File renamed to hidden name including deletion

timestamp

• Master scans file namespace in background:
• Removes files with such names if deleted for longer than

3 days (configurable)
• In-memory metadata erased

• Master scans chunk namespace in background:
• Removes unreferenced chunks from chunkservers

26

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

GFS Logging at Master

• Master has all metadata information
• Lose it, and you’ve lost the filesystem!

• Master logs all client requests to disk
sequentially (→ WAL)

• Replicates log entries to remote backup
servers (→ Primary-Backup Replication)

• Only replies to client after log entries safe on
disk on self and backups!

• Logs cannot be too long – why?
• Periodic checkpoints as on-disk Btree

27

What if GFS loses the master?

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

GFS Chunk Leases and Version Numbers
• If no outstanding lease (→ chunk primary),

when client requests write, master grants new
one

• Chunks have version numbers
• Stored on disk at master and chunkservers
• Each time master grants new lease, increments

version, informs all replicas

28

• Network partitioned chunkservers, primaries
• Master can revoke leases

• e.g., when client requests rename or snapshot a file

• Detect outdated chunkserver with version #

Why does GFS need leases and version numbers?

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

GFS Consistency Model (Metadata)

• Changes to namespace (i.e., metadata) are
atomic
• Done by single master server!
• Master uses WAL to define global total order of

namespace-changing operations

29

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

GFS Consistency Model (Data)

• Changes to data are ordered as chosen by a
primary
• But multiple writes from the same client may be

interleaved or overwritten by concurrent operations from
other clients

• Record append completes at least once, at offset of
GFS’s choosing
• Applications must cope with possible duplicates

• Failures can cause inconsistency
• E.g., different data across chunk servers (failed append)
• Behavior is worse for writes than appends

30

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

GFS Fault Tolerance (Master)

• Replays log from disk
• Recovers namespace (directory) information
• Recovers file-to-chunk-ID mapping (but not location of

chunks)
• Asks chunkservers which chunks they hold

• Recovers chunk-ID-to-chunkserver mapping
• If chunk server has older chunk, it’s stale

• Chunk server down at lease renewal
• If chunk server has newer chunk, adopt its version

number
• Master may have failed while granting lease

31

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

GFS Fault Tolerance (Chunkserver)

• Master notices missing heartbeats
• Master decrements count of replicas for all chunks

on dead chunkserver
• Master re-replicates chunks missing replicas in

background
• Highest priority for chunks missing greatest number of

replicas

32

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

GFS Limitations

33

• Does not mask all forms of data corruption
• Requires application-level checksum

• Master biggest impediment to scaling
• Performance and availability bottleneck
• Takes long time to rebuild metadata
• Solution:

• Multiple master nodes, all sharing set of chunk
servers. Not a uniform name space.

• Large chunk size
• Can’t afford to make smaller

• Security?
• Trusted environment, but users can interfere

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

GFS Summary
• Success: used actively by Google

• Availability and recoverability on cheap hardware
• High throughput by decoupling control and data
• Supports massive data sets and concurrent appends

• Semantics not transparent to apps
• Must verify file contents to avoid inconsistent regions, repeated

appends (at-least-once semantics)
• Performance not good for all apps

• Assumes read-once, write-once workload (no client caching!)

• Successor: Colossus
• Eliminates master node as single point of failure
• Storage efficiency: Reed-Solomon (1.5x) instead of Replicas (3x)
• Reduces block size to be between 1~8 MB
• Few details public ☹

34

GFS

BigTable Spanner

Maps GMail

Books

YT

Ads

