Daniel S. Berger

Distributed Systems

15-440/640

Fall 2018

15 — Cluster File Systemes:
The Google File System

Readings: “The Google File System” Sections 2.3-2.6, 3.1, 3.3, 5.1, 5.2

on website

Midterm Results [Solutions J

Q1
Q2

Q3
Q4
Q5
Q6
Q7

Q38

Avg Pts Topic

11/15 True/False (DSF, WAL, LSP)

14/20 Short Answers (Communication, Time Sync,
Replication)

8/9 Communication and RPC

9/12 DFS (CAP, High availability, caching)

5/10 Logging and Failure Recovery (Checkpointing)

13/16 BergerNet (RPCs, 2PC, 3PC, Reliability/Availability)

9/16 Hepp Dean's Hierarchical Mutual Exclusion
(Mutexes, Performance)

2/2 Feedback

[Max (97), Mean (70), Median (71), Std-dev (12) |

Daniel S. Berger

15-440 Fall 2018 Carnegie Mellon University 2

Midsemester Letter Grades

25.00%
20.00%
15.00%
10.00%

5.00%

0.00%
A+ A A B+ B B- C+ C C- D+ D R

No curving (regular 90, 80, 70, 60 cutoffs).
Need to pass all parts independently.

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Instructor OH & Regrade Requests

Today (Daniel):

- after class to 2.30pm ldea: focus on
- in GHC 4124 small group /

Thursday (Yuvraj + Daniel) individual

o clace to 1 meetings. Put your
- after class to 1pm name into list on

- In GHC 4124 our door.
Thursday (Yuvraj)

- from 1pm to 2pm
- in Wean 5313

Midterm exam pickup (Laura and Jenni, see Piazza)
= Regrade requests in writing by Nov 2

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 4

Project 2 and Schedule is Out!

Topic: RAFT distributed consensus
Released yesterday
Recitation tomorrow, Wean 7500
Checkpoint on 11/5
Final deadline on 11/12
HW3 on 10/28
Expect P3 right after P2
Updated schedule of classes, projects, homeworks

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Lecture Today: Cluster FS Case Study

Task for today: “design a new distributed
filesystem for large clusters”

[\(')/ What would you do? How would you start? J

What if you were Google: “your most important
workload is a search engine/ Spanner backend”

%

[\O What would change in your design? }

GFS: Google’s distributed fault-tolerant file system
« WAL + Checksums + Primary-Backup + new tricks
o Focus on maintainability & data center environment
o Very different from DFS, DDB seen so far

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

t

C
D
=
-
O
e
>
C
LL
C
O
e
(©
-
)
Q.
O
)
LL
O

Daniel S. Berge

GFS Operation Environment

Hundreds of thousands of commodity servers
Millions of commodity disks

Failures are normal (expected):
App bugs, OS bugs
Human error
Disk failures
Memory failures
Network failures
Power supply failures

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

GFS: Workload Assumptions

Daniel S. Berger

Large files, >= 100 MB in size

Large, streaming reads (>= 1 MB in size)
Read once

Large, sequential writes that append
Write once

Concurrent appends by multiple clients (e.g.,
producer-consumer queues)
Want atomicity for appends without synchronization
overhead among clients

15-440 Fall 2018 Carnegie Mellon University

GFS Design Goals

Maintain high data and system availability
Handle failures gracefully and transparently

Low synchronization overhead between entities of
GFS

Exploit parallelism of numerous disks/servers

Choose high sustained throughput over low
latency for individual reads / writes

Co-design filesystem and applications (GFS client
library)

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

10

GFS Architecture T

Daniel S. Berger

/4
V%
4

One master server
State replicated on backups

Many chunk servers (100s — 1000s)
Chunk: 64 MB portion of file, identified by 64-bit,
globally unique ID

Spread across racks; intra-rack b/w greater than
inter-rack

Many clients accessing different files stored on
same cluster

15-440 Fall 2018 Carnegie Mellon University

11

High-Level Picture of GFS Architecture

I\Application GFS master = /foo/bar
GFS client | File namespace ,~ chunk 2ef0
) L | Y
GFS chunkserver GFS chunkserver
Linux file system Linux file system
Legend:
mmm) Data messages =020~ o J v, L g L ottt
— Control messages
Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

12

GFS Architecture Master Server

Holds all metadata in RAM; very fast
operations on file system metadata

]

Metadata:
Namespace (directory hierarchy)

Access control information (per-file)
Mapping from files to chunks
Current locations of chunks (chunkservers)

Delegates consistency management
Garbage collects orphaned chunks

Migrates chunks between chunkservers
Why is migration needed?

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

13

GFS Architecture Chunkserver

Stores 64 MB file chunks on local disk using standard Linux
filesystem (like Ext4), each with version number and
checksum

i
[\O/ Why 64MB, and not traditional block size? }

= GFS overhead per chunk

No understanding of overall distributed file system (just
deals with chunks)
Read/write requests specify chunk handle and byte range

Chunks replicated on configurable number of chunkservers
(default: 3)

No caching of file data (beyond standard Linux buffer cache)
Send periodic heartbeats to Master

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 14

Master/Chunkservers

file Afile...
v
...Is made of 64MB

T 17 chunks...

AR EEEEEEEE E Y 2
7

1 ‘. - ...that are replicated

&&&& 'EEEEEREERERY for fault tolerance
chunkserver chunkserver chunkserver chunkserver
Checkpoint Operation The master manages the file
master ' system namespace

Daniel S. Berger

In-memory FS metadata

15-440 Fall 2018 Carnegie Mellon University

GFS Architecture Client

Issues control (metadata) requests to master
server

Issues data requests directly to chunkservers
This exploits parallelism and reduces master
bottleneck

Caches metadata

No caching of data
No consistency difficulties among clients

Streaming reads (read once) and append writes
(write once) don’t benefit much from caching at
client

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 16

GFS Architecture Client

No file system interface at the operating-system
level (e.g., VFS layer)
User-level API is provided

Does not support all the features of POSIX file system
access — but looks familiar (i.e. open, close, read...)

Two special operations are supported.

Snapshot: efficient way to copy an instance of a file or
directory tree

Append: append data to file as an atomic operation
without having to lock a file

= Multiple processes can append to the same file
concurrently without fear of overwriting one another’s
data

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

17

GFS Architecture

Zipplication (file name, chunk index) GFS master o Hoo/bat

Y

GFS client . File namespace chunk 2ef0

(chunk handle,
chunk locations)

Instructions to chunkserver

Chunkserver state

(chunk handle, byte range) Y

GFS chunkserver GFS chunkserver
chunk data
Linux file system Linux file system
Legend:
mmmmd) Data messages
— Control messages

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

18

GFS Client Read Operation

Daniel S. Berger

Client sends master:
read(file name, chunk index)

Master's reply:
chunk ID, chunk version number, locations of
replicas

Client sends to “closest” chunkserver with
replica:
read(chunk ID, byte range)
“Closest” determined by IP address on simple
rack-based network topology

Chunkserver replies with data

15-440 Fall 2018 Carnegie Mellon University

19

GFS Client Write Operation |

3 replicas for each block — must write to all

When block created, Master decides placements
Two within single rack

Third on a different rack
Access time / safety tradeoff

<!, _ . .
[O How to ensure consistent writes to all replicas? }

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 20

GFS Client Write Operation |l

Some chunkserver is primary for each chunk
Master grants lease to primary (typically for 60 sec.)

Leases renewed using periodic heartbeat messages
between master and chunkservers

Client asks master for primary and secondary
replicas for each chunk

[How to efficiently send write data to all three replicas? }

Client sends data to replicas in daisy chain
Pipelined: each replica forwards as it receives

Takes advantage of full-duplex Ethernet links

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 21

GFS Client Write Operation Il

Daniel S. Berger

Master

step 1
Client |<
ls

Secondary [=—
Replica A

ep Il::a 6
Primary !
Replica F
Secondary Z
ReplicaB |=——-

Send to closest
replica first

Control

—)

15-440 Fall 2018 Carnegie Mellon University

22

GFS Client Write Operation 1V

Daniel S. Berger

All replicas acknowledge data write to client
Don’t write to file — just get the data

Client sends write request to primary (commit
phase)

Primary assigns serial number to write request,
providing ordering

Primary forwards write request with same serial
number to secondary replicas

Secondary replicas all reply to primary after
completing writes in the same order

Primary replies to client

15-440 Fall 2018 Carnegie Mellon University 23

GFS Record Append Operation

Google uses large files as queues between
multiple producers and consumers ‘

Variant of GFS write step

{Why not use a regular GFS write (client offset)? } GFS

Client pushes data to last chunk’s replicas ‘
Client sends request to primary

Common case: request fits in last chunk:
Primary appends data to own chunk replica

Primary tells secondaries to do same at same byte
offset in their chunk replicas

Primary replies with success to client

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 24

GFS Append if Chunk is Full

When data won't fit in last chunk:
Primary fills current chunk with padding

Primary instructs other replicas to do same
Primary replies to client, “retry on next chunk”

If record append fails at any replica, client
retries operation

‘('}’ What guarantee does GFS provide after
reporting success of append to application?

Replicas of same chunk may contain different
data—even duplicates of all or part of record data

Data written at least once in atomic unit
= due to GFS client retries until success

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 25

GFS File Deletion

When client deletes file:
Master records deletion in its log

File renamed to hidden name including deletion
timestamp

Master scans file namespace in background:
Removes files with such names if deleted for longer than
3 days (configurable)

In-memory metadata erased

Master scans chunk namespace in background:
Removes unreferenced chunks from chunkservers

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 26

GFS Logging at Master

[\(I)/ What if GFS loses the master? J

Daniel S. Berger

Master has all metadata information
Lose it, and you've lost the filesystem!

Master logs all client requests to disk
sequentially (— WAL)

Replicates log entries to remote backup
servers (— Primary-Backup Replication)

Only replies to client after log entries safe on
disk on self and backups!

Logs cannot be too long — why?
Periodic checkpoints as on-disk Btree

15-440 Fall 2018 Carnegie Mellon University

27

GFS Chunk Leases and Version Numbers

If no outstanding lease (— chunk primary),
when client requests write, master grants new
one

Chunks have version numbers
Stored on disk at master and chunkservers

Each time master grants new lease, increments
version, informs all replicas

[\(')/Why does GFS need leases and version numbers? J

Network partitioned chunkservers, primaries
Master can revoke leases
e.g., when client requests rename or snapshot a file

Detect outdated chunkserver with version #

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 28

GFS Consistency Model (Metadata)

Changes to namespace (i.e., metadata) are
atomic
Done by single master server!

Master uses WAL to define global total order of
namespace-changing operations

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

29

GFS Consistency Model (Data)

Changes to data are ordered as chosen by a
primary
But multiple writes from the same client may be

interleaved or overwritten by concurrent operations from
other clients

Record append completes at least once, at offset of
GFS’s choosing

Applications must cope with possible duplicates

Failures can cause inconsistency
E.g., different data across chunk servers (failed append)

Behavior is worse for writes than appends

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 30

GFS Fault Tolerance (Master)

Replays log from disk
* Recovers namespace (directory) information

* Recovers file-to-chunk-ID mapping (but not location of
chunks)

Asks chunkservers which chunks they hold
* Recovers chunk-ID-to-chunkserver mapping

If chunk server has older chunk, it's stale
« Chunk server down at lease renewal

If chunk server has newer chunk, adopt its version
number

« Master may have failed while granting lease

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

31

GFS Fault Tolerance (Chunkserver)

* Master notices missing heartbeats

« Master decrements count of replicas for all chunks
on dead chunkserver

* Master re-replicates chunks missing replicas in
background

* Highest priority for chunks missing greatest number of
replicas

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

32

GFS Limitations

* Does not mask all forms of data corruption
* Requires application-level checksum

Master biggest impediment to scaling
» Performance and availability bottleneck
» Takes long time to rebuild metadata
 Solution:

- Multiple master nodes, all sharing set of chunk
servers. Not a uniform name space.

Large chunk size
« Can’t afford to make smaller
Security?
* Trusted environment, but users can interfere

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

33

GFS Summary

BigTable Spanner

Success: used actively by Google (Meps | |(oMail |
Availability and recoverability on cheap hardware @
High throughput by decoupling control and data
Supports massive data sets and concurrent appends

Semantics not transparent to apps

Must verify file contents to avoid inconsistent regions, repeated
appends (at-least-once semantics)

Performance not good for all apps
Assumes read-once, write-once workload (no client caching!)

Successor: Colossus
Eliminates master node as single point of failure
Storage efficiency: Reed-Solomon (1.5x) instead of Replicas (3x)
Reduces block size to be between 1~8 MB
Few details public ®

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 34

