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15 – Cluster File Systems: 
The Google File System

Readings: “The Google File System” Sections 2.3-2.6, 3.1, 3.3, 5.1, 5.2
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Midterm Results
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Avg Pts Topic
Q1 11/15 True/False (DSF, WAL, LSP)

Q2 14/20 Short Answers (Communication, Time Sync, 
Replication)

Q3 8/9 Communication and RPC

Q4 9/12 DFS (CAP, High availability, caching)

Q5 5/10 Logging and Failure Recovery (Checkpointing)

Q6 13/16 BergerNet (RPCs, 2PC, 3PC, Reliability/Availability)

Q7 9/16 Hepp Dean's Hierarchical Mutual Exclusion 
(Mutexes, Performance)

Q8 2/2 Feedback

Max (97), Mean (70), Median (71), Std-dev (12)

Solutions
on website
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Midsemester Letter Grades
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No curving (regular 90, 80, 70, 60 cutoffs). 
Need to pass all parts independently.
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Instructor OH & Regrade Requests
Today (Daniel):

- after class to 2.30pm
- in GHC 4124

Thursday (Yuvraj + Daniel)

- after class to 1pm
- in GHC 4124

Thursday (Yuvraj)

- from 1pm to 2pm
- in Wean 5313
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Idea: focus on 
small group / 
individual 
meetings. Put your 
name into list on 
our door.

Midterm exam pickup (Laura and Jenni, see Piazza)
⇒ Regrade requests in writing by Nov 2
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Project 2 and Schedule is Out!

Topic: RAFT distributed consensus

Released yesterday

Recitation tomorrow, Wean 7500

Checkpoint on 11/5

Final deadline on 11/12

HW3 on 10/28

Expect P3 right after P2

Updated schedule of classes, projects, homeworks

5
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Lecture Today: Cluster FS Case Study
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What would you do? How would you start?

Task for today: “design a new distributed 
filesystem for large clusters”

What if you were Google: “your most important 
workload is a search engine/ Spanner backend”

What would change in your design?

GFS: Google’s distributed fault-tolerant file system
● WAL + Checksums + Primary-Backup + new tricks
● Focus on maintainability & data center environment
● Very different from DFS, DDB seen so far
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GFS Operation Environment
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GFS Operation Environment

• Hundreds of thousands of commodity servers
• Millions of commodity disks
• Failures are normal (expected):

• App bugs, OS bugs
• Human error
• Disk failures
• Memory failures
• Network failures
• Power supply failures
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GFS: Workload Assumptions

• Large files, >= 100 MB in size
• Large, streaming reads (>= 1 MB in size)

• Read once

• Large, sequential writes that append
• Write once

• Concurrent appends by multiple clients (e.g., 
producer-consumer queues)
• Want atomicity for appends without synchronization 

overhead among clients

9
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GFS Design Goals

• Maintain high data and system availability
• Handle failures gracefully and transparently
• Low synchronization overhead between entities of 

GFS
• Exploit parallelism of numerous disks/servers
• Choose high sustained throughput over low 

latency for individual reads / writes
• Co-design filesystem and applications (GFS client 

library)

10
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GFS Architecture

• One master server 
• State replicated on backups

• Many chunk servers (100s – 1000s)
• Chunk: 64 MB portion of file, identified by 64-bit, 

globally unique ID
• Spread across racks; intra-rack b/w greater than 

inter-rack

• Many clients accessing different files stored on 
same cluster

11
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High-Level Picture of GFS Architecture

12

Search Gmail
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GFS Architecture Master Server

• Metadata:
• Namespace (directory hierarchy)
• Access control information (per-file)
• Mapping from files to chunks
• Current locations of chunks (chunkservers)

• Delegates consistency management
• Garbage collects orphaned chunks
• Migrates chunks between chunkservers

• Why is migration needed?

13

Holds all metadata in RAM; very fast 
operations on file system metadata
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GFS Architecture Chunkserver
• Stores 64 MB file chunks on local disk using standard Linux 

filesystem (like Ext4), each with version number and 
checksum

14

Why 64MB, and not traditional block size?

⇒ GFS overhead per chunk
• No understanding of overall distributed file system (just 

deals with chunks)
• Read/write requests specify chunk handle and byte range
• Chunks replicated on configurable number of chunkservers 

(default: 3)
• No caching of file data (beyond standard Linux buffer cache)
• Send periodic heartbeats to Master
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Master/Chunkservers

15
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GFS Architecture Client

• Issues control (metadata) requests to master 
server

• Issues data requests directly to chunkservers
• This exploits parallelism and reduces master 

bottleneck

• Caches metadata
• No caching of data

• No consistency difficulties among clients
• Streaming reads (read once) and append writes 

(write once) don’t benefit much from caching at 
client

16
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GFS Architecture Client

• No file system interface at the operating-system 
level (e.g., VFS layer)

• User-level API is provided
• Does not support all the features of POSIX file system 

access – but looks familiar (i.e. open, close, read…)

• Two special operations are supported. 
• Snapshot: efficient way to copy an instance of a file or 

directory tree
• Append: append data to file as an atomic operation 

without having to lock a file
⇒ Multiple processes can append to the same file 
concurrently without fear of overwriting one another’s 
data

17
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GFS Architecture

18
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GFS Client Read Operation
• Client sends master:

• read(file name, chunk index)
• Master’s reply:

• chunk ID, chunk version number, locations of 
replicas

• Client sends to “closest” chunkserver with 
replica:
• read(chunk ID, byte range)
• “Closest” determined by IP address on simple 

rack-based network topology

• Chunkserver replies with data

19
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GFS Client Write Operation I
• 3 replicas for each block → must write to all
• When block created, Master decides placements

• Two within single rack
• Third on a different rack 
• Access time / safety tradeoff 

20

How to ensure consistent writes to all replicas?
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GFS Client Write Operation II

• Some chunkserver is primary for each chunk
• Master grants lease to primary (typically for 60 sec.)
• Leases renewed using periodic heartbeat messages 

between master and chunkservers

• Client asks master for primary and secondary 
replicas for each chunk

21

How to efficiently send write data to all three replicas?

• Client sends data to replicas in daisy chain
• Pipelined: each replica forwards as it receives
• Takes advantage of full-duplex Ethernet links
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GFS Client Write Operation III

22

Send to closest 
replica first
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GFS Client Write Operation IV

• All replicas acknowledge data write to client
• Don’t write to file → just get the data

• Client sends write request to primary (commit 
phase)

• Primary assigns serial number to write request, 
providing ordering

• Primary forwards write request with same serial 
number to secondary replicas

• Secondary replicas all reply to primary after 
completing writes in the same order

• Primary replies to client

23
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GFS Record Append Operation
• Google uses large files as queues between 

multiple producers and consumers
• Variant of GFS write step

24

GFS
• Client pushes data to last chunk’s replicas
• Client sends request to primary
• Common case: request fits in last chunk:

• Primary appends data to own chunk replica
• Primary tells secondaries to do same at same byte 

offset in their chunk replicas
• Primary replies with success to client

Why not use a regular GFS write (client offset)?
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GFS Append if Chunk is Full
• When data won’t fit in last chunk:

• Primary fills current chunk with padding
• Primary instructs other replicas to do same
• Primary replies to client, “retry on next chunk”

• If record append fails at any replica, client 
retries operation

25

• Replicas of same chunk may contain different 
data—even duplicates of all or part of record data

• Data written at least once in atomic unit
⇒ due to GFS client retries until success

What guarantee does GFS provide after 
reporting success of append to application?
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GFS File Deletion
• When client deletes file:

• Master records deletion in its log
• File renamed to hidden name including deletion 

timestamp

• Master scans file namespace in background:
• Removes files with such names if deleted for longer than 

3 days (configurable)
• In-memory metadata erased

• Master scans chunk namespace in background:
• Removes unreferenced chunks from chunkservers

26
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GFS Logging at Master

• Master has all metadata information
• Lose it, and you’ve lost the filesystem!

• Master logs all client requests to disk 
sequentially ( → WAL)

• Replicates log entries to remote backup 
servers ( → Primary-Backup Replication)

• Only replies to client after log entries safe on 
disk on self and backups!

• Logs cannot be too long – why?
• Periodic checkpoints as on-disk Btree

27

What if GFS loses the master?
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GFS Chunk Leases and Version Numbers
• If no outstanding lease (→ chunk primary), 

when client requests write, master grants new 
one

• Chunks have version numbers
• Stored on disk at master and chunkservers
• Each time master grants new lease, increments 

version, informs all replicas

28

• Network partitioned chunkservers, primaries
• Master can revoke leases

• e.g., when client requests rename or snapshot a file

• Detect outdated chunkserver with version #

Why does GFS need leases and version numbers?
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GFS Consistency Model (Metadata)

• Changes to namespace (i.e., metadata) are 
atomic
• Done by single master server!
• Master uses WAL to define global total order of 

namespace-changing operations

29
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GFS Consistency Model (Data)

• Changes to data are ordered as chosen by a 
primary
• But multiple writes from the same client may be 

interleaved or overwritten by concurrent operations from 
other clients

• Record append completes at least once, at offset of 
GFS’s choosing
• Applications must cope with possible duplicates

• Failures can cause inconsistency
• E.g., different data across chunk servers (failed append)
• Behavior is worse for writes than appends

30
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GFS Fault Tolerance (Master)

• Replays log from disk
• Recovers namespace (directory) information
• Recovers file-to-chunk-ID mapping (but not location of 

chunks)
• Asks chunkservers which chunks they hold

• Recovers chunk-ID-to-chunkserver mapping
• If chunk server has older chunk, it’s stale

• Chunk server down at lease renewal
• If chunk server has newer chunk, adopt its version 

number
• Master may have failed while granting lease

31
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GFS Fault Tolerance (Chunkserver)

• Master notices missing heartbeats
• Master decrements count of replicas for all chunks 

on dead chunkserver
• Master re-replicates chunks missing replicas in 

background
• Highest priority for chunks missing greatest number of 

replicas

32
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GFS Limitations
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• Does not mask all forms of data corruption
• Requires application-level checksum

• Master biggest impediment to scaling
• Performance and availability bottleneck
• Takes long time to rebuild metadata
• Solution: 

• Multiple master nodes, all sharing set of chunk 
servers. Not a uniform name space.

• Large chunk size
• Can’t afford to make smaller

• Security?
• Trusted environment, but users can interfere
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GFS Summary
• Success: used actively by Google

• Availability and recoverability on cheap hardware
• High throughput by decoupling control and data
• Supports massive data sets and concurrent appends

• Semantics not transparent to apps
• Must verify file contents to avoid inconsistent regions, repeated 

appends (at-least-once semantics)
• Performance not good for all apps

• Assumes read-once, write-once workload (no client caching!)

• Successor: Colossus 
• Eliminates master node as single point of failure
• Storage efficiency: Reed-Solomon (1.5x) instead of Replicas (3x)
• Reduces block size to be between 1~8 MB
• Few details public ☹
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