
Readings: Spanner paper, Daniel Abadi’s blog post

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Announcements

2

Yuvraj’s OH: 1pm to 2pm today
Daniel’s OH: right after class to 1pm today

Piazza questions on Lamport and TO Multicast
 → will update lecture slides today

Next Tuesday: midterm review, Q&A
Next Thursday: midterm I, in class (4401)

→ please be punctual 10.25am

 Today’s lecture: advanced concepts/
bringing it all together. Case studies are next.

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Let’s Build a Distributed Database

3

E.g., as backend for a social network

…

Single node:

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Let’s Build a Distributed Database

4

E.g., as backend for a social network

Two nodes:
… Where is data stored?

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Let’s Build a Distributed Database

5

E.g., as backend for a social network

Two nodes:
… Consistency?

Hash-based
data
partitioning
(sharding)

Shard x

Shard y

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Sequential Consistency
• All nodes see operations in some sequential

order
• Operations of each process appear in-order in

this sequence
Eventual Consistency
• All nodes will learn eventually about all writes, in

the absence of updates

6

Consistency Definitions

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Consistent Distributed Database

7

E.g., as backend for a social network

Two nodes:
… Sequential

Consistency?
Hash-based
data
partitioning
(sharding)

Shard x

Shard y

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Distributed Database with Transactions

8

E.g., as backend for a social network

 What if we need
transactions that
span several shards?

Shard x

Shard y

Can you achieve this
with a mutex?

What would you use?

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Distributed Database with Transactions

9

E.g., as backend for a social network

 What if we need
transactions that
span several shards?

Shard x

Shard y

Consistency under 2PC
when there are faults?

What would you use to stay up during faults?

2PC
Coordi
nator

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Backup

Fault-tolerant Distributed Database I

10

E.g., as backend for a social network

 What if we need to
stay up during faults?

Shard x

Shard y
2PC
Coordi
nator

Primary-Backup:
Fail-over on fault

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Replica
Replica

Fault-tolerant Distributed Database II

11

E.g., as backend for a social network

 What if we need to
stay up during faults?

Shard x

Shard y2PC
Coordi
nator

Run separate pools of
replicas with consensus for
every role (Paxos/Raft)

How many nodes do you need in every role?

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Summary So Far: When to Use What?

12

Use Case Problems

Distributed Mutex Distributed KV
without transactions

2PC Distributed DB with
transactions
(e.g., Spanner)

Primary-Backup Cost-efficient fault
tolerance (e.g., FaRM,
GFS, VMWare-FT)

Paxos Staying up no matter
the cost (e.g., Spanner,
FaunaDB)

RAID, Checksums Every system

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Summary So Far: When to Use What?

13

Use Case Problems

Distributed Mutex Distributed KV
without transactions

Failures + Slow

2PC Distributed DB with
transactions
(e.g., Spanner)

Failures

Primary-Backup Cost-efficient fault
tolerance (e.g., FaRM,
GFS, VMWare-FT)

Correlated failures

Paxos Staying up no matter
the cost (e.g., Spanner,
FaunaDB)

Delay and huge
cost overhead

RAID, Checksums Every system Node failures

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

High performance: high throughput and low latency
Every consistency algorithm pays multiple RTTs!

Availability during network partitions
Recall the CAP theorem
→ When partitioned: either consistency (CP) or availability (AP)

Simplicity and maintainability
2018: still bugs in major consistency protocols [OSDI’18]

Practical Constraints

14

 Can you think of cases where you would
need a different solution than these algorithms?

Different trade-offs made in practice
 → lectures with case studies today and after midterm

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

2005-2012: NoSQL systems

Design choices: AP: availability over consistency
“infinitely” scalable

Practical Constraints: Alternative I

15

write S = 1 S=1

ok, done
S=1

Network
partition

read S

S?
write X = 9

ok, done
Challenge: version reconcilation (parallel writes..)

Practical approach (Dynamo): Vector Clocks

X=9

Only eventually
consistent!

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

2012-2018: resurgence of consistent distributed DBs

Three key reasons [→ Daniel Abadi, UMD]
1. application code gets too complex and buggy without

consistency support in DB
2. better network availability, CP (from CAP) choice is

more practical, availability sacrifice hardly noticeable
3. CAP asymmetry: CP can guarantee consistency, AP

can’t guarantee availability (only question of degree)

Practical Constraints: Alternative II

16

Trend: stronger-than-sequential consistency

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Sequential Consistency
• All nodes see operations in some sequential

order
• Operations of each process appear in-order in

this sequence
Eventual Consistency
• All nodes will learn eventually about all writes, in

the absence of updates
17

Consistency Definitions
External Consistency
• If T1 commits before T2, then the commit order

must be T1 before T2

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

•

…

 What if commit order T2 before T1?

We often need external consistency!

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

2012-2018: resurgence of consistent distributed DBs

Three key reasons [→ Daniel Abadi, UMD]
1. application code gets too complex and buggy without

consistency support in DB
2. better network availability, CP (from CAP) choice is less

relevant, availability sacrifice hardly noticeable
3. CAP asymmetry: CP can guarantee consistency, AP can’t

guarantee availability (only question of degree)

Practical Constraints: Alternative II

19

Most workloads are read heavy. New
systems support lock-free consistent reads.

Even stronger consistency requirements.

These guarantee at least sequential consistency, unlike NoSQL.

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

“The CAP theorem says that it is impossible for a
system that guarantees consistency to guarantee
100% availability in the presence of a network
partition.”

No system can guarantee 100% availability in
practice! So, can’t guarantee A.

Rather, guaranteeing consistency causes a
reduction to our already imperfect availability.

Revisiting the CAP Theorem

20

Daniel Abadi, UMD]

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

…

Lock free ideas?

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

→

t=1,v=9 t=2,v=8

t=1,u=3

t=1,w=2 t=2,w=3

t=4,v=7

t=3,w=4 t=5,w=6

Snapshot at
t=3

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

…

Requirement: create distributed
snapshots at exactly the same time!

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

…

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Challenge in distributed DBs?

So, what!? We learned how to sync time in 440!

→

What do we know about time sync errors?

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

⇒

100ms RTT

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

•
•

–
•
•

–

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

…

 ...The majority of masters have GPS receivers with dedicated antennas...
The remaining masters (which we refer to as Armageddon masters) are
equipped with atomic clocks. An atomic clock is not that expensive: the cost
of an Armageddon master is of the same order as that of a GPS master...

Spanner
Server

NTP

NT
PNTP

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

•
•

•

t
T1: s1

start commit

s1: Timestamp

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

t=1,v=9 t=2,v=8

t=1,u=3

t=1,w=2 t=2,w=3

t=4,v=7

t=3,w=4 t=5,w=6

Conceptually: must wait until all write transactions
visible (their timestamps have passed)

Snapshot at
t=3

Challenge: time sync errors even with GPS/atomic clocks

Key question: how long do we need to wait?

What is the clock uncertainty (worst time sync error?)

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

•

ε

earliest latest

TT.now()

time

TT.after(t) = true TT.before(t) = true

TT.after(t) – true if t has definitely passed
TT.before(t) – true if t has definitely not arrived

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

ε ε

Why set s=latest and why wait until earliest>s?

ε
ε

ε

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 33

•

•

t
T1: s1

start commit

t
T1: s1

start commit

T2: s2
T2: s2

s1 < s2 s1 < s2

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

Spanner Summary

• Globally consistent replicated database system
• Implements distributed transactions

• Uses 2PC

• Fault-tolerance and replicated writes
• Uses Paxos based

• Newer Systems:

34

