Distributed Systems

15-440/640

Fall 2018

14 — Distributed Databases:
Case Study

Readings: Spanner paper, Daniel Abadi’s blog post




Announcements

Yuvraj's OH: 1pm to 2pm today
Daniel’s OH: right after class to 1pm today

Piazza questions on Lamport and TO Multicast
— will update lecture slides today

Next Tuesday: midterm review, Q&A
Next Thursday: midterm |, in class (4401)
— please be punctual 10.25am

[O/ Today’s lecture: advanced concepts/ J
bringing it all together Case studles are next.

Daniel S.Berger . 15-440Fall 2018 Carnegie Mellon University




Let’s Build a Distributed Database

E.g., as backend for a social network

Single node:

Block writes

awe
Friend1 post - AW
oy pa%

User posts

Friend2 post

Friend999 post
Friend1000 post

Friend lists

Mutex

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University



Let’s Build a Distributed Database

E.g., as backend for a social network

Two nodes:

User posts |
Friend2 post Friend lists |

Friend1 post

[\O/Where is data stored? }

Friend999 post

Friend1000 post User posts
Friend lists Il

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University



Let’s Build a Distributed Database

E.g., as backend for a social network

Two nodes: Shard x

Friend1 post hash(user id) =

Friend2 post

[\(')/Consistency? }

Friend999 post
Friend1000 post

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

(Hash-based\

data
partitioning

hash(user id) =
y

\(sharding) )




Consistency Definitions

Sequential Consistency

* All nodes see operations in some sequential
order

» Operations of each process appear in-order in
this sequence

Eventual Consistency

 All nodes will learn eventually about all writes, in
the absence of updates

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University



Consistent Distributed Database

E.g., as backend for a social network

Two nodes: Shard x

Block writes -
AW
; (<
Friend1 post hash(user id) = T 028 /

Friend2 post

(Hash-based\

data
partitioning
\(sharding) )

[O, Sequential ]

Consistency?

Friend999 post -

Friend1000 post > hash(user id) =

y

Distributed Mutex

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University



Distributed Database with Transactions

E.g., as backend for a social network

\II

FO What if we need
transactions that
_Span several shards?

~

“Add friendship
relation across
shards x and y.”

N \ hash(user id) =

‘Can you achieve this
 with a mutex?

y

| What would you use?

3—440 Fall 2018 Carnegie Mellon University




Distributed Database with Transactions

E.g., as backend for a social network

sl
FO What if we need A Shard x

transactions that
_Span several shards?

“Add friendship 2PC
relation across Coordi
shards x and y.” nator

rConsistency under 2PC

 when there are faults?

] hash(user id) =
y

‘What would you use to stay up during faults? ]

Danie



Fault-tolerant Distributed Database |

E.g., as backend for a social network

Shard x

U What if we need to
stay up during faults?

hash(user id) =

Rackup
Add- friendship 2PC
relation across Coordi

shards x and y.” nator

Primary-Backup:
Fail-over on fault

hash(user id) =
y
10

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University



Fault-tolerant Distributed Database Il
Shard x

ol

hash(userld

E.g., as backend for a social network

U What if we need to
stay up during faults?

Ad@fnendshp 2PC
relation across Coordi
shards x and y.” nator

"Run separate pools of h

replicas with consensus for -l

every role (Paxos/Raft) ) hash(user id)

How many nodes do you need in every role? y




Summary So Far: When to Use What?

Distributed Mutex

2PC

Primary-Backup

Paxos

RAID, Checksums

Daniel S. Berger

Use Case

Distributed KV
without transactions

Distributed DB with

transactions
(e.g., Spanner)

Cost-efficient fault

tolerance (e.g., FaRM,
GFS, VMWare-FT)

Staying up no matter

the cost (e.g., Spanner,
FaunaDB)

Every system

15-440 Fall 2018 Carnegie Mellon University

Problems

12



Summary So Far: When to Use What?

Distributed Mutex

2PC

Primary-Backup

Paxos

RAID, Checksums

Daniel S. Berger

Use Case

Distributed KV
without transactions

Distributed DB with

transactions
(e.g., Spanner)

Cost-efficient fault

tolerance (e.g., FaRM,
GFS, VMWare-FT)

Staying up no matter

the cost (e.g., Spanner,
FaunaDB)

Every system

15-440 Fall 2018 Carnegie Mellon University

Problems

Failures + Slow

Failures

Correlated failures

Delay and huge
cost overhead

Node failures

13



Practical Constraints

U Can you think of cases where you would
need a different solution than these algorithms?

High performance: high throughput and low latency

Every consistency algorithm pays multiple RTTs!
Avalilability during network partitions

Recall the CAP theorem

— When partitioned: either consistency (CP) or availability (AP)
Simplicity and maintainability

2018: still bugs in major consistency protocols [OSDI’18]

Different trade-offs made in practice
— lectures with case studies today and after midterm

14

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University



Practical Constraints: Alternative |

2005-2012: NoSQL systems [Only_eventuallyJ
Amazon’s Dynamo, Facebook’s Cassandra, consistent!

Microsoft’s Azure CosmosDB, Apache CouchDB, Basho’s Riak
Design choices: AP: availability over consistency

“Infinitely” scalable

Network
partition

Challenge: version reconcilation (parallel writes..)

:Practical approach (Dynamo): Vector Clocks 15




Practical Constraints: Alternative ||

2012-2018: resurgence of consistent distributed DBs

Google’s Spanner, Microsoft’s FaRM, Apple’s FoundationDB
OSS: Calvin/FaunaDB, CockroachDB

Three key reasons [— Daniel Abadi, UMD]

1. application code gets too complex and buggy without
consistency support in DB

2. better network availability, CP (from CAP) choice is
more practical, availability sacrifice hardly noticeable

3. CAP asymmetry: CP can guarantee consistency, AP
can’t guarantee availability (only question of degree)

[Trend: stronger-than-sequential consistency ]

16

Daniel . Berger 15 -440 Fa [l 2018 Carnegie Mellon University



Consistency Definitions

External Consistency

 |f T1 commits before T2, then the commit order
must be T1 before T2

Sequential Consistency

* All nodes see operations in some sequential
order

» QOperations of each process appear in-order in
this sequence

Eventual Consistency

 All nodes will learn eventually about all writes, in
the absence of updates

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

17



Consistency matters for a DB

* Example in social network database

Two transactions:

1. Remove untrustworthy person X as friend
2. Post P: “My government is repressive...”




Practical Constraints: Alternative ||

2012-2018: resurgence of consistent distributed DBs

Google’s Spanner, Microsoft’s FaRM, Calvin and FaunaDB

[These guarantee at least sequential consistency, unlike NoSQL.

Three key reasons [— Daniel Abadi, UMD]

1.

2.

3.

application code gets too complex and buggy without
consistency support in DB

better network availability, CP (from CAP) choice is less
relevant, availability sacrifice hardly noticeable

CAP asymmetry: CP can guarantee consistency, AP can't
guarantee availability (only question of degree)

Even stronger consistency requirements.

‘Most workloads are read heavy. New
| systems support lock- free conS|stent reads.

J

PO

19




Revisiting the CAP Theorem
Daniel Abadi, UMD]

“The CAP theorem says that it is impossible for a
system that guarantees consistency to guarantee
100% availability in the presence of a network
partition.”

No system can guarantee 100% availability in
practice! So, can’'t guarantee A.

Rather, guaranteeing consistency causes a
reduction to our already imperfect availability.

Daniel . Berger 15 -440 Fall 2018 Carnegie Mellon University 20



Reading from Single Machine

Block writes
Friend1 post >
Friend2 post -
Friend999 post >
Friend1000 post -

Read lock
Block all writes until
read has finished

[\(')’ Lock free ideas?]

Generate my page

. .

w
User posts
Friend lists
w
Snapshot

Read from DB-copy,

writes continue to original DB

Figures adapted from [Wilson Hsieh and coauthors, OSDI 2012]

Daniel S. Berger

15-440 Fall 2018 Carnegie Mellon University



Implementing Snapshot Reads

Actually make a “copy”

How do you deal with concurrency?

Multi-version concurrency control

New commit — add as (timestamp,value)
Keep old (timestamp,value) tuples

Snapshot: read latest tuples with timestamp < now

1 »
. 3 &3
t=1,v=9 [ t=2,v=8 ] 'a [ t=4,v=7 ]
\ J =
: Cl
t=1,u=3 o
t=1,w=2 [t=2,w=3 ] [t=3,w=4 D [t=5,w=6 ]
Daniel S. Berger

15-440 Fall 2018 Carnegie Mellon University

22



Reading from Multiple Machines

Friend1 post User posts

Friend2 post Friend lists \

Generate my page

Friend999 post /
User posts

Friend1000 post
| P Friend lists

Snapshot

Requirement: create distributed
snapshots at exactly the same time!

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 23



Real-World Distributed DB

Friend1 post »
us
Friend2 post S
Spain

Friend999 post
Brazil

Friend1000 post = x1000>
Russia

D>

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University

sts
S el _—

24



Multi-Version Databases

PostgreSQL

In advanced single-node RDBMs

Widely implemented

XY Challenge in distributed DBs? |

Need synchronized clocks across all nodes

[So, what!? We learned how to sync time in 440!]

Need highly accurate time synchronization
e.g., 1,000,000 reqgs/sec — error < 1 microsecond

[What do we know about time sync errors? ]

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University



Time Synchronization Error

DB cluster in US ' N

DB cluster in Spain %
N

Time sync error proportional to RTT

100ms RTT

Global Internet RTTs in 100s of milliseconds

= No microsecond time sync protocol across Internet

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 26



Spanner: Google’s
Globally-Distributed Database

e Feature: Lock-free distributed read transactions

* Property: External consistency of distributed
transactions

— First externally consistent DB at global scale
* Implementation: WAL + 2PC + Paxos + Snapshots

* Enabling technology: TrueTime
— Interval-based global time

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University



How does Spanner do Time Sync?

3 % e

GPS GPS GPS
timemaster timemaster timemaster
NTP &

|
Atomic-clock Atomic-clock GPS
time timemaster timemaster
Data nter é\Q Datacenter 2 Datacenter n

Spanner
Server

...The majority of masters have GPS receivers with dedicated antennas...
The remaining masters (which we refer to as Armageddon masters) are
equipped with atomic clocks. An atomic clock is not that expensive: the cost
of an Armageddon master is of the same order as that of a GPS master...

OSDI 2012

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 28



Timestamps and Concurrency Control

* Key aspect: globally meaningful timestamps for

distributed transactions start  commit

‘v

s,: Timestamp
e Strict two-phase locking for write transactions

* Assign timestamp while locks are held

Acquired locks Release locks

4 -

Pick s =now() Picks=now() Picks=now()

Daniel . Berger 15 -440 Fall 2018 Carnegie Mellon University 29



Sufficient to Assigh Timestamps?

-
1l

r D w
t=1,v=9 [t=2,v=8 ]

=

e "_OHSdeuS

t=1,u=3

crwz | (2w ) [t=3,w=4D ==

Challenge: time sync errors even with GPS/atomic clocks

Conceptually: must wait until all write transactions
 visible (their timestamps have passed) I

Key question: how long do we need to wait?

What is the clock uncertainty (worst time sync error?)

eeeeeeeeeee -440 Fall 2018 Carnegie Mellon University 30



Spanner’s TrueTime Concept

e “Global wall-clock time” with bounded

uncertainty T row() o
earliest latest
- >
2*¢g
TT.after(t) = true TT.now() TT.before(t) = true
> fime
earliest latest

TT.after(t) — true if t has definitely passed
TT.before(t) — true if t has definitely not arrived

OSDI 2012

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 3 1



Timestamps and TrueTime

Acquired locks Release locks
v v
T b

Pick s = TT.now().latest s Wait until TT.now().earliest > s

Commit wait

- >
average € average €
~ 1 : : :
O Why set s=latest and why wait until earliest>s?

T1 starts at t=2 €=2

picks s=4 T2 starts at t=6 €=2

releases locks at t=6 picks s=8 T3 starts at t=8 €=3
releases locks at t=10 picks s=11

releases locks at t=14

Daniel S. Berger 15-440 Fall 2018 Carnegie Mellon University 3 2



Spanner External Consistency

 If a transaction T, commits before another
transaction T2 starts, then Tl's commit
timestamp is smaller than T,

e Similar to how we reason with wall-clock time

start commit start commit

L S g

ST

%

sl <s2
15-440 Fall 2 018 Carnegie Mellon University 3 3




Spanner Summary

» Globall
y consi
nsistent replicated databas
e system

nts distri
. Uses 2PC stributed transactions

- Fault-t

-tole

. Use rance and replicat :

N s Paxos based ed writes
ewer SyStemS:

Q Cloud Spanner

e
FoundationDB

Stronger Semantics for Low-Latency Geo-Repli€ ated Storage

Wyatt Lioyd™, Michae! J- Freedman’, Michae Kam\nsky*. and David G. I»‘«ndersent

*Princeton University: fintel Labs: t carnegie Mellon University

plest data model p\'uv'\dcd by data stores—1is USe
umber of services today 4.291. The simplicity
dua model. however. makes puilding 2 number of in-

We present the first scalable, gcu-rcp\\cmcd storage Sys*
\eresting services overly arduous. p;\n'\cu\;\ﬂy con\pm’cd

Cockroach ps

; latency- offers a rich data model.
g - Namely, all client

to the columm
like BigTable

Daniel S. Berger
squests are 5;1\isﬁcd' the yeal 44 acenter 10 which

15-440Fa
Il 20
18 Carnegie Mellon Universi
rsity

34




